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MONOMIAL BASIS IN KORENBLUM TYPE SPACES

OF ANALYTIC FUNCTIONS

JOSÉ BONET, WOLFGANG LUSKY, AND JARI TASKINEN

(Communicated by Thomas Schlumprecht)

Abstract. It is shown that the monomials Λ = (zn)∞n=0 are a Schauder basis

of the Fréchet spaces A−γ
+ , γ ≥ 0, that consists of all the analytic functions

f on the unit disc such that (1 − |z|)μ|f(z)| is bounded for all μ > γ. Lusky
proved that Λ is not a Schauder basis for the closure of the polynomials in
weighted Banach spaces of analytic functions of type H∞. A sequence space

representation of the Fréchet space A−γ
+ is presented. The case of (LB)-spaces

A−γ
− , γ > 0, that are defined as unions of weighted Banach spaces is also

studied.

1. Introduction and preliminaries

We consider analytic functions f ∈ H(D) on the unit complex disc D = {z ∈ C :
|z| < 1}. For a function f : D → C and 0 ≤ r < 1 we putM∞(f, r) = sup|z|=r |f(z)|.
If f is analytic, then M∞(f, r) is increasing with respect to r. For μ > 0 let

||f ||μ = sup
0≤r<1

M∞(f, r)(1− r)μ

and A−μ = {f : D → C : f analytic , ||f ||μ < ∞}. Moreover let

A−μ
0 = {f ∈ A−μ : lim

r→1
M∞(f, r)(1− r)μ = 0},

and for γ ∈ [0,∞[ let

A−γ
+ =

⋂
μ>γ

A−μ =
⋂
μ>γ

A−μ
0 .

We consider the norms || · ||μ, μ > γ, with which A−γ
+ becomes a Frechet space. By

definition we have

|| · ||μ1
≤ || · ||μ2

and A−μ2 ⊂ A−μ1 whenever μ1 > μ2.

Similarly, for γ ∈]0,∞], let

A−γ
− :=

⋃
μ<γ

A−μ =
⋃
μ<γ

A−μ
0

be endowed with the finest locally convex topology such that all inclusions A−μ ⊂
A−γ

− are continuous. With this topology A−γ
− is an (LB)-space, i.e., a Hausdorff

countable inductive limit of Banach spaces.
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The Korenblum space A−∞
− , denoted simply by A−∞ [6], is defined via

A−∞ :=
⋃

0<γ<∞
A−γ =

⋃
n∈N

A−n.

Spaces of this type play a relevant role in interpolation and sampling of ana-
lytic functions; see [7]. Weighted spaces of analytic functions appear in the study
of growth conditions of analytic functions and have been investigated in various
articles since the work of Shields and Williams; see e.g. [3], [4], [10], [12], and the
references therein.

Our notation for functional analysis is standard; see e.g. [11]. We recall that a
sequence (xn)n in a locally convex space E is a Schauder basis if every element x ∈ E
can be written in a unique way as x =

∑∞
n=1 un(x)xn with un : E → K, n ∈ N,

continuous linear forms. We refer the reader to [9] for more information about
Schauder bases in Banach spaces and to [8] for Schauder bases on locally convex
spaces.

Let en(z) = zn, z ∈ D, for n = 0, 1, 2, . . . and Λ = {en : n = 0, 1, 2, . . .}. The

second author proved in [10] that Λ is not a Schauder basis for any A−μ
0 and in

more general weighted Banach spaces of analytic functions. On the other hand, the
monomials (en)n constitute a Schauder basis of the space A−∞. In fact associating
each f(z) =

∑∞
n=0 anz

n ∈ A−∞ to the sequence (an)n of Taylor coefficients defines
a linear topological isomorphism from A−∞ into the strong dual s′ of the Fréchet
echelon space s of rapidly decreasing sequences.

The purpose of this note is to answer the following two questions:

Question 1. Are the monomials a Schauder basis of the spaces A−γ
+ and A−γ

− for
γ �= ∞?

Question 2. Are there sequence space representations of the spaces A−γ
+ for 0 ≤

γ < ∞ (resp. A−γ
− , for 0 < γ < ∞) as Köthe echelon (resp. Köthe co-echelon)

spaces of order 0?

In connection with Question 2, recall that the Banach spaces A−μ
0 and A−μ

are isomorphic to c0 and �∞ respectively [12], although the monomials are not a
Schauder basis of them [10].

Question 1 is answered positively in Theorem 2.4, and Question 2 is dealt with
in Section 3; see Theorem 3.2.

2. Monomial bases

The following lemma is easy to prove.

Lemma 2.1. Let μ > 0 and N > 0. The function rN (1 − r)μ, 0 ≤ r ≤ 1, has a
global maximum point at r if and only if N = μr(1− r)−1.

For n > μ > 0 put ρn,μ = 1 − μ
n . Then ρn,μ is the global maximum point of

rn−μ(1− r)μ.

Lemma 2.2. Let n ∈ N, n > μ. Consider f : D → C analytic with f(z) =∑∞
k=n akz

k. Then

||f ||μ = sup
ρn,μ≤r<1

M∞(f, r)(1− r)μ.
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Proof. Let g(z) = z−nf(z). Then, g can be regarded as an analytic function on D

(with the natural extension to 0). We obtain, for 0 ≤ r < ρn,μ,

M∞(f, r)(1− r)μ = rnM∞(g, r)(1− r)μ

≤
(

r

ρn,μ

)n (
1− r

1− ρn,μ

)μ

ρnn,μM∞(g, ρn,μ)(1− ρn,μ)
μ

≤
(

r

ρn,μ

)n−μ (
1− r

1− ρn,μ

)μ

ρnn,μM∞(g, ρn,μ)(1− ρn,μ)
μ

≤ M∞(f, ρn,μ)(1− ρn,μ)
μ,

where we have used the fact that ρn,μ is the global maximum point of
rn−μ(1− r)μ. �

Proposition 2.3. Let μ0 > 0 and μ > μ0. Then, for any f ∈ A−μ0 the Taylor
series of f converges to f with respect to || · ||μ.

Proof. Let Pn be the Dirichlet projections; i.e., Pnf is the n’th partial sum of the
Taylor series of f . It is well known that there is a universal constant c ≥ 1 such
that for every analytic function f , every n and every radius r have

M∞(Pnf, r) ≤ c log(n)M∞(f, r).

See e.g. [13].
We obtain, for f ∈ A−μ0 ,

||f − Pnf ||μ0
≤ c(1 + log(n))||f ||μ0

.

If f(z) =
∑∞

k=0 akz
k, then (id − Pn)f(z) =

∑∞
k=n+1 akz

k. For μ > μ0 we apply
Lemma 2.2 to get

||(id− Pn)f ||μ = sup
ρn+1,μ≤r<1

M∞((id− Pn)f, r)(1− r)μ

≤ sup
ρn+1,μ≤r<1

(1− r)μ−μ0 ||(id− Pn)f ||μ0

≤ c(1− ρn+1,μ)
μ−μ0(1 + log(n))||f ||μ0

= c

(
μ

n+ 1

)μ−μ0

(1 + log(n))||f ||μ0
.

Since μ−μ0 > 0 the right-hand side goes to 0 if n → ∞. This proves the proposition.
�

Theorem 2.4.

(i) Λ is a Schauder basis of A−γ
+ for any γ ≥ 0.

(ii) Λ is a Schauder basis of A−γ
− for any γ > 0.

Proof. (i) We have to prove that the Taylor series of every f ∈ A−γ
+ , γ ≥ 0,

converges in A−γ
+ to f . Fix μ > γ and select μ1 with γ < μ1 < μ. Since f ∈ A−μ1 ,

we can apply Proposition 2.3 to conclude that the Taylor series of f converges in
A−μ to f . This implies the conclusion.

(ii) is a direct consequence of Proposition 2.3 and the properties of inductive
limits. �

It is well known that the Korenblum space A−∞ is nuclear, since it is isomorphic
to the nuclear (LB)-space s′. The following result is proved in [1].
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Proposition 2.5. Each Fréchet space A−γ
+ for 0 ≤ γ < ∞ and each (LB)-space

A−γ
− for 0 < γ < ∞ fails to be nuclear.

This result is now a direct consequence of Theorem 2.4 and the Grothendieck–
Pietsch criterion [11, Theorem 28.15]. We indicate the argument for A−γ

+ : If this
Fréchet space is nuclear, given μ := γ + 1, we can apply [11, Theorem 28.15] to

find γ < ν < μ such that
∑∞

n=1
||zn||μ
||zn||ν < ∞. This implies by Lemma 2.1 that∑∞

n=1
1

nμ−ν < ∞, a contradiction, since 0 < μ− ν < 1.

3. Sequence space representation

We recall the definition of Köthe echelon and co-echelon spaces of order infinity;
see [5] and [11, Chapter 27]. A sequence A = (ak)k of functions ak : N∪{0} →]0,∞)
is called a Köthe matrix on N if 0 < ak(j) ≤ ak+1(j) for all j ∈ N∪ {0} and k ∈ N.
The Köthe echelon space of order infinity associated to A is

λ∞(A) := {x ∈ C
N : sup

j
ak(j)|xj | < ∞, ∀k ∈ N},

which is a Fréchet space relative to the increasing sequence of canonical seminorms

q
(∞)
k (x) := sup

j
ak(j)|xj |, x ∈ λ∞(A), k ∈ N.

Then λ∞(A) =
⋂

k∈N
�∞(ak). Here �∞(ak) is the usual weighted �∞ sequence space.

Given a decreasing sequence V = (vk)k of strictly positive functions on N∪ {0},
the Köthe co-echelon space of order infinity is k∞(V ) := indk�∞(vk), and it is
endowed with the inductive limit topology. Then k∞(V ) is a regular (LB)-space
[5].

Given μ ∈]0,∞[ define rμ(0) = sμ(0) := 1 and

rμ(j) :=

(
μ

2n + μ

)μ

, j = 2n, . . . , 2n+1 − 1, n = 0, 1, 2, . . . ,

and

sμ(j) :=

(
μ

j + μ

)μ

, j = 1, 2, . . . .

Lemma 3.1. If 0 < μ2 < μ1, then rμ1
(j) ≤ rμ2

(j) and sμ1
(j) ≤ sμ2

(j) for each
j = 0, 1, 2, . . ..

Proof. It is enough to show that the function

f(x) =

(
x

j + x

)x

= exp (x log(x)− x log(j + x)) , x > 0,

is decreasing. It is easily seen that f ′(x) ≤ 0 if and only if

1 + log(x)− log(j + x)− x

j + x
≤ 0.

This inequality is valid for all x > 0 since t ≤ et−1 for each t ∈]0, 1[ implies that

x

j + x
≤ exp

(
x

j + x
− 1

)

for all x > 0. �
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Given γ ≥ 0, put μk := γ + 1
k , k ∈ N, and define ak(j) := sμk

(j), k ∈ N, j ∈
N ∪ {0}. Lemma 3.1 implies that Aγ := (ak)k is a Köthe matrix. Analogously, for
γ > 0, we set νk = γ − 1

k with k large enough so that νk > 0. Now, by Lemma 3.1
the sequence Vγ := (vk)k, vk(j) := sνk

(j), k ∈ N, j ∈ N∪{0} is decreasing. Keeping
this notation, we can state the main result of this section.

Theorem 3.2.

(i) For each γ ≥ 0 the Fréchet space A−γ
+ is isomorphic to the Köthe echelon

space λ∞(Aγ).

(ii) For each γ > 0 the (LB)-space A−γ
− is isomorphic to the Köthe co-echelon

space k∞(Vγ).

The proof of Theorem 3.2 is a consequence of the results presented below.
Firstly, we introduce, for a sequence (xj)

∞
j=0 of complex numbers, the norms

|||(xj)|||μ = sup

(
|x0|, sup

n=0,1,2,...

(
μ

2n + μ

)μ

sup
2n≤j<2n+1

|xj |
)

= sup
j

rμ(j)|xj |

and define

Bγ = {(xj) : |||(xj)|||μ < ∞ for all μ > γ}.
We consider the locally convex topology on Bγ generated by the norms ||| · |||μ for
all μ > γ. Finally put

Cγ = {(xj) : |||(xj)|||μ < ∞ for some μ < γ}
endowed with the finest locally convex topology such that the embedding Jμ :
{(xj) : |||(xj)|||μ < ∞} → Cγ is continuous for all μ < γ.

Since sμ(j) ≤ rμ(j) ≤ 2max(1,μ)sμ(j) for each j = 0, 1, 2, . . . it follows that Bγ =
λ∞(Aγ) and Cγ = k∞(Vγ) algebraically and topologically. In order to complete

the proof of Theorem 3.2, we must show that A−γ
+ and Bγ , as well as A

−γ
− and Cγ ,

are isomorphic.

To this end, given f ∈ H(D) with f(z) =
∑∞

j=0 ajz
j , put fn(z) =

∑2n+1−1
j=2n ajz

j .

Define (Tf)(0) = a0 and

(Tf)(j) = fn(e
i2πj/2n) if 2n ≤ j ≤ 2n+1 − 1

and Tf = ( (Tf)(j) )∞j=0.
The following technical result will be proved at the end of this section.

Lemma 3.3. For each 0 < μ1 < μ < μ2 there are constants d1 > 0 and d2 > 0
such that the following hold :

(i) |||Tf |||μ ≤ d2||f ||μ1
for every f ∈ H(D).

(ii) For each x = (xj) such that |||x|||μ < ∞ there is f ∈ H(D) such that
Tf = x and d1||f ||μ2

≤ |||x|||μ.

Proposition 3.4.

(a) T |A−γ
+

is an isomorphism between A−γ
+ and Bγ .

(b) T |A−γ
−

is an isomorphism between A−γ
− and Cγ .

Proof. (a) Lemma 3.3(i) shows that T is well defined and continuous. On the other
hand, part (ii) implies that T is bijective. For the injectivity observe that the values
fn(e

i2πj/2n) are unique, since fn(z)/z
2n is a polynomial of degree at most 2n − 1,
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and its value is taken at 2n different points. See also the proof of Lemma 3.3 below.
Finally, the estimate in Lemma 3.3(ii) shows that T |A−γ

+
is an isomorphism. The

continuity of the inverse can also be deduced by the open mapping theorem for
Fréchet spaces.

The proof for (b) is similar. �

Proposition 3.4 completes the proof of Theorem 3.2.
It remains to prove Lemma 3.3. Its proof is technical and requires several steps.
First we recall some basic facts from classical approximation theory. See [13]

and [14]. Let, for m ∈ N,

Dm(ϕ) =

m∑
j=−m

eijϕ, ϕ ∈ [0, 2π],

be the Dirichlet kernel and put

(Pmf)(reiϕ) = (Dm ∗ f)(reiϕ) = 1

2π

∫ 2π

0

Dm(ϕ− ψ)f(reiψ)dψ.

Then we obtain

(Pmf)(reiϕ) =
m∑

j=−m

ajr
jeijϕ provided that f(reiϕ) =

∞∑
j=−∞

ajr
jeijϕ.

Let, for r > 0, M1(f, r) = (2π)−1
∫ 2π

0
|f(reiϕ)|dϕ. It is well known that

Dm ≥ 0, M1(Dm, 1) ≤ c log(m), Mq(Pmf, r) ≤ c log(m)Mq(f, r)

if q ∈ {1,∞}. Here c ≥ 1 is a constant independent of m.
The following lemma is essentially known. Since we do not have a precise refer-

ence we insert a proof which is a modification of the proof of [14, II E 9].

Lemma 3.5. There is a universal constant c ≥ 1 such that, for any f with f(z) =∑2n+1−1
j=2n ajz

j, we have

sup
j=1,...,2n

|f(ei2π j/2n)| ≤ M∞(f, 1) ≤ cn2 sup
j=1,...,2n

|f(ei2π j/2n)|.

Proof. Let ϕj = 2πj/2n, j = 1, . . . , 2n. For functions g of the form g(ϕ) =∑2n

k=−2n bk exp(ikϕ) we have, since
∑2n

j=1 exp(i2πkj/2
n) = 0 for k �= 0,

(3.1)
1

2n

2n∑
j=1

g(ϕj) = b0 =
1

2π

∫ 2π

0

g(ϕ)dϕ.

We claim that

(3.2)
1

2n

2n∑
j=1

|g(ϕj)| ≤ cn
1

2π

∫ 2π

0

|g(ϕ)|, dϕ
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where c ≥ 1 is a universal constant. Indeed, we have D2n ∗ g = g, and hence, using
(3.1), we conclude that

1

2n

2n∑
j=1

|g(ϕj)| =
1

2n

2n∑
j=1

| 1
2π

∫ 2π

0

D2n(ϕj − ψ)g(ψ)dψ|

≤ 1

2π

∫ 2π

0

1

2n

2n∑
j=1

D2n(ϕj − ψ)|g(ψ)|dψ

=
1

2π

∫ 2π

0

1

2π

∫ 2n

0

D2n(ϕ− ψ)dϕ|g(ψ)|dψ

≤ cn
1

2π

∫ 2π

0

|g(ψ)|dψ.

Now take f as in the statement and put

g(eiϕ) = e−i3·2n−1ϕf(eiϕ) =
2n−1−1∑
j=−2n−1

aj+3·2n−1eijϕ.

We use that l · g is a trigonometric polynomial of degree 2n if l is a trigonometric
polynomial of degree 2n−1.

For each ε > 0, we choose h ∈ L1(∂D) such thatM1(h, 1) = 1 and 1
1+εM∞(g, 1) ≤

1
2π |

∫ 2π

0
h(eiϕ)g(eiϕ)dϕ|. Then, using (3.2), we get

1

1 + ε
M∞(f, 1) =

1

1 + ε
M∞(g, 1)

≤ 1

2π
|
∫ 2π

0

h(eiϕ)g(eiϕ)dϕ|

=
1

2π
|
∫ 2π

0

(D2n−1h)(eiϕ)g(eiϕ)dϕ|

= | 1
2n

2n∑
j=1

(D2n−1h)(eiϕj )g(eiϕj )|

≤ 1

2n

2n∑
j=1

|(D2n−1h)(eiϕj )| · |g(eiϕj )|

≤ cn
1

2π

∫ 2π

0

|(D2n−1h)(eiϕ)|dϕ sup
j

|g(eiϕj )|

≤ c2n2M1(h, 1) sup
j

|g(eiϕj )|

= c2n2 sup
j

|f(eiϕj )|,

where the second equality follows from the restriction of the degree of g and the
usual orthonormality relations.

Since ε is arbitrary, this proves the right-hand side inequality of the statement.
The left-hand side is trivial. �
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Completion of the proof of Lemma 3.3. We consider rμ,n = 1 − μ/(2n + μ)

for given μ > 0. The function r2
n

(1 − r)μ attains its maximum at rμ,n. Let

f(z) =
∑∞

j=0 ajz
j ∈ H(D) and fn(z) =

∑2n+1−1
j=2n ajz

j . It suffices to consider the

case f(0) = a0 = 0. Put gn(z) =
∑2n−1

j=0 aj+2nz
j . We obtain, for r < rμ,n,

M∞(fn, r)(1− r)μ ≤ r2
n

(1− r)μ

r2nμ,n(1− rμ,n)μ
M∞(gn, r)r

2n

μ,n(1− rμ,n)
μ

≤ M∞(gn, rμ,n)r
2n

μ,n(1− rμ,n)
μ

≤ M∞(fn, rμ,n)(1− rμ,n)
μ

≤ M∞(fn, 1)(1− rμ,n)
μ.

We have for rμ,n < s < 1,

M∞(fn, s)(1− s)μ ≤ M∞(fn, 1)(1− rμ,n)
μ,

and combining this with the previous estimate yields

(3.3) ||fn||μ ≤ M∞(fn, 1)(1− rμ,n)
μ.

Moreover we have, by [10, Lemma 3.1(a)],

M∞(fn, 1) ≤
(

1

rμ,n

)2n+1

M∞(fn, rμ,n)(3.4)

= (1 +
μ

2n
)2

n+1

M∞(fn, rμ,n)

≤ e2μM∞(fn, rμ,n).

Now let μ1 < μ < μ2. In view of (3.4) we have

sup
n

μμ

(2n + μ)μ
sup

2n≤j<2n+1

|fn(ei2πj/2
n

)|

≤ sup
n

μμ

(2n + μ)μ
M∞(fn, 1)

≤ c1 sup
n

μμ

μμ1

1

(2n + μ1)
μ1

(2n + μ)μ
μμ1

1

(2n + μ1)μ1
M∞(fn, rμ1,n)

≤ c1 sup
n

δn||fn||μ1

= c1 sup
n

δn||(P2n+1−1 − P2n−1)f ||μ1

≤ c1c2 sup
n

δnn||f ||μ1
,

where

δn =
μμ

μμ1

1

(2n + μ1)
μ1

(2n + μ)μ

and c1, c2 are universal constants. Since μ > μ1 we obtain supn δnn < ∞. This
proves part (i).
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On the other hand, with Lemma 3.5 and (3.3) applied to μ2 we obtain

||f ||μ2
≤

∞∑
n=0

||fn||μ2

≤
∞∑

n=0

(1− rμ2,n)
μ2M∞(fn, 1)

≤ c

∞∑
n=0

μμ2

2

μμ

(2n + μ)μ

(2n + μ2)μ2

μμ

(2n + μ)μ
n2 sup

2n≤j<2n+1

|fn(ei2πj/2
n

)|

≤ d sup
n

μμ

(2n + μ)μ
sup

2n≤j<2n+1

|fn(ei2πj/2
n

)|,

where

d = c

∞∑
n=0

μμ2

2

μμ

(2n + μ)μ

(2n + μ2)μ2
n2.

Since μ2 > μ this series converges.
Because dim {fn : f ∈ A−γ

+ } = 2n = number of the elements exp(i2πj/2n) if

j = 2n, . . . , 2n+1 − 1, given x = (xj), the polynomials fn with fn(e
i2πj/2n) = xj if

2n ≤ j ≤ 2n+1 − 1 are uniquely defined. Consequently, the estimates above imply
statement (ii).

The proof of Lemma 3.3 is now complete.
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[3] Klaus D. Bierstedt, José Bonet, and Antonio Galbis, Weighted spaces of holomorphic
functions on balanced domains, Michigan Math. J. 40 (1993), no. 2, 271–297, DOI
10.1307/mmj/1029004753. MR1226832
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