CORRECTION TO "ON SOME SUBSPACES OF BANACH SPACES WHOSE DUALS ARE L_{1} SPACES"

M. ZIPPIN
(Communicated by Thomas Schlumprecht)

Abstract

E. Casini, E. Miglierina, L. Piasecki, and L. Veselý have recently constructed an example of an L_{1}-predual hyperplane W of c which does not contain a subspace isometric to c, in spite of the fact that the closed unit ball of W contains an extreme point. This example shows that Remark A of Section 4 of [Proc. Amer. Math. Soc. 23 (1969), pp. 378-385], titled as above, is false. The purpose of this note is to present two correct versions of that Remark A and a short proof of our 1969 main result.

1. Introduction

Remark A of Section 4 of [Z] has been proved to be false in CMPV. We apologize for the mistake and present here two correct versions of Remark A. We do that by using only the information which was known in 1969, when Z was published. With one exception, all tools used below can be found in (Z). This exception (the consequence of (2.2) below) is an observation which enables us to considerably simplify the (correct, but complicated) proof of our main Theorem 1 of [Z]. We do this in Remark 3 at the end of this paper.

We say that the Banach spaces U and V are $(1+\varepsilon)$ isomorphic if there is a one-to-one surjective operator $T: U \rightarrow V$ satisfying, for every $u \in U$, the inequality $(1+\varepsilon)^{-1}\|u\| \leq\|T(u)\| \leq(1+\varepsilon)\|u\|$. A subspace U of V is said to be $(1+\varepsilon)$ complemented if there is a projection P from V onto U with $\|P\| \leq(1+\varepsilon)$. Let A be a subset of a space X; then $[A]$ denotes the closed linear span of A in $X ; B(X)$ is the closed unit ball of X.

Note that there are several misprints in [Z]. (1). In the bottom line of page 379, u_{i}^{m+i} should be replaced by u_{i}^{m+1}. (2). In the top line of page $380,1 \leq i \leq n$ should be replaced by $1 \leq i \leq m$.

If X is a separable space and X^{*} is an $L_{1}(\mu)$ space, then, as is well known (see, e.g., [L1]), there exists a normalized monotone basis $\left\{x_{i}\right\}_{i=1}^{\infty}$ of X such that, if $X_{n}=\left[\left\{x_{i}\right\}_{i=1}^{n}\right]$, then, for every $n \geq 1, X_{n}$ is isometric to ℓ_{∞}^{n} and contains a basis $\left\{e_{i}^{n}\right\}_{i=1}^{n}$ with $e_{n}^{n}=x_{n}$ which satisfies the following two conditions:

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} c_{i} e_{i}^{n}\right\|=\max _{1 \leq i \leq n}\left|c_{i}\right| \text { for all }\left\{c_{i}\right\}_{i=1}^{n} \subset R \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\text { for every } 1 \leq i \leq n, e_{i}^{n}=e_{i}^{n+1}+a_{i}^{n} e_{n+1}^{n+1} \text { where } \sum_{i=1}^{n}\left|a_{i}^{n}\right| \leq 1 \tag{1.2}
\end{equation*}
$$

\]

It follows from (1.2) that the functional ϕ_{j} defined on $\bigcup_{n=1}^{\infty} X_{n}$ by

$$
\begin{equation*}
\phi_{j}\left(\sum_{i=1}^{n} c_{i} e_{i}^{n}\right)=c_{j} \quad \text { for all } \quad n \geq j \quad \text { and } \quad\left\{c_{i}\right\}_{i=1}^{n} \subset R \tag{1.3}
\end{equation*}
$$

is a well-defined linear functional that can be uniquely extended by continuity to a linear functional on $X=\left[\bigcup_{n=1}^{\infty} X_{n}\right]$ which, as is proved in Lemma 1 of [Z], is an extreme point of $B\left(X^{*}\right)$. Clearly $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ is isometrically equivalent to the standard basis of ℓ_{1}.
Remark 1. It follows from MP that the first element x_{1} of the monotone basis can be chosen to be an arbitrary normalized vector of X.

The following result is a special case $(i(k)=n(k))$ of Lemma 2 of Z]. It is a tool to construct subspaces of X which are also L_{1} preduals. Because the proof of this special case is much simpler than that of Lemma 2 of [Z], we will present it here for completeness.

Lemma 1. Let $\{n(k)\}_{k=1}^{\infty}$ be a strictly increasing subsequence of the integers with $n(1)=1$. Then the sequence $\left\{e_{n(k)}^{n(k)}\right\}_{k=1}^{\infty}$ forms a monotone basis for the subspace U it spans in X. Also, in each subspace $U_{m}=\left[\left\{e_{n(k)}^{n(k)}\right\}_{k=1}^{m}\right]$ there is a basis $\left\{u_{i}^{m}\right\}_{i=1}^{m}$ satisfying the following three conditions:

$$
\begin{gather*}
u_{m}^{m}=e_{n(m)}^{n(m)} \tag{1.4}\\
\text { for } 1 \leq i \leq m, u_{i}^{m}=u_{i}^{m+1}+b_{i}^{m} u_{m+1}^{m+1} \text { where } \sum_{i=1}^{m}\left|b_{i}^{m}\right| \leq 1 \tag{1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\sum_{i=1}^{m} c_{i} u_{i}^{m}\right\|=\max _{1 \leq i \leq m}\left|c_{i}\right| \text { for any }\left\{c_{i}\right\}_{i=1}^{m} \subset R \tag{1.6}
\end{equation*}
$$

Finally, let $\psi_{j}=\left.\phi_{n(j)}\right|_{U}$; then $\psi_{j}\left(u_{i}^{m}\right)=\delta_{i, j}$ for all $1 \leq i, j \leq m$ and, for every $u \in U$, we have

$$
\begin{equation*}
\|u\|=\sup _{j \geq 1}\left|\psi_{j}(u)\right|=\sup _{j \geq 1}\left|\phi_{n(j)}(u)\right| \tag{1.7}
\end{equation*}
$$

Proof. Define $u_{k}^{k}=e_{n(k)}^{n(k)}$ for all $k \geq 1$; then $\left\{u_{k}^{k}\right\}_{k=1}^{\infty}$ is a monotone basis for its closed linear span U because it is a subsequence of a monotone basis $\left\{e_{n}^{n}\right\}_{n=1}^{\infty}$. We now define u_{h}^{k} for $1 \leq h \leq k-1$ by induction on k : If $u_{h}^{k-1}=\sum_{j=1}^{n(k)} b_{h, j}^{k} j_{j}^{n(k)}$, then $u_{h}^{k}=\sum_{j=1}^{n(k)-1} b_{h, j}^{k} e_{j}^{n(k)}$. It follows that $u_{h}^{k-1}=u_{h}^{k}+b_{h}^{k-1} u_{k}^{k}$ where $b_{h}^{k-1}=b_{h, n(k)}^{k}$. We will show, by induction on k, that, for every choice of signs, $\left\|\sum_{h=1}^{k} \pm u_{h}^{k}\right\|=1$. Indeed, $\left\| \pm u_{1}^{1}\right\|=1$ and, assuming that $\left\|\sum_{h=1}^{k-1} \pm u_{h}^{k-1}\right\|=1$, by (1.1) we get that, for every $1 \leq j \leq n(k), \sum_{h=1}^{k-1}\left|b_{h, j}^{k}\right| \leq 1$. It follows that $\left\|\sum_{h=1}^{k-1} \pm u_{h}^{k}\right\| \leq 1$ and,
since each u_{h}^{k} with $1 \leq h \leq k-1$ is supported on $\left\{e_{j}^{n(k)}\right\}_{j=1}^{n(k)-1}$ while $u_{k}^{k}=e_{n(k)}^{n(k)}$, we have $\left\|\sum_{h=1}^{k} \pm u_{h}^{k}\right\|=1$. This property clearly implies (1.5) because $\sum_{j=1}^{k}\left|b_{j}^{k}\right|=$ $\sum_{j=1}^{k}\left|\phi_{n(k+1)}\left(u_{j}^{k}\right)\right| \leq\left\|\sum_{j=1}^{k} \pm u_{j}^{k}\right\| \leq 1$ for some choice of the signs. We will now prove by induction on k that $\phi_{n(h)}\left(u_{j}^{k}\right)=\delta_{h, j}$ for all $1 \leq h, j \leq k$. By (1.3), $\phi_{n(1)}\left(u_{1}^{1}\right)=\phi_{n(1)}\left(e_{n(1)}^{n(1)}\right)=1$.

Assume the assertion for $k-1$ and proceed by induction. Since $\phi_{n(h)}\left(e_{n(k)}^{n(k)}\right)=$ 0 for all $1 \leq h \leq k-1$ we get that $\phi_{n(h)}\left(u_{j}^{k}\right)=\phi_{n(h)}\left(u_{j}^{k-1}-b_{j}^{k-1} e_{n(k)}^{n(k)}\right)=$ $\phi_{n(h)}\left(u_{j}^{k-1}\right)=\delta_{h, j}$ for all $1 \leq j, h \leq k-1$. By definition, $\phi_{n(k)}\left(u_{j}^{k}\right)=0$ if $1 \leq j \leq k-1$ while $\phi_{n(k)}\left(u_{k}^{k}\right)=1$. This proves the assertion $\phi_{n(h)}\left(u_{j}^{k}\right)=\delta_{h, j}$ for all $k \geq 1$ and $1 \leq h, j \leq k$. It follows that, for every $k \geq 1$ and real $\left\{c_{j}\right\}_{j=1}^{k}$, $\max _{1 \leq i \leq k}\left|c_{i}\right|=\max _{1 \leq i \leq k}\left|\phi_{n(i)}\left(\sum_{j=1}^{k} c_{j} u_{j}^{k}\right)\right| \leq\left\|\sum_{j=1}^{k} c_{j} u_{j}^{k}\right\| \leq\left(\max _{1 \leq i \leq k}\left|c_{i}\right|\right)\left\|\sum_{j=1}^{k} \pm u_{j}^{k}\right\|=$ $\max _{1 \leq i \leq k}\left|c_{i}\right|$ for some choice of signs. This settles (1.6) and shows that (1.7) holds for every $u \in \bigcup_{i=1}^{\infty} U_{i}$. Since $\bigcup_{i=1}^{\infty} U_{i}$ is dense in U the proof of Lemma \square is complete.

Let c denote the space of convergent sequences $s=(s(1), s(2), s(3), \ldots)$ with

$$
\|s\|=\sup _{j \geq 1}|s(j)| .
$$

We use the usual notation with respect to the standard bases of c and c^{*} : we let $w_{0}=(1,1,1, \ldots)$ and, for $i \geq 1$, we define $w_{i} \in c$ by $w_{i}=\left(w_{i}(1), w_{i}(2), w_{i}(3), \ldots\right)$ where $w_{i}(j)=\delta_{i, j}$. We define the functionals $\left\{\varphi_{i}\right\}_{i=0}^{\infty} \subset c^{*}$ by

$$
\varphi_{0}(s)=\lim _{j \rightarrow \infty} s(j)
$$

and $\varphi_{i}(s)=s(i)$ if $i \geq 1$ for every $s=(s(1), s(2), s(3), \ldots)$. We are now ready to state the following two versions of Remark A of [Z].
Theorem 1. Let X be a separable $L_{1}(\mu)$ predual space. Then there exist a subspace $U \subset X$ and an isometry $T: U \rightarrow c$ such that the range $Y=T(U)$ is either the whole space c or a closed hyperplane of c. Moreover, if $B(X)$ has an extreme point, then Y contains the element $(1,1,1, \ldots)$ of c.

Theorem 2. Let X be a separable $L_{1}(\mu)$ predual space and assume that $B(X)$ has an extreme point. Then, for every $\varepsilon>0$, X contains a $(1+\varepsilon)$-complemented subspace Z which is $(1+\varepsilon)$ isomorphic to c.

Note that Theorem 1 is "linearly close" while Theorem 2 is "norm close" to Remark A of [Z].

2. Proofs of the theorems

Proof of Theorem 1. We use the structure of X described in the introduction. Since $B\left(X^{*}\right)$ is w^{*} compact we can select a subsequence $\left\{\phi_{n(k)}\right\}_{k=1}^{\infty}$ with $n(1)=1$ which w^{*}-converges to a functional $\phi \in B\left(X^{*}\right)$. Then we construct the subspace U and the functionals $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ as in Lemma 1. Because $\psi_{j}=\left.\phi_{n(j)}\right|_{U}$, we get that

$$
\lim _{j \rightarrow \infty} \psi_{j}(u)=\phi(u)
$$

for every $u \in U$. Put $\psi_{0}=\left.\phi\right|_{U}$ and assume, first, that $\psi_{0} \neq 0$. Use (1.7) to obtain

$$
\begin{equation*}
\|u\|=\max _{j \geq 0}\left|\psi_{j}(u)\right| \text { for every } u \in U . \tag{2.1}
\end{equation*}
$$

It follows that the operator $T: U \rightarrow c$ defined by $T(u)=\left(\psi_{1}(u), \psi_{2}(u), \psi_{3}(u), \ldots\right)$ is an isometric isomorphism from U onto a subspace Y of c. If this isometry is not onto c, then there is a functional $\varphi \in c^{*}$ which annihilates $T(U)=Y$. Using the notation introduced in the introduction, we get a representation $\varphi=\sum_{i=0}^{\infty} a_{i} \varphi_{i}$ and, since for every $u \in U, T^{*} \varphi_{j}(u)=\varphi_{j}(T u)=\varphi_{j}\left(\psi_{1}(u), \psi_{2}(u), \psi_{3}(u), \ldots\right)=\psi_{j}(u)$, we get that $T^{*}\left(\varphi_{j}\right)=\psi_{j}$ for all $j \geq 0$ hence $T^{*}(\varphi)=\sum_{j=0}^{\infty} a_{j} \psi_{j}$. By using the structure of U we will show that, up to a numerical multiple, the functional φ is unique. Indeed, by Lemma we know that, for every $m \geq 1$ and $1 \leq i \leq m$, $\psi_{i}\left(u_{j}^{m}\right)=\delta_{i, j}$. Therefore,

$$
\begin{equation*}
0=T^{*}(\varphi)\left(u_{j}^{m}\right)=\sum_{i=0}^{\infty} a_{i} \psi_{i}\left(u_{j}^{m}\right)=a_{0} \psi_{0}\left(u_{j}^{m}\right)+a_{j}+\sum_{i=m+1}^{\infty} a_{i} \psi_{i}\left(u_{j}^{m}\right) . \tag{2.2}
\end{equation*}
$$

Since $\sum_{i=0}^{\infty}\left|a_{i}\right|$ converges, we get from (2.2) that

$$
\left|a_{0} \psi_{0}\left(u_{j}^{m}\right)+a_{j}\right|=\left|\sum_{j=m+1}^{\infty} a_{i} \psi_{i}\left(u_{j}^{m}\right)\right| \underset{m \rightarrow \infty}{\rightarrow} 0
$$

Therefore, if $a_{0} \neq 0$, then $\lim _{m \rightarrow \infty} \psi_{0}\left(u_{j}^{m}\right)$ exists and $a_{0}^{-1} a_{j}=-\lim _{m \rightarrow \infty} \psi_{0}\left(u_{j}^{m}\right)$ for all $j \geq 1$. It follows that all annihilators φ of $T(U)$ with $a_{0} \neq 0$ are numerical multiples of each other hence $T(U)$ is a hyperplane of c. On the other hand, if $a_{0}=0$ for every φ annihilating Y, then, by (2.2), $a_{j}=0$ for all $j \geq 1$, hence $\varphi=0$ and thus $T(U)=c$. Suppose that $\psi_{0}=0$; then T, defined above, becomes an operator $T: U \rightarrow c_{0}$. If there exists a fuctional $\varphi \in c_{0}^{*}$ which annihilates $T(U)$, then $\varphi=\sum_{i=1}^{\infty} a_{i} \varphi_{i}$. It follows from (2.2) that $a_{i}=0$ for all $i \geq 1$ hence $\varphi=0$ and T is an isometry from U onto c_{0}.

It remains to consider the case where $B(X)$ has an extreme point. In this case, by [S, X is isometric to a space $A(S)$ of affine continuous functions on a Choquet simplex S. It is proved in Theorem 5.2 of [L2] that, under these circumstances, the space X has a structure $X=\left[\bigcup_{n=1}^{\infty} X_{n}\right]$ of finite dimensional subspaces $X_{n}=$ ℓ_{∞}^{n}, each with a basis $\left\{e_{i}^{n}\right\}_{i=1}^{n}$ satisfying (1.1), (1.2), and the following additional property:

$$
\begin{equation*}
a_{i}^{n} \geq 0 \quad \text { and } \quad \sum_{i=1}^{n} a_{i}^{n}=1 \quad \text { for all } \quad n \geq 1 \quad \text { and } \quad 1 \leq i \leq n . \tag{2.3}
\end{equation*}
$$

It follows that $e_{1}^{1}=\sum_{i=1}^{n} e_{i}^{n}$ for all $n \geq 1$ and, by (1.3), $\phi_{i}\left(e_{1}^{1}\right)=1$ for all $i \geq 1$. Since $\psi_{j}=\left.\phi_{n(j)}\right|_{U}$ and $n(1)=1$, we get that $\psi_{j}\left(u_{1}^{1}\right)=\phi_{n(j)}\left(e_{1}^{1}\right)=1$ for every $j \geq 1$ and therefore, by the definition of the isometry $T, T\left(u_{1}^{1}\right)=(1,1,1, \ldots) \in Y$. This proves Theorem 1

Remark 2. This consequence of LL2 that we use above was discussed in J. Lindenstrauss' Functional Analysis Seminar at The Hebrew University of Jerusalem in 1967. Actually, it can be deduced from Remark 1 above. Indeed, if we choose $x_{1}=e_{1}^{1}$ to be the unit function of $A(S)$, then, by multiplying x_{n} by -1 , if necessary, we can build, for every n, the basis $\left\{e_{i}^{n}\right\}_{i=1}^{n}$ to satisfy (2.3).

Proof of Theorem 2. We use Theorem 11 and the notation as above. Let $\varphi=$ $\sum_{i=0}^{\infty} a_{i} \varphi_{i}$ be a nontrivial functional which annihilates Y. Since $\lim _{i \rightarrow \infty} a_{i}=0$, given $0<\delta<\frac{1}{2}(1+\varepsilon)^{-1} \varepsilon$ and an integer $h>0$, there is a $k>h$ and a number d with $|d|<\delta$ such that $\varphi\left(w_{k}-d w_{h}\right)=a_{k}-d a_{h}=0$ and, consequently, $w_{k}-d w_{h} \in Y$. Therefore, there exist an infinite sequence $\{p(j)\}_{j=1}^{\infty}$ of positive integers and numbers $\left\{d_{j}\right\}_{j=1}^{\infty}$ with $\max _{j \geq 1}\left|d_{j}\right|<\delta$ such that, for all $j \geq 1, w_{p(2 j)}+d_{j} w_{p(2 j-1)} \in Y$. Put $p(0)=p(-1)=d_{0}=0$ and let $V=\left[\left\{w_{p(2 j)}+d_{j} w_{p(2 j-1)}\right\}_{j=0}^{\infty}\right]$. Clearly, the subspace $W=\left[\left\{w_{p(2 j)}\right\}_{j=0}^{\infty}\right]$ is isometric to the whole space c. Let $v_{j}=$ $w_{p(2 j)}+d_{j} w_{p(2 j-1)}$; then $v_{0}=w_{0}$ and, for any null sequence $\left\{b_{j}\right\}_{j=0}^{\infty}$ of real numbers,

$$
\begin{aligned}
\left\|\sum_{j=0}^{\infty} b_{j}\left(v_{j}-w_{p(2 j)}\right)\right\| & \|
\end{aligned}\left\|\sum_{j=1}^{\infty} b_{j} d_{j} w_{p(2 j-1)}\right\|=\max _{j \geq 1}\left|b_{j} d_{j}\right| \leq \delta \max _{j \geq 1}\left|b_{j}\right| .
$$

Let $S: W \rightarrow V$ be the operator defined by $S\left(\sum_{j=0}^{\infty} b_{j} w_{p(2 j)}\right)=\sum_{j=0}^{\infty} b_{j} v_{j}$; then, as we have just proved, $\|S w-w\| \leq 2 \delta\|w\|$ for all $w \in W$ and hence V is $(1+\varepsilon)$ isomorphic to c. Since T is an isometry, the space $Z=T^{-1}(V)$ is $(1+\varepsilon)$-isomorphic to c. It remains to show that there is a good projection from X onto Z.

Let $z_{i}=T^{-1} v_{i}$ for all $i \geq 0$ and recall that $e_{1}^{1}=u_{1}^{1}=T^{-1}\left(w_{0}\right)=T^{-1}\left(v_{0}\right)=z_{0}$ and, for all $i \geq 1, \phi_{n(i)}\left(e_{1}^{1}\right)=1$ and also $\phi\left(z_{0}\right)=\phi\left(e_{1}^{1}\right)=\lim _{i \rightarrow \infty} \phi_{n(i)}\left(e_{1}^{1}\right)=1$. Define the operator $P: X \rightarrow Z$ by $P(x)=\phi(x) z_{0}+\sum_{i=1}^{\infty}\left(\phi_{n(p(2 i))}-\phi\right)(x) z_{i}$. Then $P\left(z_{0}\right)=z_{0}$ and, since $\left.\phi_{n(p(2 j))}\right|_{U}=\psi_{p(2 j)}=T^{*}\left(\varphi_{p(2 j)}\right)$, we obtain, for $j, i \geq 1$, the relation $\left(\phi_{n(p(2 j))}-\phi\right)\left(z_{i}\right)=T^{*}\left(\varphi_{p(2 j)}-\varphi_{0}\right)\left(z_{i}\right)=\left(\varphi_{p(2 j)}-\varphi_{0}\right)\left(T\left(z_{i}\right)\right)=$ $\left(\varphi_{p(2 j)}-\varphi_{0}\right)\left(w_{p(2 i)}-d_{j} w_{p(2 i-1)}\right)=\delta_{i, j}$ while $\phi\left(z_{i}\right)=T^{*}\left(\varphi_{0}\right)\left(z_{i}\right)=\varphi_{0}\left(T\left(z_{i}\right)\right)=$ $\lim _{k \rightarrow \infty} \varphi_{k}\left(w_{p(2 i)}-d_{i} w_{p(2 i-1)}\right)=0$ and therefore $P\left(z_{i}\right)=z_{i}$ for all $i \geq 0$. Hence P is a projection from X onto Z.

Using the fact that $T: U \rightarrow c$ is an isometry we get, for every $x \in B(X)$, the inequality

$$
\begin{aligned}
&\|P(x)\|=\|T P(x)\|=\left\|\phi(x) v_{0}+\sum_{j=1}^{\infty}\left(\phi_{n(p(2 j))}-\phi\right)(x) v_{j}\right\| \\
&=\left\|\phi(x) w_{0}+\sum_{j=1}^{\infty}\left(\phi_{n(p(2 j))}-\phi\right)(x)\left(w_{p(2 j)}+d_{j} w_{p(2 j-1)}\right)\right\| \\
& \leq\left\|\phi(x) w_{0}+\sum_{j=1}^{\infty}\left(\phi_{n(p(2 j))}-\phi\right)(x) w_{p(2 j)}\right\| \\
&+\left\|\sum_{j=1}^{\infty}\left(\phi_{n(p(2 j))}-\phi\right)(x) d_{j} w_{p(2 j-1)}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& =\max \left\{|\phi(x)|, \max \left\{\left|\phi_{n(p(2 j))}(x)\right|: j \geq 1\right\}\right\} \\
& \quad+\left\|\sum_{j=1}^{\infty}\left(\phi_{n(p(2 j))}-\phi\right)(x) d_{j} w_{p(2 j-1)}\right\| \\
& \leq 1+2 \max \left\{\left|d_{j}\right|: j \geq 1\right\} \leq 1+2 \delta<1+\varepsilon
\end{aligned}
$$

It follows that $\|P\| \leq 1+\varepsilon$ and this completes the proof of Theorem 2,
Remark 3. Theorem 1 of [Z] states that every separable L_{1} predual X contains a 1-complemented subspace Z which is isometric to the space c_{0}. The following is a simple proof of Theorem 1 of $[Z]$ which is based on Theorem 1 above.

Let U be the subspace of X constructed in Theorem 1 above and let $\varphi=$ $\sum_{i=0}^{\infty} a_{i} \varphi_{i}$ be the annihilator of $T(U)$ in c^{*}. For some small $\varepsilon>0$ pick a subsequence of integers $\{p(j)\}_{j=1}^{\infty}$ and vectors $v_{j}=w_{p(2 j)}+d_{j} w_{p(2 j-1)}$ with $\left|d_{j}\right| \leq \varepsilon$ which belong to $T(U)$. Let $z_{j}=T^{-1}\left(v_{j}\right)$ and put $Z=\left[\left\{z_{j}\right\}_{j=1}^{\infty}\right]$. The operator T is an isometry and $\left[\left\{v_{j}\right\}_{j=1}^{\infty}\right]$ is isometric to c_{0} hence Z is isometric to c_{0}. We know that $T^{*}\left(\varphi_{p(2 j)}\right)=\psi_{p(2 j)}=\left.\phi_{n(p(2 j))}\right|_{U}$ and $\varphi_{p(2 j)}\left(v_{i}\right)=\delta_{i, j}$. The subspace $Z_{0}=\left[\left\{z_{2 j}-z_{2 j-1}\right\}_{j=1}^{\infty}\right]$ is isometric to c_{0} and $\omega^{*} \lim \left(\phi_{n(p(4 j))}-\phi_{n(p(4 j-2))}\right)=0$. It follows that the operator P defined by

$$
P(x)=(1 / 2) \sum_{j=1}^{\infty}\left(\phi_{n(p(4 j))}-\phi_{n(p(4 j-2))}\right)(x)\left(z_{2 j}-z_{2 j-1}\right)
$$

for every $x \in X$ is a projection of norm 1 from X onto Z_{0}. This proves Theorem 1 of (Z].

References

[CMPV] Emanuele Casini, Enrico Miglierina, Łukasz Piasecki, and Libor Veselý, Rethinking polyhedrality for Lindenstrauss spaces, Israel J. Math. 216 (2016), no. 1, 355-369, DOI 10.1007/s11856-016-1412-8. MR3556971
[LL1] A. J. Lazar and J. Lindenstrauss, On Banach spaces whose duals are L_{1} spaces, Israel J. Math. 4 (1966), 205-207, DOI 10.1007/BF02760079. MR0206670
[LL2] A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L_{1} spaces and their representing matrices, Acta Math. 126 (1971), 165-193, DOI 10.1007/BF02392030. MR0291771
[MP] E. Michael and A. Pełczyński, Separable Banach spaces which admit $l_{n}{ }^{\infty}$ approximations, Israel J. Math. 4 (1966), 189-198, DOI 10.1007/BF02760077. MR0211247
[S] Z. Semadeni, Free compact convex sets (English, with Russian summary), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 141-146. MR0190719
[Z] M. Zippin, On some subspaces of Banach spaces whose duals are L_{1} spaces, Proc. Amer. Math. Soc. 23 (1969), 378-385, DOI 10.2307/2037177. MR0246094

Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
Email address: zippin@math.huji.ac.il

[^0]: Received by the editors January 19, 2018, and, in revised form, April 4, 2018.
 2010 Mathematics Subject Classification. Primary 46B04, 46B25.
 Key words and phrases. Lindenstrauss spaces, L_{1}-predual spaces.

