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CORRECTION TO “ON SOME SUBSPACES OF BANACH
SPACES WHOSE DUALS ARE L; SPACES”

M. ZIPPIN

(Communicated by Thomas Schlumprecht)

ABSTRACT. E. Casini, E. Miglierina, L. Piasecki, and L. Vesely have recently
constructed an example of an Lj-predual hyperplane W of ¢ which does not
contain a subspace isometric to ¢, in spite of the fact that the closed unit ball of
W contains an extreme point. This example shows that Remark A of Section
4 of [Proc. Amer. Math. Soc. 23 (1969), pp. 378-385], titled as above, is false.
The purpose of this note is to present two correct versions of that Remark A
and a short proof of our 1969 main result.

1. INTRODUCTION

Remark A of Section 4 of [Z] has been proved to be false in [CMPV]. We apologize
for the mistake and present here two correct versions of Remark A. We do that by
using only the information which was known in 1969, when [Z] was published.
With one exception, all tools used below can be found in [Z]. This exception (the
consequence of (Z2) below) is an observation which enables us to considerably
simplify the (correct, but complicated) proof of our main Theorem 1 of [Z]. We do
this in Remark [3] at the end of this paper.

We say that the Banach spaces U and V are (1 + ¢) isomorphic if there is a one-
to-one surjective operator T : U — V satisfying, for every u € U, the inequality
(1 +e) || < IT(w)|| < (1+¢)]||ul|. A subspace U of V is said to be (1 + ¢)-
complemented if there is a projection P from V onto U with ||P|| < (1+4¢). Let A
be a subset of a space X; then [A] denotes the closed linear span of 4 in X; B(X)
is the closed unit ball of X.

Note that there are several misprints in [Z]. (1). In the bottom line of page 379,
u;”” should be replaced by u;”“. (2). In the top line of page 380, 1 < i < n
should be replaced by 1 <1i < m.

If X is a separable space and X* is an L (u) space, then, as is well known (see,
e.g., [LLI]), there exists a normalized monotone basis {z;};-, of X such that, if
X, = [{x;},_,], then, for every n > 1, X,, is isometric to £2 and contains a basis
{er};_, with e = z,, which satisfies the following two conditions:

n
(1.1) Zcie? = max le;| for all {¢;};_, C R

=1
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and

(1.2) for every 1 <i < m,el! = ”H + afezﬁ where Z la?'] < 1.
i=1
It follows from (I2Z)) that the functional ¢; defined on (J;2 ; X, by

(1.3) %—(Z cel)=c¢; forall n>j and {¢}., CR

is a well-defined linear functional that can be uniquely extended by continuity to
a linear functional on X = [|J;~; X,,] which, as is proved in Lemma 1 of [Z], is an
extreme point of B(X*). Clearly {¢;} 2 o 18 isometrically equivalent to the standard
basis of /1.

Remark 1. Tt follows from [MP] that the first element z1 of the monotone basis can
be chosen to be an arbitrary normalized vector of X.

The following result is a special case (i(k) = n(k)) of Lemma 2 of [Z]. It is a tool
to construct subspaces of X which are also L; preduals. Because the proof of this
special case is much simpler than that of Lemma 2 of [Z], we will present it here
for completeness.

Lemma 1. Let {n(k)},-, be a strictly increasing subsequence of the integers with

n(1) = 1. Then the sequence {ezgg }k forms a monotone basis for the subspace U
=1

it spans in X. Also, in each subspace U,, = Hezgzg}k 1} there is a basis {u;"}?il

satisfying the following three conditions:

(1.4) upy = e,

(1.5) for 1 <i<mu® =u + b ul wherez |7 <1
i=1

and

(1.6) = max lci| for any {c;}]*, C R.

Finally, let ¢; = qbn(j)’U; then ;(ul*) = 6; 5 for all 1 <4i,j < m and, for every
u € U, we have

(1.7) lull = sup |; (w)| = sup |¢n () ()] -
j>1 J>1

Proof. Define u’,j = enE:; for all k¥ > 1; then {u’,:}zozl is a monotone basis for its
closed linear span U because it is a subsequence of a monotone basis {en}> . We

now define uf for 1 < h < k — 1 by induction on k: If uf ! = Z bz g ?(k) then
uf = 3007 0k e 1t follows that uf ' = uf + by luf where bf Tt = bE
We will show, by induction on k, that, for every choice of signs, ’ _ :I:uhH =1.

sz li k= 1H =1, by (I we get that,
for every 1 < j < n(k)7 h:l ‘bfm‘ < 1. It follows that he liuhH < 1 and,
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n(k)—1
since each uﬁ with 1 < h < k — 1 is supported on {e?(k)} while u’,z = ezgzg,
j=1

we have HZ’Z 1 iquH = 1. This property clearly implies (L5 because Z§:1 |bﬂ =

Z] 1|¢n(k¢+1 HE] 1
prove by 1nduct10n on k that qﬁn(h)(uf) = 0y for all 1 < h,j < k. By ([L3),

Assume the assertlon for k — 1 and proceed by induction. Since ¢,,p)(e ngk;)

0 for all 1 < h < k—1 we get that ¢, (u -)—¢n(h(1C l—blC lzgg):

(bn(h)( ; - = Opy for all 1 < 5,h < k — 1. By definition, ¢n(k)( J) = 0 if
1 < j < k—1 while ¢,y (uf) = 1. This proves the assertion ¢, (u;“) = (5h7j

forall k > 1 and 1 < h,j < k. It follows that, for every k > 1 and real {cj} 1
k
= L cjut el < ( : ol =
e leil = 1o |ong (Ljm e ‘ = Hzﬂzl kN 7‘ < (gmax lei) Hzﬂzl i“JH

Jnax le;| for some choice of signs. This settles (I.6) and shows that (L) holds

for every u € |J;2, U;. Since |J;—, U; is dense in U the proof of Lemma [ is com-
plete. |

uf ‘ < 1 for some choice of the signs. We will now

Let ¢ denote the space of convergent sequences s = (s(1), s(2), s(3), ...) with
[s]| = sup [s(4)]-
jz1

We use the usual notation with respect to the standard bases of ¢ and ¢*: we let
wo = (1,1,1,...) and, for ¢ > 1, we define w; € ¢ by w; = (w;(1), w;(2),w;(3),...)
where w;(j) = d; ;. We define the functionals {¢;};-, C ¢* by

vo(s) = Jlingo s(7)

and ¢;(s) = s(i) if i > 1 for every s = (s(1),s(2),s(3),...). We are now ready to
state the following two versions of Remark A of [Z].

Theorem 1. Let X be a separable Ly (p) predual space. Then there exist a subspace
U C Xand an isometry T : U — ¢ such that the range Y = T(U) is either the whole
space ¢ or a closed hyperplane of c. Moreover, if B(X) has an extreme point, then
Y contains the element (1,1,1,...) of c.

Theorem 2. Let X be a separable Ly (p) predual space and assume that B(X) has an
extreme point. Then, for every € > 0, X contains a (1 + €)-complemented subspace
Zwhich is (1 + €) isomorphic to c.

Note that Theorem [0 is “linearly close” while Theorem [ is “norm close” to
Remark A of [Z].
2. PROOFS OF THE THEOREMS

Proof of Theorem [1l. We use the structure of X described in the introduction. Since
B(X™) is w* compact we can select a subsequence {(bn(k)}:;l with n(1) = 1 which
w*-converges to a functional ¢ € B(X*). Then we construct the subspace Uand
the functionals {v; };’il as in Lemma [l Because v; = ¢pj) ‘U, we get that

Tim 5 (u) = $(u)
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for every w € U. Put 99 = ¢| and assume, first, that )9 # 0. Use (LD) to obtain
(2.1) lul| = max [ (u)] for every u € U.
J>

It follows that the operator T': U — ¢ defined by T'(u) = (¢1 (u), P2(u), P3(u), .. .)
is an isometric isomorphism from U onto a subspace Y of c. If this isometry is not
onto ¢, then there is a functional ¢ € ¢* which annihilates T(U) = Y. Using the
notation introduced in the introduction, we get a representation ¢ = > .2 a;¢; and,
since for every u € U, T*p;(u) = ¢;j(Tu) = ¢;(1(u), Y2 (u), ¥3(u),...) = ;(u),
we get that T*(yp;) = 1; for all j > 0 hence T*(¢) = Z;io a;v;. By using the
structure of U we will show that, up to a numerical multiple, the functional ¢ is
unique. Indeed, by Lemma [[l we know that, for every m > 1 and 1 < ¢ < m,
Yi(ul') = 0; j. Therefore,

(2.2) 0=T"(p Z ai; (u™) = agio(ul) + a; + Z agi (uff").

i=m-+1

Since >":° |a;| converges, we get from (2.2)) that

o0
|lagto(u*) + a;| = Z aii(uj") 2 0
j=m+1
Therefore, if ag # 0, then lim tp(u]") exists and ag la; = — hm Yo (uf") for
m—ro0

all j > 1. It follows that all annihilators ¢ of T(U) with ag # O are numerical
multiples of each other hence T'(U) is a hyperplane of ¢. On the other hand, if
ag = 0 for every ¢ annihilating Y, then, by [22)), a; =0 for all j > 1, hence ¢ =0
and thus T(U) = c¢. Suppose that ¢y = 0; then T, defined above, becomes an
operator T : U — c¢g. If there exists a fuctional ¢ € ¢ which annihilates T'(U),
then ¢ = >"7°, a;p;. It follows from ([Z2) that a; = 0 for all ¢ > 1 hence ¢ = 0 and
T is an isometry from U onto cy.

It remains to consider the case where B(X) has an extreme point. In this case,
by [S], X is isometric to a space A(S) of affine continuous functions on a Choquet
simplex S. It is proved in Theorem 5.2 of [LL2] that, under these circumstances,
the space X has a structure X = [|J7—, X,,] of finite dimensional subspaces X,, =
07, each with a basis {e'}!" | satisfying (L)), (L2), and the following additional
property:

(2.3) al >0 and Za?zl forall n>1 and 1<i<n.
i=1
It follows that e} = Y7, e for all n > 1 and, by (L3), ¢i(e}) =1 for all i > 1.

)
(e

Since 1; = ¢7L(j)|U and n(1) = 1, we get that ¢;(u}) = dn(h) D= 1 for every
j > 1 and therefore, by the definition of the isometry T, T'(ul) = (1,1,1,...) € Y.
This proves Theorem [ O

Remark 2. This consequence of [LL2|] that we use above was discussed in J. Lin-
denstrauss’ Functional Analysis Seminar at The Hebrew University of Jerusalem
in 1967. Actually, it can be deduced from Remark [I] above. Indeed, if we choose
71 = e} to be the unit function of A(S), then, by multiplying x,, by -1, if necessary,
we can build, for every n, the basis {e!'}_| to satisfy ([23).
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Proof of Theorem 2l We use Theorem [ and the notation as above. Let ¢ =

ZZ 0 Gipi be a nontr1v1a1 functional which annihilates Y. Since lim a; = 0, given
Z*)OO

0<d<3(1+ 5) "¢ and an integer h > 0, there is a k > h and a number d with
|d| < ¢ such that o(wy, — dwy) = ap, — dap, = 0 and, consequently, wy — dwy, € Y.
Therefore, there exist an infinite sequence {p(j )}°° , of positive integers and num-
bers {d; } _, with maX|d | < ¢ such that, for all j > 1, wy(2;) + djwpj—1) € Y.

Put p(0) = p(—1) = dp = 0 and let V = |:{'U}p(2j) —l—djwp@j_l)}j:o}. Clearly,

the subspace W = {{wp@j)};)o 0} is isometric to the whole space c¢. Let v; =
Wp(25) + djwp(2j—1); then vo = wp and, for any null sequence {b; } o of real num-
bers,

ZO — Wp(2j)|| = ijdjwp(zj'—l) = max [b;d;| < o max [b|

< 26 max {|bo| ,max {|bo + b;| : j > 1}} =26 ||> _ bjwy(ay)
Jj=0

Let S : W — V be the operator defined by S(Z;io bjwy(2j)) = Z;io bjv;; then,
as we have just proved, ||Sw — w| < 2§ ||w|| for all w € W and hence V' is (1+¢) -
isomorphic to c. Since T is an isometry, the space Z = T~1(V) is (1+¢) -isomorphic
to c. It remains to show that there is a good projection from X onto Z.

Let z; = T~ 1v; for all i > 0 and recall that el = ul = T 1 (wp) = T (vg) = 29
and, for all i > 1, ¢,(;y(e]) = 1 and also ¢(zp) = P(e}) = Zlirgo ®n(i)(e1) = 1. Define
the operator P : X — Z by P(x) = ¢(x)20 + o1 (Pnp2i)) — ¢)(x)z. Then
P(z9) = zo and, since ¢"(P(21'))‘U = Yp(2j) = T*(pp(25)), we obtain, for j,i > 1,
the relation (¢n(p(2j)) — @)(2:) = T*(Pp2j) — ¥0)(2i) = (pj) — vo)(T(z)) =
(Op(2) — P0)(Wp(2iy — djwp2i—1)) = 0;5 while ¢(z;) = T (po)(2:) = wo(T(2:)) =
klgl;o ok (Wp(2i) — diwp(2i—1y) = 0 and therefore P(z;) = 2; for all i > 0. Hence P is

a projection from X onto Z.
Using the fact that T : U — ¢ is an isometry we get, for every x € B(X), the
inequality

ITP() = |[¢(x)v0 + D (Snip(zi)) — ) ()0

Jj=1

1P ()]

= ||¢(z)wo + Z(¢n(p(2j)) - éf’)(f)(wp(zj) + djwp(2j—1))
j=1

IA

x)wo + Z(¢n(p(2j)) — ¢)(@)wpy(2j)

J=1

Z (Pn(p(2i)) — @) (@)djwp(2j-1)
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= max{\¢(x)| 7max{|¢n(p(2j))(x)| 1j =z 1}}

+ 11D (@nizi) — ) (@)djtp(a;-1)
j=1
<142max{|d;|:j>1} <1+20<1+e.
It follows that ||P|| < 14 ¢ and this completes the proof of Theorem O

Remark 3. Theorem 1 of [Z] states that every separable Ly predual X contains a
1-complemented subspace Z which is isometric to the space cy. The following is a
simple proof of Theorem 1 of [Z] which is based on Theorem [l above.

Let U be the subspace of X constructed in Theorem [ above and let ¢ =
Yoo aip; be the annihilator of T(U) in ¢*. For some small ¢ > 0 pick a sub-
sequence of integers {p(j)}?il and vectors v; = wp(2;) + djwp2j—1) With |d;| < e

which belong to T(U). Let z; = T7'(v;) and put Z = [{z]};il} The operator
T is an isometry and [{vj };‘;1] is isometric to ¢o hence Z is isometric to ¢g. We
know that T™(¢p(25)) = Up2j) = ¢"(P(2j))’U and ,(2;)(vi) = d; ;. The subspace

Zy = [{sz - Zgj_l};il} is isometric to co and w* im(dp(p(a5)) — Pr(p(aj—2))) = O
It follows that the operator P defined by

o0

P(z) = (1/2) Y (bn(paj) — npaj—2))) (@) (225 — 22j-1)

j=1
for every x € X is a projection of norm 1 from X onto Zy. This proves Theorem 1

of [Z].
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