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CORRECTION TO “ON SOME SUBSPACES OF BANACH

SPACES WHOSE DUALS ARE L1 SPACES”

M. ZIPPIN

(Communicated by Thomas Schlumprecht)

Abstract. E. Casini, E. Miglierina, L. Piasecki, and L. Veselý have recently
constructed an example of an L1-predual hyperplane W of c which does not
contain a subspace isometric to c, in spite of the fact that the closed unit ball of
W contains an extreme point. This example shows that Remark A of Section
4 of [Proc. Amer. Math. Soc. 23 (1969), pp. 378-385], titled as above, is false.
The purpose of this note is to present two correct versions of that Remark A
and a short proof of our 1969 main result.

1. Introduction

Remark A of Section 4 of [Z] has been proved to be false in [CMPV]. We apologize
for the mistake and present here two correct versions of Remark A. We do that by
using only the information which was known in 1969, when [Z] was published.
With one exception, all tools used below can be found in [Z]. This exception (the
consequence of (2.2) below) is an observation which enables us to considerably
simplify the (correct, but complicated) proof of our main Theorem 1 of [Z]. We do
this in Remark 3 at the end of this paper.

We say that the Banach spaces U and V are (1+ ε) isomorphic if there is a one-
to-one surjective operator T : U → V satisfying, for every u ∈ U , the inequality
(1 + ε)−1 ‖u‖ ≤ ‖T (u)‖ ≤ (1 + ε) ‖u‖. A subspace U of V is said to be (1 + ε)-
complemented if there is a projection P from V onto U with ‖P‖ ≤ (1 + ε). Let A
be a subset of a space X; then [A] denotes the closed linear span of A in X; B(X)
is the closed unit ball of X.

Note that there are several misprints in [Z]. (1). In the bottom line of page 379,
um+i
i should be replaced by um+1

i . (2). In the top line of page 380, 1 ≤ i ≤ n
should be replaced by 1 ≤ i ≤ m.

If X is a separable space and X∗ is an L1(μ) space, then, as is well known (see,
e.g., [LL1]), there exists a normalized monotone basis {xi}∞i=1 of X such that, if
Xn = [{xi}ni=1], then, for every n ≥ 1, Xn is isometric to �n∞ and contains a basis
{eni }

n
i=1 with enn = xn which satisfies the following two conditions:

(1.1)

∥∥∥∥∥
n∑

i=1

cie
n
i

∥∥∥∥∥ = max
1≤i≤n

|ci| for all {ci}ni=1 ⊂ R
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and

(1.2) for every 1 ≤ i ≤ n, eni = en+1
i + ani e

n+1
n+1 where

n∑
i=1

|ani | ≤ 1.

It follows from (1.2) that the functional φj defined on
⋃∞

n=1 Xn by

(1.3) φj(
n∑

i=1

cie
n
i ) = cj for all n ≥ j and {ci}ni=1 ⊂ R

is a well-defined linear functional that can be uniquely extended by continuity to
a linear functional on X = [

⋃∞
n=1 Xn] which, as is proved in Lemma 1 of [Z], is an

extreme point of B(X∗). Clearly {φj}∞j=1 is isometrically equivalent to the standard

basis of �1.

Remark 1. It follows from [MP] that the first element x1 of the monotone basis can
be chosen to be an arbitrary normalized vector of X.

The following result is a special case (i(k) = n(k)) of Lemma 2 of [Z]. It is a tool
to construct subspaces of X which are also L1 preduals. Because the proof of this
special case is much simpler than that of Lemma 2 of [Z], we will present it here
for completeness.

Lemma 1. Let {n(k)}∞k=1 be a strictly increasing subsequence of the integers with

n(1) = 1. Then the sequence
{
e
n(k)
n(k)

}∞

k=1
forms a monotone basis for the subspace U

it spans in X. Also, in each subspace Um =
[{

e
n(k)
n(k)

}m

k=1

]
there is a basis {um

i }mi=1

satisfying the following three conditions:

um
m = e

n(m)
n(m),(1.4)

for 1 ≤ i ≤ m,um
i = um+1

i + bmi um+1
m+1 where

m∑
i=1

|bmi | ≤ 1(1.5)

and

(1.6)

∥∥∥∥∥
m∑
i=1

ciu
m
i

∥∥∥∥∥ = max
1≤i≤m

|ci| for any {ci}mi=1 ⊂ R.

Finally, let ψj = φn(j)

∣∣
U
; then ψj(u

m
i ) = δi,j for all 1 ≤ i, j ≤ m and, for every

u ∈ U , we have

(1.7) ‖u‖ = sup
j≥1

|ψj(u)| = sup
j≥1

∣∣φn(j)(u)
∣∣ .

Proof. Define uk
k = e

n(k)
n(k) for all k ≥ 1; then

{
uk
k

}∞
k=1

is a monotone basis for its

closed linear span U because it is a subsequence of a monotone basis {enn}
∞
n=1. We

now define uk
h for 1 ≤ h ≤ k− 1 by induction on k: If uk−1

h =
∑n(k)

j=1 bkh,je
n(k)
j , then

uk
h =

∑n(k)−1
j=1 bkh,je

n(k)
j . It follows that uk−1

h = uk
h + bk−1

h uk
k where bk−1

h = bkh,n(k).

We will show, by induction on k, that, for every choice of signs,
∥∥∥∑k

h=1 ±uk
h

∥∥∥ = 1.

Indeed,
∥∥±u1

1

∥∥ = 1 and, assuming that
∥∥∥∑k−1

h=1 ±uk−1
h

∥∥∥ = 1, by (1.1) we get that,

for every 1 ≤ j ≤ n(k),
∑k−1

h=1

∣∣∣bkh,j
∣∣∣ ≤ 1. It follows that

∥∥∥∑k−1
h=1±uk

h

∥∥∥ ≤ 1 and,
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since each uk
h with 1 ≤ h ≤ k − 1 is supported on

{
e
n(k)
j

}n(k)−1

j=1
while uk

k = e
n(k)
n(k),

we have
∥∥∥∑k

h=1 ±uk
h

∥∥∥ = 1. This property clearly implies (1.5) because
∑k

j=1

∣∣bkj
∣∣ =

∑k
j=1

∣∣φn(k+1)(u
k
j )
∣∣ ≤

∥∥∥∑k
j=1 ±uk

j

∥∥∥ ≤ 1 for some choice of the signs. We will now

prove by induction on k that φn(h)(u
k
j ) = δh,j for all 1 ≤ h, j ≤ k. By (1.3),

φn(1)(u
1
1) = φn(1)(e

n(1)
n(1)) = 1.

Assume the assertion for k − 1 and proceed by induction. Since φn(h)(e
n(k)
n(k)) =

0 for all 1 ≤ h ≤ k − 1 we get that φn(h)(u
k
j ) = φn(h)(u

k−1
j − bk−1

j e
n(k)
n(k)) =

φn(h)(u
k−1
j ) = δh,j for all 1 ≤ j, h ≤ k − 1. By definition, φn(k)(u

k
j ) = 0 if

1 ≤ j ≤ k − 1 while φn(k)(u
k
k) = 1. This proves the assertion φn(h)(u

k
j ) = δh,j

for all k ≥ 1 and 1 ≤ h, j ≤ k. It follows that, for every k ≥ 1 and real {cj}kj=1,

max
1≤i≤k

|ci| = max
1≤i≤k

∣∣∣φn(i)(
∑k

j=1 cju
k
j )
∣∣∣ ≤

∥∥∥∑k
j=1 cju

k
j

∥∥∥ ≤ ( max
1≤i≤k

|ci|)
∥∥∥∑k

j=1 ±uk
j

∥∥∥ =

max
1≤i≤k

|ci| for some choice of signs. This settles (1.6) and shows that (1.7) holds

for every u ∈
⋃∞

i=1 Ui. Since
⋃∞

i=1 Ui is dense in U the proof of Lemma 1 is com-
plete. �

Let c denote the space of convergent sequences s = (s(1), s(2), s(3), . . .) with

‖s‖ = sup
j≥1

|s(j)| .

We use the usual notation with respect to the standard bases of c and c∗: we let
w0 = (1, 1, 1, . . .) and, for i ≥ 1, we define wi ∈ c by wi = (wi(1), wi(2), wi(3), . . .)
where wi(j) = δi,j . We define the functionals {ϕi}∞i=0 ⊂ c∗ by

ϕ0(s) = lim
j→∞

s(j)

and ϕi(s) = s(i) if i ≥ 1 for every s = (s(1), s(2), s(3), . . .). We are now ready to
state the following two versions of Remark A of [Z].

Theorem 1. Let X be a separable L1(μ) predual space. Then there exist a subspace
U ⊂ Xand an isometry T : U → c such that the range Y = T (U) is either the whole
space c or a closed hyperplane of c. Moreover, if B(X) has an extreme point, then
Y contains the element (1, 1, 1, . . .) of c.

Theorem 2. Let Xbe a separable L1(μ) predual space and assume that B(X) has an
extreme point. Then, for every ε > 0, Xcontains a (1 + ε)-complemented subspace
Zwhich is (1 + ε) isomorphic to c.

Note that Theorem 1 is “linearly close” while Theorem 2 is “norm close” to
Remark A of [Z].

2. Proofs of the theorems

Proof of Theorem 1. We use the structure ofX described in the introduction. Since
B(X∗) is w∗ compact we can select a subsequence

{
φn(k)

}∞
k=1

with n(1) = 1 which

w∗-converges to a functional φ ∈ B(X∗). Then we construct the subspace Uand
the functionals {ψj}∞j=1 as in Lemma 1. Because ψj = φn(j)

∣∣
U
, we get that

lim
j→∞

ψj(u) = φ(u)
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for every u ∈ U . Put ψ0 = φ|Uand assume, first, that ψ0 �= 0. Use (1.7) to obtain

(2.1) ‖u‖ = max
j≥0

|ψj(u)| for every u ∈ U.

It follows that the operator T : U → c defined by T (u)=(ψ1(u), ψ2(u), ψ3(u), . . .)
is an isometric isomorphism from U onto a subspace Y of c. If this isometry is not
onto c, then there is a functional ϕ ∈ c∗ which annihilates T (U) = Y . Using the
notation introduced in the introduction, we get a representation ϕ =

∑∞
i=0 aiϕi and,

since for every u ∈ U , T ∗ϕj(u) = ϕj(Tu) = ϕj(ψ1(u), ψ2(u), ψ3(u), . . .) = ψj(u),
we get that T ∗(ϕj) = ψj for all j ≥ 0 hence T ∗(ϕ) =

∑∞
j=0 ajψj . By using the

structure of U we will show that, up to a numerical multiple, the functional ϕ is
unique. Indeed, by Lemma 1, we know that, for every m ≥ 1 and 1 ≤ i ≤ m,
ψi(u

m
j ) = δi,j . Therefore,

(2.2) 0 = T ∗(ϕ)(um
j ) =

∞∑
i=0

aiψi(u
m
j ) = a0ψ0(u

m
j ) + aj +

∞∑
i=m+1

aiψi(u
m
j ).

Since
∑∞

i=0 |ai| converges, we get from (2.2) that

∣∣a0ψ0(u
m
j ) + aj

∣∣ =
∣∣∣∣∣∣

∞∑
j=m+1

aiψi(u
m
j )

∣∣∣∣∣∣
→

m→∞
0.

Therefore, if a0 �= 0, then lim
m→∞

ψ0(u
m
j ) exists and a−1

0 aj = − lim
m→∞

ψ0(u
m
j ) for

all j ≥ 1. It follows that all annihilators ϕ of T (U) with a0 �= 0 are numerical
multiples of each other hence T (U) is a hyperplane of c. On the other hand, if
a0 = 0 for every ϕ annihilating Y , then, by (2.2), aj = 0 for all j ≥ 1, hence ϕ = 0
and thus T (U) = c. Suppose that ψ0 = 0; then T , defined above, becomes an
operator T : U → c0. If there exists a fuctional ϕ ∈ c∗0 which annihilates T (U),
then ϕ =

∑∞
i=1 aiϕi. It follows from (2.2) that ai = 0 for all i ≥ 1 hence ϕ = 0 and

T is an isometry from U onto c0.
It remains to consider the case where B(X) has an extreme point. In this case,

by [S], X is isometric to a space A(S) of affine continuous functions on a Choquet
simplex S. It is proved in Theorem 5.2 of [LL2] that, under these circumstances,
the space X has a structure X = [

⋃∞
n=1 Xn] of finite dimensional subspaces Xn =

�n∞, each with a basis {eni }
n
i=1 satisfying (1.1), (1.2), and the following additional

property:

(2.3) ani ≥ 0 and
n∑

i=1

ani = 1 for all n ≥ 1 and 1 ≤ i ≤ n.

It follows that e11 =
∑n

i=1 e
n
i for all n ≥ 1 and, by (1.3), φi(e

1
1) = 1 for all i ≥ 1.

Since ψj = φn(j)

∣∣
U

and n(1) = 1, we get that ψj(u
1
1) = φn(j)(e

1
1) = 1 for every

j ≥ 1 and therefore, by the definition of the isometry T , T (u1
1) = (1, 1, 1, . . .) ∈ Y .

This proves Theorem 1. �

Remark 2. This consequence of [LL2] that we use above was discussed in J. Lin-
denstrauss’ Functional Analysis Seminar at The Hebrew University of Jerusalem
in 1967. Actually, it can be deduced from Remark 1 above. Indeed, if we choose
x1 = e11 to be the unit function of A(S), then, by multiplying xn by -1, if necessary,
we can build, for every n, the basis {eni }

n
i=1 to satisfy (2.3).
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Proof of Theorem 2. We use Theorem 1 and the notation as above. Let ϕ =∑∞
i=0 aiϕi be a nontrivial functional which annihilates Y . Since lim

i→∞
ai = 0, given

0 < δ < 1
2 (1 + ε)

−1

ε and an integer h > 0, there is a k > h and a number d with
|d| < δ such that ϕ(wk − dwh) = ak − dah = 0 and, consequently, wk − dwh ∈ Y .
Therefore, there exist an infinite sequence {p(j)}∞j=1 of positive integers and num-

bers {dj}∞j=1 with max
j≥1

|dj | < δ such that, for all j ≥ 1, wp(2j) + djwp(2j−1) ∈ Y .

Put p(0) = p(−1) = d0 = 0 and let V =
[{

wp(2j) + djwp(2j−1)

}∞
j=0

]
. Clearly,

the subspace W =
[{

wp(2j)

}∞
j=0

]
is isometric to the whole space c. Let vj =

wp(2j) + djwp(2j−1); then v0 = w0 and, for any null sequence {bj}∞j=0 of real num-

bers,

∥∥∥∥∥∥
∞∑
j=0

bj(vj − wp(2j))

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑
j=1

bjdjwp(2j−1)

∥∥∥∥∥∥
= max

j≥1
|bjdj | ≤ δmax

j≥1
|bj |

≤ 2δmax {|b0| ,max {|b0 + bj | : j ≥ 1}} = 2δ

∥∥∥∥∥∥
∞∑
j=0

bjwp(2j)

∥∥∥∥∥∥
.

Let S : W → V be the operator defined by S(
∑∞

j=0 bjwp(2j)) =
∑∞

j=0 bjvj ; then,

as we have just proved, ‖Sw − w‖ ≤ 2δ ‖w‖ for all w ∈ W and hence V is (1 + ε) -
isomorphic to c. Since T is an isometry, the space Z = T−1(V ) is (1+ε) -isomorphic
to c. It remains to show that there is a good projection from X onto Z.

Let zi = T−1vi for all i ≥ 0 and recall that e11 = u1
1 = T−1(w0) = T−1(v0) = z0

and, for all i ≥ 1, φn(i)(e
1
1) = 1 and also φ(z0) = φ(e11) = lim

i→∞
φn(i)(e

1
1) = 1. Define

the operator P : X → Z by P (x) = φ(x)z0 +
∑∞

i=1(φn(p(2i)) − φ)(x)zi. Then

P (z0) = z0 and, since φn(p(2j))

∣∣
U

= ψp(2j) = T ∗(ϕp(2j)), we obtain, for j, i ≥ 1,

the relation (φn(p(2j)) − φ)(zi) = T ∗(ϕp(2j) − ϕ0)(zi) = (ϕp(2j) − ϕ0)(T (zi)) =
(ϕp(2j) − ϕ0)(wp(2i) − djwp(2i−1)) = δi,j while φ(zi) = T ∗(ϕ0)(zi) = ϕ0(T (zi)) =
lim
k→∞

ϕk(wp(2i) − diwp(2i−1)) = 0 and therefore P (zi) = zi for all i ≥ 0. Hence P is

a projection from X onto Z.
Using the fact that T : U → c is an isometry we get, for every x ∈ B(X), the

inequality

‖P (x)‖ = ‖TP (x)‖ =

∥∥∥∥∥∥
φ(x)v0 +

∞∑
j=1

(φn(p(2j)) − φ)(x)vj

∥∥∥∥∥∥

=

∥∥∥∥∥∥
φ(x)w0 +

∞∑
j=1

(φn(p(2j)) − φ)(x)(wp(2j) + djwp(2j−1))

∥∥∥∥∥∥

≤

∥∥∥∥∥∥
φ(x)w0 +

∞∑
j=1

(φn(p(2j)) − φ)(x)wp(2j)

∥∥∥∥∥∥

+

∥∥∥∥∥∥
∞∑
j=1

(φn(p(2j)) − φ)(x)djwp(2j−1)

∥∥∥∥∥∥



5262 M. ZIPPIN

= max
{
|φ(x)| ,max

{∣∣φn(p(2j))(x)
∣∣ : j ≥ 1

}}

+

∥∥∥∥∥∥
∞∑
j=1

(φn(p(2j)) − φ)(x)djwp(2j−1)

∥∥∥∥∥∥
≤ 1 + 2max {|dj | : j ≥ 1} ≤ 1 + 2δ < 1 + ε.

It follows that ‖P‖ ≤ 1 + ε and this completes the proof of Theorem 2. �
Remark 3. Theorem 1 of [Z] states that every separable L1 predual X contains a
1-complemented subspace Z which is isometric to the space c0. The following is a
simple proof of Theorem 1 of [Z] which is based on Theorem 1 above.

Let U be the subspace of X constructed in Theorem 1 above and let ϕ =∑∞
i=0 aiϕi be the annihilator of T (U) in c∗. For some small ε > 0 pick a sub-

sequence of integers {p(j)}∞j=1 and vectors vj = wp(2j) + djwp(2j−1) with |dj | ≤ ε

which belong to T (U). Let zj = T−1(vj) and put Z =
[
{zj}∞j=1

]
. The operator

T is an isometry and
[
{vj}∞j=1

]
is isometric to c0 hence Z is isometric to c0. We

know that T ∗(ϕp(2j)) = ψp(2j) = φn(p(2j))

∣∣
U

and ϕp(2j)(vi) = δi,j . The subspace

Z0 =
[
{z2j − z2j−1}∞j=1

]
is isometric to c0 and ω∗ lim(φn(p(4j)) − φn(p(4j−2))) = 0.

It follows that the operator P defined by

P (x) = (1/2)

∞∑
j=1

(φn(p(4j)) − φn(p(4j−2)))(x)(z2j − z2j−1)

for every x ∈ X is a projection of norm 1 from X onto Z0. This proves Theorem 1
of [Z].
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