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(Communicated by Adrian Ioana)

Abstract. On page 43 in [Adv. in Math. 50 (1983), pp. 27–48] Sorin Popa
asked whether the following property holds: If ω is a free ultrafilter on N

and R1 ⊆ R is an irreducible inclusion of hyperfinite II1 factors such that
R′ ∩Rω ⊆ Rω

1 does it follows that R1 = R? In this short note we provide an
affirmative answer to this question.

1. Introduction

Central sequences were introduced in [MvN36] as a tool to distinguish the hyper-
finite II1 factor R and the free group factor L(F2). Later on, in the groundbreaking
papers [MD69a,MD69b,MD69c] D. McDuff analyzed the ultrapower and central
sequence algebras of II1 factors to exhibit uncountably many nonisomorphic II1
factors. In his celebrated work [Co76], A. Connes furthered the study of central se-
quence algebras and ultrapowers in his proof of injective implies hyperfinite, thereby
underlining once again the importance of these objects. Since then, the study of
ultrapowers and central sequences has played a central role in the theory of II1
factors.

In 1967, at the Baton Rouge conference, R. V. Kadison asked a series of influen-
tial (yet unpublished!) questions. One of the questions asked whether all maximal
amenable subalgebras of a II1 factor are isomorphic to R. In a seminal paper,
[Po83], S. Popa obtained the striking result that the generator masa in L(F2) is
maximal amenable, thus answering negatively Kadison’s question. In [Po83, The-
orem 4.1] it was also shown that whenever Fn � X is a free, measure preserving
action on a nonatomic probability space X, the Ru = L∞(X) � 〈u〉 is a maximal
injective subalgebra of M = L∞(X)�Fn (where u is a canonical generator of Fn).
The proof relied on showing that if N ⊇ Ru is an injective subalgebra satisfying
N ′ ∩ Nω ⊆ Rω

u , then Ru = N . In turn this was shown using heavily the notion of
asymptotic orthogonality property introduced in the same paper. This naturally led
S. Popa to ask whether this phenomenon actually occurs in general: Let R1 ⊆ R
be a hyperfinite subfactor such that R′

1 ∩ R = C and R′ ∩ Rω ⊆ Rω
1 for some free

ultrafilter ω on N. Does it follow that R1 = R? See [Po83, Section 4.5 Problem 2].
In this paper, we answer the aforementioned question in the affirmative (see

Theorem 2.5). Thus the central sequence algebra of the hyperfinite II1 factor cannot
be absorbed by some nontrivial irreducible subfactor. Our approach relies upon an
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interplay between Popa’s deformation/rigidity theory, subfactor theory, and some
basic analysis of central sequences (e.g., Ocneanu’s central freedom lemma). We
believe that this general result may have future applications to maximal amenability
questions.

2. Proof of the main result

Popa intertwining techniques. To study the structural theory of von Neumann
algebras, S. Popa has introduced the following notion of intertwining subalgebras
which has been very instrumental in the recent developments in the classification of
von Neumann algebras [Po06,Va10, Io17]. Given (not necessarily unital) inclusions
P,Q ⊆ M of von Neumann subalgebras, one says that a corner of P embeds into
Q inside M and writes P ≺M Q if there exist nonzero projections p ∈ P, q ∈ Q, a
∗-homomorphism θ : pPp → qQq and a nonzero partial isometry v ∈ qMp so that
θ(x)v = vx, for all x ∈ pPp. The partial isometry v is also called an intertwiner
between P and Q. If we moreover have that Pp′ ≺M Q, for any nonzero projection
p′ ∈ P ′ ∩ 1PM1P (equivalently, for any nonzero projection p′ ∈ Z(P ′ ∩ 1PM1P)),
then we write P ≺s

M Q.
Then in [Po03, Theorem 2.1 and Corollary 2.3] Popa developed a powerful ana-

lytic method to identify intertwiners between arbitrary subalgebras of tracial von
Neumann algebras.

Theorem 2.1 ([Po03]). Let (M, τ ) be a separable tracial von Neumann algebra
and let P,Q ⊆ M be (not necessarily unital) von Neumann subalgebras. Then the
following are equivalent:

i) P ≺M Q.
ii) For any group G ⊂ U(P) such that G′′ = P there is no sequence (un)n ⊂ G

satisfying ‖EQ(xuny)‖2 → 0 for all x, y ∈ M.

In order to show our main result we need the following technical result on inter-
twining.

Lemma 2.2. Let ω be a free ultrafilter on N. Let N ⊆ M be an inclusion of
hyperfinite II1 factors such that M ⊀M N . Then we have M′ ∩Mω ⊀Mω Nω. In
particular if M′ ∩Mω ⊆ Nω, then M ≺M N .

Proof. Since M is hyperfinite there exists an ascending sequence of algebras Mn ⊆
M satisfying Mn

∼= M2n(C),
⋃

n Mn
sot

= M, and M = Mn⊗̄(M′
n ∩M) for all

n. Next we briefly argue that M′
n ∩M ⊀M N for all n. Assuming otherwise, by

[Va10, Lemma 2.5] there exists a nonzero projection e ∈ (M′
n ∩M)′ ∩M = Mn

such that (M′
n ∩M)e ≺s

M N . Also, since Mn is finite dimensional, then [eMe :
(M′

n ∩ M)e] < ∞ and hence M ≺M (M′
n ∩M)e. Using [Va10, Remark 3.8] we

would get that M ≺M N , a contradiction.
Fix (sn)n ⊆ N a sequence that tends to∞. Next we claim that for every finite set

F ⊂ Mω there exists a unitary vω ∈
∏

n→ω(M′
sn
∩M) such that ENω (xωvωyω) = 0

for all xω, yω ∈ F . This relies on the usage of the analytic criterion from Popa’s
intertwining techniques, i.e., part ii) of Theorem 2.1. Since for every n ∈ N we have
M′

sn ∩M ⊀ N there exists a unitary vn ∈ M′
sn ∩M such that ‖EN (xnvnyn)‖2 ≤

n-1 for all xω = (xn)n, y
ω = (yn)n ∈ F . Letting vω = (vn)n ∈

∏
n→ω M′

sn ∩M ⊂
M′∩Mω the previous inequalities show that ENω (xωvωyω) = 0 for all xω, yω ∈ F ,
as desired.
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Assume by contradiction M′ ∩ Mω ≺Mω Nω. Thus one can find projections
0 �= pω ∈ M′ ∩Mω,0 �= qω ∈ Nω, a partial isometry 0 �= wω ∈ Mω, and a unital
∗-homomorphism φ : pω(M′ ∩Mω)pω→qωNωqω such that

(1) φ(x)wω = wωx for all x ∈ pω(M′ ∩Mω)pω.

Since pω ∈ Mω =
⋃

n Mn
sot

there exists a sequence (tn)n ⊆ N that tends to ∞
for which pω ∈

∏
n→ω Mtn . Using our claim for the sequence tn and the set F =

{wω, (wω)∗} one can find a unitary uω ∈
∏

n→ω(M′
tn ∩M) ⊆ M′ ∩Mω such that

ENω (wωuω(wω)∗) = 0. Using this in combination with (1) and pωuω = uωpω we
further get that 0 = ‖ENω (wωpωuωpω(wω)∗)‖2 = ‖φ(pωuωpω)ENω (wω(wω)∗)‖2 =
‖φ(uωpω)ENω(wω(wω)∗)‖2 = ‖ENω (wω(wω)∗)‖2. This implies thatENω (wω(wω)∗)
= 0 and hence wω = 0, which is a contradiction. �

Remark. Theorem 2.1 also holds without separability assumptions if one uses nets
instead of sequences. So the second part of the proof of Lemma 2.2 can be directly
deduced from Theorem 2.1 applied in Mω. The authors would like to thank the
anonymous referee for pointing this out.

Proposition 2.3. Let N ⊆ M be II1 factors such that N ′ ∩ M = C1. Then
M ≺M N if and only if [M : N ] < ∞.

Proof. Suppose M ≺M N . Thus one can find nonzero projections p ∈ M,q ∈ N , a
nonzero partial isometry v ∈ qMp, and a unital ∗-homomorphism φ : pMp→qN q
such that

(2) φ(x)v = vx for all x ∈ pMp.

Denote by B := φ(pMp) ⊆ qN q and notice that by (2) we have vv∗ ∈ B′ ∩
qMq and v∗v ∈ pMp′ ∩ pMp. Since M is a factor we have v∗v = p. More-
over, by restricting q if necessary, we can assume without any loss of general-
ity that the support projection of EN (vv∗) equals q. Equation (2) also implies
that Bvv∗ = vpMpv∗ = vv∗Mvv∗. Since M is a factor, this further gives that
vv∗(B′ ∩ qMq)vv∗ = (Bvv∗)′ ∩ vv∗Mvv∗ = vv∗(M′ ∩ M)vv∗ = Cvv∗. Since
B′ ∩ qN q ⊆ B′ ∩ qMq, then there exists a nonzero projection r ∈ B′ ∩ qN q such
that r(B′ ∩ qN q)r = Br′ ∩ rN r = Cr. Since q = s(EN (vv∗)) one can check that
rv �= 0. Thus replacing B by Br, φ(·) by φ(·)r, q by r, and v by the partial isometry
from the polar decomposition of rv then the intertwining relation (2) still holds
with the additional assumption that B′ ∩ qN q = Cq. In particular we have that
EqNq(vv

∗) = cq where c is a positive scalar.
Since B ⊆ qN q ⊆ qMq is an inclusion of II1 factors, N ⊆ M is irreducible, and

Bvv∗ = vv∗Mvv∗ then it follows from [Jo81, Corollary 3.1.9] and [PP86, Corollary
1.8] that 〈qN q, vv∗〉 ⊆ qMq is the basic construction of B ⊆ qN q. This entails
that B ⊆ qN q is finite index and moreover vv∗〈qN q, vv∗〉vv∗ = Bvv∗ = vv∗Mvv∗ .
Since 〈qN q, vv∗〉 is a factor then 〈qN q, vv∗〉 = qMq and consequently qN q ⊆ qMq
has finite index. Thus N ⊆ M also has finite index.

If [M : N ] < ∞, then M ≺M N follows easily from the fact M−1e−1 =
e−1Me−1, where M−1 denotes the downward basic construction, and e−1 ∈ M is
the corresponding Jones’ projection, as in [Jo81, Corollary 3.1.9]. Note that one
does not need N ′ ∩M = C1 for this direction. �

For further use we recall next a result due to A. Ocneanu. For a proof the reader
may consult [EK98, Lemma 15.25].
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Lemma 2.4 (Ocneanu’s central freedom lemma). Let R ⊆ P ⊆ Q be separable
finite von Neumann algebras, with R the hyperfinite factor. If ω is a free ultrafilter
on N, then we have the following relation:

(R′ ∩ Pω)′ ∩Qω = R∨ (P ′ ∩Q)ω.

With these results at hand we are now ready to answer affirmatively Popa’s
question from [Po83].

Theorem 2.5. Let N ⊆ M be hyperfinite II1 factors such that N ′ ∩M = C. If
M′ ∩Mω ⊆ Nω, then N = M.

Proof. First we notice that from Lemma 2.2 and Proposition 2.3 it follows that
[M : N ] < ∞. Since M′ ⊆ N ′ and M′ ∩Mω ⊆ Nω then M′ ∩Mω = M′ ∩Mω ∩
N ′ ⊆ Nω ∩ N ′. So we get the following inclusions:

(3) M′ ∩Mω ⊆ N ′ ∩Nω ⊆ N ′ ∩Mω.

Since M,N are McDuff, then M′∩Mω and N ′∩Nω are von Neumann algebras of
type II1. Also, since M′∩Mω ⊆ N ′∩Mω then it follows that N ′∩Mω is type II1
as well. Also since M is hyperfinite then applying Lemma 2.4 for R = P = Q = M
we get (M′∩Mω)′∩Mω = M and hence (M′∩Mω)′∩(N ′∩Mω) = N ′∩M = C.
In particular, this implies that all algebras displayed in (3) are in fact II1 factors.
Next we show the following relations:

(4) [N ′ ∩Mω : M′ ∩Mω] = [M : N ] = [N ′ ∩Mω : N ′ ∩Nω].

To this end let {mi}1≤i≤n+1 be an orthonormal basis of M over N . Then, by
[Po02, Lemma 3.1] it follows that the map Φ(x) = [M : N ]−1

∑
imixm

∗
i imple-

ments the conditional expectation from N ′ ∩Mω onto M′ ∩Mω. In addition, the
index of Φ is majorized by [M : N ]. Thus, we get

(5) [N ′ ∩Mω : M′ ∩Mω] ≤ [M : N ].

Now by [PP86, Proposition 1.10] we have [M : N ] = [Mω : Nω]. Set c =
[N ′ ∩Mω : N ′ ∩ Nω]−1 and λ = [Mω : Nω]−1 and from (3) and (5) we infer that
c ≥ λ.

Denote by EN ′∩Mω the conditional expectation from Mω onto N ′ ∩ Mω and
notice that EN ′∩Mω ◦ ENω = ENω ◦ EN ′∩Mω . Let Nn ⊆ N such that Nn

∼=
M2n(C),

⋃
n Nn

sot
= N , and N = Nn⊗̄(N ′

n ∩ N ). Since N ′
n ∩N ⊆ N ′

n ∩M is an
inclusion of II1 factors of index λ then one can find projections en ∈ N ′

n ∩M such
that EN ′

n∩N (en) = λ for all n. This implies that EN (en) = λ for all n.
Altogether, these give eω = (en)n ∈ N ′ ∩ Mω and ENω (eω) = λ. Thus using

[PP86, Theorem 2.2] we get that λ ≥ c and hence λ = c. Summarizing,

(6) [N ′ ∩Mω : N ′ ∩ Nω] = [M : N ].

Altogether, relations (5)-(6) conclude relation (4). In turn (4) shows that [N ′∩Nω :
M′ ∩Mω] = 1 and hence

(7) M′ ∩Mω = N ′ ∩Nω.

To finish the proof, we use Lemma 2.4. Indeed setting R = P = N and Q = M
in Lemma 2.4 we get (N ′ ∩ Nω)′ ∩ Mω = N , as N ′ ∩ M = C. Also letting
R = P = Q = M in Lemma 2.4 we have (M′ ∩Mω)′ ∩Mω = M. Therefore using
(7) we get N = M, as desired. �
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