Errata for "Heat Kernel and Analysis on Manifolds"
October 26, 2017

P. 6. Before Remark 1.2 there should be twice “\(t \to 0 \)” instead of “\(t \to \infty \)”.

P. 32. In the top line there should be “After we have proved (2.25)” instead of “After we have proved using (2.25)”.

P. 66. There should be \(v^i = g^{ij}u_j \) instead of \(v^i = g^{ij}u_i \).

P. 167. There should be “To prove (6.47) observe that by (6.45)…” instead of “To prove (6.47) observe that by (6.40)…”

P. 297. There should be \(v^i = g^{ij}u_j \) instead of \(v^i = g^{ij}u_i \).

P. 298. In Remark after Exercise 10.26, there should be: “for any \(\min(\mathcal{M}) \)” instead of “\(\min(\mathcal{M}) \)”.

P. 298. In Exercise 10.27(b) there should be \(u = 1 \mod W_0^1(\mathcal{M}) \)” instead of \(u = 1 \mod W_0^1(\mathcal{M}) \)”.

P. 398. Proof of Corollary 15.6 should be corrected as follows.

Proof. Assume first \(t \leq 2R^2 \). The function \(u(t, \cdot) = P_t f \) satisfies the hypotheses of Theorem 15.1. Since \(\|u(t, \cdot)\|_{L^2} \leq \|f\|_{L^2} \), we obtain

\[
\int_0^t \int_{B(x, R)} u^2_+ d\nu \leq t\|f\|_{L^2}^2,
\]

whence by Theorem 15.1

\[
u^2_+(t, x) \leq \frac{Ca^{-n/2}t}{\min(\sqrt{t}, R)} \|f\|_{L^2}^2 \leq C'a^{-n/2} \left(R^{-n} + t^{-n/2}\right) \|f\|_{L^2}^2.
\]

Applying the same argument to \(u = -P_t f \), we obtain the required estimate for \(|P_t f(x)|^2 \). Next, replacing \(x \) by any point \(x' \in B(x, R/2) \) and applying the above estimate in the ball \(B(x', R/2) \) instead of \(B(x, R) \), we obtain (15.22).

For \(t > 2R^2 \) we apply the already proved case of (15.22) with \(R^2 \) instead of \(t \) and \(P_{t-R^2} f \) instead of \(f \). Since

\[
P_{R^2} P_{t-R^2} f = P_t f,
\]

we obtain

\[
\sup_{B(x, R/2)} |P_t f| \leq C'a^{-n/4} \left(R^{-n/2} + (t - R^2)^{-n/4}\right) \|P_{t-R^2} f\|_{L^2}
\leq C''a^{-n/2} R^{-n/2} \|f\|_{L^2},
\]

which finishes the proof. \(\blacksquare \)

P. 407. Before Corollary 15.17 there should be

\[
p_t(x, y) \sim \frac{c}{t^{n/2}} \left(\frac{\rho^2}{t}\right)^{-\frac{n-1}{2}} \exp \left(-\frac{\rho^2}{4t}\right)
\]

instead of

\[
p_t(x, y) \sim \frac{c}{t^{n/2}} \left(\frac{\rho^2}{t}\right)^{n/2-1} \exp \left(-\frac{\rho^2}{4t}\right).
\]