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The sequence of primes

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . .

is mysterious, haphazard, and important.

What can we say about them, and do techniques from calculus
help at all?
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Question
Are there any nice formulas for finding primes?



Fermat (1601–1661)

Definition (Fermat Numbers)

Fn = 2(2n) + 1 for n = 0, 1, . . .
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Example

The first few Fermat numbers (2(2n) + 1) are:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537,

F5 = 4294967297, F6 = 18446744073709551617.

Conjecture (Fermat)

Fermat: F0, F1, F2, F3, and F4 are all prime numbers and so Fn

should always be prime.
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Unfortunately, for Fermat, no other Fermat numbers have been
found to be primes.

Example (Euler)

In 1732, Leonhard Euler (1707–1783) showed that

641 divides F5 = 4,294,967,297.

Question

• Are there any other Fermat numbers that are prime?

• Is the number of Fermat primes finite?

• Is F33 prime or composite?

All are open problems.
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Latest results

On March 27, 2010, Michael Vang of USA discovered the sixth
known factor of the F12:

17353230210429594579133099699123162989482444520899×215+1.

The previously known factors of F12 had been discovered in 1877,
1903, 1903, 1974 and 1986, respectively.

On November 20, 2010 Alexey V. Komkov found the following new
factor of the Fermat number F299:

272392805475× 2304 + 1.
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Definition (Mersenne Numbers)

Father Marin Mersenne (1588–1648) suggested that the numbers

Mp = 2p − 1 where p is a prime,

called Mersenne numbers, may generate many primes.

Through December 2010, 47 Mersenne primes have been found.
Mp is a prime for the following values of p:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213,
19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433, 1257787, 1398269, 2976221,
3021377, 6972593, 13466917, 20996011, 24036583,
25964951, 30402457, 32582657, 37156667, 42643801,
43112609.
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As of December 2010, the largest prime known

was the Mersenne
prime

M43,112,609 = 243112609 − 1.

This gigantic prime has 12,978,189 digits, found on August 23,
2008 by the computers of the UCLA’s Math Dept as part of the
Great Internet Mersenne Prime Search (GIMPS). Awarded a
$100,000 prize for being the first prime with more than 10 million
digits.
On April 12th, 2009, the 47th known Mersenne prime,
M42,643,801 = 242,643,801 − 1, a 12,837,064 digit number was found
by Odd Magnar Strindmo from Melhus, Norway! Second largest
known prime, 141,125 digits smaller than the largest prime.
See http://www.mersenne.org/ to join the hunt and to see the
latest records.
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Why do Mersenne primes hold the record for the largest primes?

The reason is the following Theorem that gives a criterion for
Mersenne primes:

Theorem (Lucas-Lehmer Test)

p a prime greater than two. Construct the sequence:

4, 14, 194, 37634, 1416317954, 2005956546822746114, . . .

where the first term is r1 = 4 and rn = r2
n−1 − 2.

Now Mp = 2p − 1 is a prime if and only if Mp is a divisor of rp−1,
the (p − 1)st term of the above sequence.
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F (a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z) =

[k + 2][1− (wz + h + j − q)2 − (2n + p + q + z − e)2

−(y2(a2 − 1) + 1− x2)2 − ((e4 + 2e3)(a + 1)2 + 1− o2)2

−(16(k + 1)3(k + 2)(n + 1)2 + 1− f 2)2

−
“
((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x + cu)2

”2

−(ai + k + 1− l − i)2 − (16r2y4(a2 − 1) + 1− u2)2

−((g(k + 2) + k + 1)(h + j) + h − z)2

−(p − m + l(a − n − 1) + b(2a(n + 1)− n(n + 2)− 2))2

−(z − pm + pl(a − p) + t(2ap − p2 − 1))2

−(q − x + y(a − p − 1) + s(2a(p + 1)− p(p + 2)− 2))2

−(l2(a2 − 1) + 1− m2)2 − (n + l + v − y)2].

Theorem
p is a prime if and only if p is a positive value of the polynomial F .
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Question
How are primes distributed?

Prime Deserts
Can you find 1,000,000 consecutive composite numbers?

47! + 2, 47! + 3, 47! + 4, . . . , 47! + 47

is a sequence of 46 consecutive composite numbers.
So, there are prime deserts of arbitrary length.
Does it seem as if the primes are further and further apart as we
go forward on the number line?
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Twin Primes

{3, 5},

{11, 13}, {41, 43}

are examples of “twin primes” as are

{101, 103}, {10006427, 10006429},

and

{65516468355× 2333333 − 1 & 65516468355× 2333333 + 1}.

Could there be an infinite pair of twin primes?
The twin prime conjecture says that the answer is yes.

Conjecture (Schinzel’s Conjecture)

There exists an infinite number of positive integers n such that
each of the numbers n + 1, n + 3, n + 7, n + 9, and n + 13 is a
prime.
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Definition
π(x) = the number of primes between up to and including x .

Example

π(4) = 2, π(10) = 4

π(47) = 15, π(100) = 25
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Question
π(x) is a discontinuous function. Can we find a smooth function
that approximates π(x)?



x π(x) π(x)/x x/π(x)

10 4 .4 2.5
100 25 .25 4

1000 168 .168 5.95238
10000 1229 .1229 8.1367

100000 9592 .09592 10.4254
106 78498 .078498 12.7392
107 664579 .0664579 15.0471
108 5761455 .0576146 17.3567
109 50847534 .0508475 19.6666

Table: The number of primes up to 109



Let f (x) be a smooth function that approximates x
π(x) .

If we can find f (x) then we can approximate π(x).
We notice:

f (10x) = f (x) + 2.3

When in doubt, differentiate

10f ′(10x) = f ′(x)

Assume f ′(1) = 1

get f ′(10) = 1/10

and f ′(100) = 1/100.
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Theorem
f a differentiable function, f (10x) = f (x) + 2.3, and f ′(1) = 1,
then

f ′(10n) =
1

10n
,

for all positive integers n.



Theorem
f a differentiable function, f (10x) = f (x) + 2.3, and f ′(1) = 1,
then

f ′(10n) =
1

10n
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for all positive integers n.



Bigger tables can convince you that, for any a ∈ R, you want

f (ax) = f (x) + g(a),

where g(a) is a constant (depending on a).

Theorem
f a differentiable function. For every a ∈ R, we have
f (ax) = f (x) + g(a). Assume f ′(1) = 1, then

f ′(x) = 1/x .

Definition
For all x > 0, we define ln(x) by

ln(x) =

∫ x

1

1

t
dt.
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x

π(x)
≈ f (x) = ln x

⇒ π(x) ≈ x

ln x
.

Theorem (The Prime Number Theorem—PNT)

Let π(x) denote the number of primes up to x then

lim
x→∞

π(x)

x/ ln(x)
= 1.

PNT conjectured by Gauss in 1792 when he was fifteen. It was
proved by Hadamard and Poussin in 1896.

Whenever he had a few spare minutes, Gauss would find the next
so many primes. He had a list of primes up to 3 million. His list
has only about 72 mistakes!
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Carl Friedrich Gauss (1777–1855)



Corollary

lim
x→∞

π(2x)

π(x)

= lim
x→∞

π(2x)

2x/ ln(2x)

x/ ln(x)

π(x)

2x/ ln(2x)

x/ ln(x)
= 2.

A theorem in number theory (Bertrand’s postulate): there is
always a prime between n and 2n.

We have now argued that, for large enough x , there is roughly the
same number of primes between x and 2x as there are between 1
and x .
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Gauss improves PNT

Pick a random integer between 1 and n. What is the probability
that it will be prime?

There are n integers and π(n) of them are primes.

So the probability of getting a prime is

π(n)

n

≈ n/ ln(n)

n
=

1

ln(n)

Heuristic: The “probability” that a large number x is prime is

≈ 1

ln(x)
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Li(x)

n 2 3 4 . . . 46 47

Prob n prime 1 1 0 . . . 0 1

Prob n prime 1/ ln(2) 1/ ln(3) 1/ ln(4) . . . 1/ ln(46) 1/ ln(47)
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So

π(x) ≈ 1

ln(2)
+

1

ln(3)
+ · · ·+ 1

ln(x)
≈

∫ x

2

1

ln(t)
dt

Definition

Li(x) = Logarithmic integral =

∫ x

2

1

ln(t)
dt
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How good is Li(x)?

Gauss had found 6762 primes
between 2, 600, 000 and 2, 700, 000.

To test the new approximation for π(x) he calculates

∫ 2700000

2600000

dx

ln(x)
=

6761.332

Maple gives the number of primes as 6765 and approximates the
integral as 6761.3243
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x π(x) x/ ln x − π(x)

Li(x)− π(x)

102 25 −3

5

103 168 −23

10

104 1, 229 −143

17

105 9, 592 −906

38

106 78, 498 −6, 116

130

107 664, 579 −44, 158

339

108 5, 761, 455 −332, 774

754

109 50, 847, 534 −2, 592, 592

1, 701

1010 455, 052, 511 −20, 758, 029

3, 104
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Georg Bernhard Riemann (1826–1866)



Riemann in 1860

Gauss counted primes as 1 and composites as 0 and got

Li(x) ≈ π(x)

Riemann: squares of primes as 1/2, cubes of primes as 1/3, . . .

n 2 3 4 . . . 46 47

Prob n prime 1 1 1/2 . . . 0 1

Prob n prime 1/ ln(2) 1/ ln(3) 1/ ln(4) . . . 1/ ln(46) 1/ ln(47)



Riemann in 1860

Gauss counted primes as 1 and composites as 0 and got

Li(x) ≈ π(x)

Riemann: squares of primes as 1/2, cubes of primes as 1/3, . . .

n 2 3 4 . . . 46 47

Prob n prime 1 1 1/2 . . . 0 1

Prob n prime 1/ ln(2) 1/ ln(3) 1/ ln(4) . . . 1/ ln(46) 1/ ln(47)



Riemann in 1860

Gauss counted primes as 1 and composites as 0 and got

Li(x) ≈ π(x)

Riemann: squares of primes as 1/2, cubes of primes as 1/3, . . .

n 2 3 4 . . . 46 47

Prob n prime 1 1 1/2 . . . 0 1

Prob n prime 1/ ln(2) 1/ ln(3) 1/ ln(4) . . . 1/ ln(46) 1/ ln(47)



⇒ Li(x) ≈ π(x) +
1

2
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Or equivalently
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2
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R(x)



⇒ Li(x) ≈ π(x) +
1

2
π(
√

x) +
1

3
π( 3
√

x) + · · ·

Or equivalently

π(x) ≈ Li(x)− 1

2
Li(
√

x)− 1

3
Li( 3
√

x)− . . .︸ ︷︷ ︸
R(x)



Riemann found that

R(x) = 1 +
∞∑

n=1

1

nζ(n + 1)

(ln x)n

n!

where

ζ(s) = 1 +
1

2s
+

1

3s
+ · · ·

is the Riemann zeta function.



How good is R(x)?

x π(x)

R(x)

100, 000, 000 5, 761, 455

5, 761, 552

200, 000, 000 11, 078, 937

11, 079, 090

300, 000, 000 16, 252, 323

16, 252, 355

400, 000, 000 21, 336, 326

21, 336, 185

500, 000, 000 26, 355, 867

26, 355, 517

600, 000, 000 31, 324, 703

31, 324, 622

700, 000, 000 36, 252, 931

36, 252, 719

800, 000, 000 41, 146, 179

41, 146, 248

900, 000, 000 46, 009, 215

46, 009, 949

1, 000, 000, 000 50, 847, 534

50, 847, 455
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Riemann does even more!

ζ(z) = 1 +
1

2z
+

1

3z
+ · · ·

is only defined for z > 1.

Riemann finds a way to define ζ(z) for all complex numbers
z = r + it except z = 1.
He then proves the following exact formula:

π(x) = R(x)−
∑
ρ

R(xρ)

where ρ ∈ {zeroes of the ζ function}
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Conjecture (The Riemann Hypothesis)

The complex roots of the Riemann zeta function are of the form
1
2 + it.

This conjecture—which has been the object of intense recent
effort—is one of the most important outstanding mathematics
problems.
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