1 Interpolation Inequalities for Intermediate Derivatives

In this section we prove that if Ω is sufficiently regular, then a function u belongs to $W^{m,p}(\Omega)$ if and if $u \in L^p(\Omega)$ and all its m-th distributional derivatives $\frac{\partial^m u}{\partial x^m}$, $|\alpha| = m$, belong to $L^p(\Omega)$. We begin with the one-dimensional case $N = 1$.

1.1 The One-Dimensional Case

Theorem 1 ($m = 2$) Let $I \subset \mathbb{R}$ be an open interval and let $u \in L^1_{\text{loc}}(I)$, $1 \leq p \leq \infty$. Then u belongs to $W^{2,p}(I)$ if and only if $u \in L^p(I)$ and its second order distributional derivative u'' belongs to $L^p(I)$. In this case, for every $0 < \ell < \text{length } I$,

$$\|u''\|_{L^p(I)} \leq C(p) \left(\frac{1}{\ell} \|u\|_{L^p(I)} + \ell \|u''\|_{L^p(I)} \right).$$

Proof. Step 1: Assume first that $u \in C^\infty(I)$ and that $I = (0,b)$ for some $b > 0$. Fix $s \in (0, \frac{1}{3}b)$ and $t \in (\frac{2}{3}b, b)$. By the mean value theorem, there exists $\xi \in (s,t)$ such that

$$u'(\xi) = \frac{u(t) - u(s)}{t - s}.$$

Hence, by the fundamental theorem of calculus, for all $x \in (0, b)$,

$$u'(x) = u'(\xi) + \int_\xi^x u''(y) \, dy = \frac{u(t) - u(s)}{t - s} + \int_\xi^x u''(y) \, dy.$$

Since $t - s \geq \frac{1}{3}b$, it follows that

$$|u'(x)| \leq \frac{3}{b} (|u(t)| + |u(s)|) + \int_0^b |u''(y)| \, dy$$

for all $x \in (0, b)$. If $p = \infty$, then

$$|u'(x)| \leq \frac{6}{b} \sup_{t \in (0,b)} |u(t)| + b \sup_{t \in (0,b)} |u''(t)|,$$ \hspace{1cm} (2)

while if $1 \leq p < \infty$, then by Hölder’s inequality

$$|u'(x)| \leq \frac{3}{b} (|u(t)| + |u(s)|) + b^{\frac{p-1}{p}} \left(\int_0^b |u''(y)|^p \, dy \right)^{\frac{1}{p}}.$$ \hspace{1cm} (3)

Using the convexity of the function $\tau \mapsto \tau^p$, we have that

$$|u'(x)|^p \leq \frac{3^{p-1}}{b^p} (|u(t)|^p + |u(s)|^p) + 3^{p-1} b^{p-1} \int_0^b |u''(y)|^p \, dy.$$
By averaging first in \(s \) over \((0, \frac{1}{3}b)\) and then in \(t \) over \((\frac{2}{3}b, b)\), we get

\[
|u'(x)|^p \leq \frac{3^{2p-1} 3}{b^{p-1}} \left(\int_{\frac{b}{3}}^b |u(t)|^p \, dt + \int_{0}^{\frac{b}{3}} |u(s)|^p \, ds \right) + 3^{p-1} b^{p-1} \int_{0}^{b} |u''(y)|^p \, dy
\]

\[
\leq \frac{3^p}{b^{p+1}} \int_{0}^{b} |u(y)|^p \, dy + 3^{p-1} b^{p-1} \int_{0}^{b} |u''(y)|^p \, dy.
\]

Finally, we integrate in \(x \) over \((0, b)\), to obtain

\[
\int_{0}^{b} |u'(x)|^p \, dx \leq \frac{3^{2p}}{b^{p}} \int_{0}^{b} |u(y)|^p \, dy + 3^{p-1} b^{p} \int_{0}^{b} |u''(y)|^p \, dy.
\]

Step 2: If \(I \) has infinite length, fix \(b > 0 \) and subdivide \(I \) in subintervals of length \(b \). Since (2), respectively, (4), holds in every such subinterval, we get

\[\sup_{x \in I} |u'(x)| \leq \frac{6}{b} \sup_{t \in I} |u(t)| + b \sup_{t \in I} |u''(t)|\]

(5)

if \(p = \infty \), while

\[
\int_{I} |u'(x)|^p \, dx \leq \frac{3^{2p}}{b^{p}} \int_{I} |u(x)|^p \, dx + 3^{p-1} b^{p} \int_{I} |u''(x)|^p \, dx
\]

(6)

if \(1 \leq p < \infty \). By taking \(b \) to be \(\ell \), we get (1).

On the other hand, if \(I \) has finite length, let \(m \in \mathbb{N} \) and divide \(I \) into \(m \) subintervals of length \(b := \frac{1}{m} \) length \(I \). Then we get (5) and (6). It suffices to take \(m \) to be the integer part of \(\frac{\text{length } I}{\ell} \).

Step 3: To remove the additional hypothesis that \(u \in C^\infty(I) \), one can use standard mollifiers (see, e.g. Step 4 of the proof of Theorem 10.55. We omit the details. \[\blacksquare\]

Remark 2 When \(p = 1 \) and \(u \in L^1(I) \) is such that its second order distributional derivative \(u'' \) belongs to \(M_b ; (I; \mathbb{R}) \), then, using Theorem 13.9, inequality (1) continues to hold with \(\|u''\|_{L^1(I)} \) replaced by the total variation \(|u''| (I) \). In turn, \(u \in W^{1,1}(I) \) and \(u' \in BV(I) \).

Remark 3 Note that in Steps 1 and 2 we have not used the fact that \(u \) and \(u'' \) belong to \(L^p(I) \). Thus, for \(u \in C^\infty(I) \) (or \(u \in C^2(I) \)) inequality (1) always hold, with the right-hand side possibly infinite.

Next we consider the case \(m \geq 2 \).

Theorem 4 \((m \geq 2)\). Let \(I \subset \mathbb{R} \) be an open interval, let \(u \in L^1_{\text{loc}}(I) \), let \(1 \leq p \leq \infty \), and let \(m \in \mathbb{N} \), with \(m \geq 2 \). Then \(u \) belongs to \(W^{m,p}(I) \) if and only if \(u \) belongs to \(L^p(I) \) and its \(m \)-th distributional derivative \(u^{(m)} \) belongs to \(L^p(I) \).

In this case, for every \(0 < \ell < \text{length } I \) and \(j \in \mathbb{N} \) with \(1 \leq j < m \),

\[
\left\| u^{(j)} \right\|_{L^p(I)} \leq C(p, j, m) \left(\ell^{-j} \|u\|_{L^p(I)} + \ell^{m-j} \left\| u^{(m)} \right\|_{L^p(I)} \right),
\]

(7)
Proof. Assume that \(u \in C^\infty (I) \). In what follows the constant \(C = C (p, j, m) \) may change from line to line.

Step 1: We begin by proving that
\[
\left\| u^{(j)} \right\|_{L^p(I)} \leq C \left(\ell^{-j} \left\| u \right\|_{L^p(I)} + \ell \left\| u^{(j+1)} \right\|_{L^p(I)} \right)
\]
(8)
for every \(0 < \ell < \text{length } I \) and for all \(j \in \mathbb{N} \) with \(1 \leq j < m \). The proof is by induction on \(j \). For \(j = 1 \) the result follows from Theorem 1 and Remark 3.

Thus assume that (8) holds for every \(0 < \ell < \text{length } I \) and for some \(j \in \mathbb{N} \) with \(1 \leq j < m - 1 \) and let’s prove that
\[
\left\| u^{(j+1)} \right\|_{L^p(I)} \leq C \left(\ell^{-j-1} \left\| u \right\|_{L^p(I)} + \ell \left\| u^{(j+2)} \right\|_{L^p(I)} \right)
\]
for every \(0 < \ell < \text{length } I \). Let \(\theta \in (0,1) \). Applying Theorem 1 and Remark 3 to the function \(v = u^{(j)} \) and we obtain
\[
\left\| u^{(j+1)} \right\|_{L^p(I)} \leq C (p) \left(\ell^{-1} \left\| u^{(j)} \right\|_{L^p(I)} + \ell \left\| u^{(j+2)} \right\|_{L^p(I)} \right)
\]
\[
\leq C (p) \left(\ell^{-1} C \left((\ell \theta)^{-j} \left\| u \right\|_{L^p(I)} + \ell \theta \left\| u^{(j+1)} \right\|_{L^p(I)} \right) + \ell \left\| u^{(j+2)} \right\|_{L^p(I)} \right)
\]
\[
= C (p) \left(\left(C \theta^{-j} \ell^{-j-1} \left\| u \right\|_{L^p(I)} + C \theta \left\| u^{(j+1)} \right\|_{L^p(I)} \right) + \ell \left\| u^{(j+2)} \right\|_{L^p(I)} \right),
\]
where in the second inequality we have used (8) for \(j \) (which holds by the induction hypothesis) and with \(\ell \) replaced by \(\ell \theta \), which is less than \(\text{length } I \), since \(\theta \in (0,1) \). Taking \(\theta \) so small that \(C (p) C \theta < \frac{1}{2} \), we obtain
\[
\frac{1}{2} \left\| u^{(j+1)} \right\|_{L^p(I)} \leq C (p) \left(1 + C \theta^{-j} \right) \left(\ell^{-j-1} \left\| u \right\|_{L^p(I)} + \ell \left\| u^{(j+2)} \right\|_{L^p(I)} \right),
\]
which gives the desired inequality for \(j + 1 \).

Step 2: Next we prove that inequality (7) holds for every \(0 < \ell < \text{length } I \) and \(j \in \mathbb{N} \) with \(1 \leq j < m \). The proof is by induction on \(i = m - j \). For \(i = 1 \), we have that \(j = m - 1 \), and so the result follows from the previous step. Thus assume that (7) holds for every \(0 < \ell < \text{length } I \) and for some \(j \in \mathbb{N} \) with \(1 < j < m \) and let’s prove that
\[
\left\| u^{(j-1)} \right\|_{L^p(I)} \leq C \left(\ell^{-j+1} \left\| u \right\|_{L^p(I)} + \ell^{m-j+1} \left\| u^{(m)} \right\|_{L^p(I)} \right)
\]
for every \(0 < \ell < \text{length } I \). Note that if \(i = m - j \), then \(i + 1 = m - (j - 1) \).
Let $\theta \in (0,1)$. Applying (8) for $j - 1$ and then (7) for j (which holds by the induction hypothesis), we obtain

$$
\left\| u^{(j-1)} \right\|_{L^p(I)} \leq C \left(\ell^{-j+1} \left\| u \right\|_{L^p(I)} + \ell \left\| u^{(j)} \right\|_{L^p(I)} \right)
$$

$$
\leq C \left(\ell^{-j+1} \left\| u \right\|_{L^p(I)} + \ell C \left(\ell^{-j} \left\| u \right\|_{L^p(I)} + \ell^{m-j} \left\| u^{(m)} \right\|_{L^p(I)} \right) \right)
$$

$$
\leq C \left(\ell^{-j+1} \left\| u \right\|_{L^p(I)} + \ell^{m-j+1} \left\| u^{(j+2)} \right\|_{L^p(I)} \right),
$$

which gives the desired inequality for $j - 1$.

Step 3: To remove the additional hypothesis that $u \in C^\infty(I)$, one can use standard mollifiers (see, e.g. Step 4 of the proof of Theorem 10.55. We omit the details. ■

Corollary 5 Let $I \subset \mathbb{R}$ be an open interval, let $1 \leq p \leq \infty$, let $m \in \mathbb{N}$, with $m \geq 2$, and let $u \in W^{2,p}(I)$. Then for every $j \in \mathbb{N}$ with $1 \leq j < m$,

$$
\left\| u^{(j)} \right\|_{L^p(I)} \leq C (p, j, m) \left\| u \right\|_{L^p(I)}^{(m-j)/m} \left\| u^{(m)} \right\|_{L^p(I)}^{j/m}
$$

(9)

if either length $I = \infty$ or length $I < \infty$ and

$$
\frac{m}{m-j} \left\| u^{(m)} \right\|_{L^p(I)} \leq \frac{m-j}{m} \left\| u \right\|_{L^p(I)}
$$

while

$$
\left\| u^{(j)} \right\|_{L^p(I)} \leq mC (p, j, m) (\text{length } I)^{-j} \left\| u \right\|_{L^p(I)}
$$

(10)

if length $I < \infty$ and $(m-j) \left\| u^{(m)} \right\|_{L^p(I)} \leq \frac{m-j}{m} \left\| u \right\|_{L^p(I)}$.

Proof. If $\left\| u^{(m)} \right\|_{L^p(I)} = 0$, then u is a polynomial of degree $m - 1$. If length $I = \infty$, then $u = 0$, while if length $I < \infty$, the result follows from direct calculations. Thus in what follow we assume that $\left\| u^{(m)} \right\|_{L^p(I)} > 0$ and $\left\| u \right\|_{L^p(I)} > 0$. Consider the function

$$
g(t) = \frac{1}{t} A + t^{m-j}B,
$$

where $A, B > 0$ and $0 < t \leq t_0$, with $t_0 \in (0, \infty]$. Then

$$
\inf_{0 < t \leq t_0} g(t) = (j A)^{\frac{m-j}{m}} ((m-j) B)^{\frac{1}{m}}
$$

(11)

if $\sqrt{\frac{j}{m-j} \frac{A}{B}} \leq t_0$, while

$$
\inf_{0 < t \leq t_0} g(t) = \frac{1}{t_0^j} A + t_0^{m-j}B
$$

(12)

if $\sqrt{\frac{j}{m-j} \frac{A}{B}} > t_0$. In particular, if $t_0 = \infty$, then we are always in the first case.
Taking $A = \|u\|_{L^p(I)}$, $B = \|u^{(m)}\|_{L^p(I)}$ and $t_0 = \text{length } I$, the inequality (9) follows from (11) and Theorem 4.

To obtain (10), note that if $(m - j) (\text{length } I)^m \|u^{(m)}\|_{L^p(I)} < j \|u\|_{L^p(I)}$, then by Theorem 4 and (12),

$$\|u^{(j)}\|_{L^p(I)} \leq C (p, j, m) \left((\text{length } I)^{-j} \|u\|_{L^p(I)} + (\text{length } I)^{m-j} \|u^{(m)}\|_{L^p(I)}\right)$$

$$\leq mC (p, j, m) (\text{length } I)^{-j} \|u\|_{L^p(I)},$$

which concludes the proof.

In what follows, given $T > 0$, we denote by $W^{m,p}_\# (0,T)$ the space of all functions in $W^{m,p}_{\text{loc}} (\mathbb{R})$ that are T-periodic, endowed with the norm in $W^{m,p}_\# (0,T)$.

Corollary 6 Let $I = (0,T)$, let $1 \leq p \leq \infty$, let $m \in \mathbb{N}$, with $m \geq 2$, and let $u \in W^{m,p}_\# (I)$. Then for every $j \in \mathbb{N}$ with $1 \leq j < m$,

$$\|u^{(j)}\|_{L^p(I)} \leq C (p, j, m) \|u^{(m-j)/m}\|_{L^p(I)} \|u^{(m)}\|_{L^p(I)}^{j/m}. \quad (13)$$

Proof. If $\|u^{(m)}\|_{L^p(I)} = 0$, then u is a polynomial of degree $m - 1$. But since u is periodic, it follows that u must be constant. Hence, $u^{(j)} = 0$, and so (13) is actually an equality.

Thus in what follow, assume that $\|u^{(m)}\|_{L^p(I)} > 0$. Choose an integer $n \in \mathbb{N}$ so large that

$$n^m (m - j) (\text{length } I)^m \|u^{(m)}\|_{L^p(I)} \geq j \|u\|_{L^p(I)} \quad (14)$$

and consider the interval $J = (0,nT)$. If $1 \leq p < \infty$, then by the periodicity of u and $u^{(m)}$,

$$(m - j) (\text{length } J)^{mp} \int_J |u^{(m)} (x)|^p \, dx$$

$$= (m - j) (\text{length } J)^{mp} \sum_{i=1}^n \int_{(i-1)T}^{iT} |u^{(m)} (x)|^p \, dx$$

$$= n^{mp} (m - j) (\text{length } I)^{mp} \sum_{i=1}^n \int_{(i-1)T}^{iT} |u^{(m)} (x)|^p \, dx$$

$$= n^{mp+1} (\text{length } I)^{2p} \int_0^T |u^{(m)} (x)|^p \, dx$$

$$\geq j^p n \int_0^T |u (x)|^p \, dx = j^p \int_J |u^{(m)} (x)|^p \, dx.$$
Hence, by the previous corollary applied to \(J \), and the periodicity of \(u, u^{(i)} \), and \(u^{(m)} \),
\[
\begin{align*}
n^{1/p} \left\| u^{(j)} \right\|_{L^p(I)} &= \left\| u^{(j)} \right\|_{L^p(J)} \leq C(p, j, m) \left\| u \right\|_{L^p(I)}^{(m-j)/m} \left\| u^{(m)} \right\|^{j/m}_{L^p(I)} \\
&= C(p, j, m) n^{(m-j)/(mp)} \left\| u \right\|_{L^p(I)}^{(m-j)/m} n^{j/(mp)} \left\| u^{(m)} \right\|^{j/m}_{L^p(I)},
\end{align*}
\]
which gives the desired inequality.

If \(p = \infty \), then again by (14), and the facts that, by the periodicity of \(u \) and \(u^{(m)} \), \(\left\| u \right\|_{L^\infty(I)} = \left\| u \right\|_{L^\infty(I)} \) and \(\left\| u^{(m)} \right\|_{L^\infty(I)} = \left\| u^{(m)} \right\|_{L^\infty(I)} \), we have that
\[
\left\| u^{(j)} \right\|_{L^\infty(I)} = \left\| u^{(j)} \right\|_{L^\infty(J)} \leq C(p) \left\| u \right\|_{L^\infty(I)}^{(m-j)/m} \left\| u^{(m)} \right\|^{j/m}_{L^\infty(I)},
\]
which concludes the proof. ■

1.2 The \(N \)-th Dimensional Case

In this section, using a slicing argument, we obtain the \(N \)-dimensional version of Theorem 1. We begin with the simple case of a rectangle.

Theorem 7 Let \(R := I_1 \times \cdots \times I_N \subset \mathbb{R}^N \), where \(I_i \subset \mathbb{R} \) is an open interval, let \(u \in L^1_{\text{loc}}(R) \), and let \(1 \leq p \leq \infty \). Then \(u \) belongs to \(W^{2,p}(R) \) if and only if \(u \) belongs to \(L^p(R) \) and all its second order distributional derivatives \(\frac{\partial^2 u}{\partial x_i \partial x_j} \), \(i, j = 1, \ldots, N \), belong to \(L^p(R) \). In this case, for every \(0 < \ell < \min_i \text{length} I_i \),
\[
\left\| \frac{\partial u}{\partial x_i} \right\|_{L^p(R)} \leq C(p, N) \left(\frac{1}{\ell} \left\| u \right\|_{L^p(R)} + \ell \left\| \frac{\partial^2 u}{\partial x_i^2} \right\|_{L^p(R)} \right)
\]
for all \(i = 1, \ldots, N \).

Proof. Assume that \(u \in C^\infty(R) \) with \(\frac{\partial^2 u}{\partial x_i \partial x_j} \in L^p(R) \) for all \(i, j = 1, \ldots, N \). Fix \(i = 1, \ldots, N \) and let \(R_i' := (a_1, b_1) \times \cdots \times (a_{i-1}, b_{i-1}) \times (a_{i+1}, b_{i+1}) \times \cdots \times (a_N, b_N) \). Since \(b_i - a_i > \ell \), for all \(x_i' \in R_i \), we are in a position to apply Theorem 1 to obtain that
\[
\int_{a_i}^{b_i} \left| \frac{\partial u}{\partial x_i}(x_i', x_i) \right|^p \, dx_i \leq \frac{32^p}{\ell^p} \int_{a_i}^{b_i} |u(x_i', x_i)|^p \, dx_i + 3^{p-1} \ell^p \int_{a_i}^{b_i} \left| \frac{\partial^2 u}{\partial x_i^2}(x_i', x_i) \right|^p \, dx_i,
\]
where we have used the notation (E2). Integrating the previous inequality over \(R_i' \) and using Tonelli’s theorem, we obtain
\[
\int_{R} \left| \frac{\partial u}{\partial x_i} \right|^p \, dx \leq \frac{32^p}{\ell^p} \int_{R} |u|^p \, dx + 3^{p-1} \ell^p \int_{R} \left| \frac{\partial^2 u}{\partial x_i^2} \right|^p \, dx,
\]
which gives the desired inequality. The general case is treated in the next exercise.

Exercise 8 Let $\Omega \subset \mathbb{R}^N$ be an open set and let $u \in L^1_{\text{loc}}(\Omega)$ be such that all second order distributional derivatives $\frac{\partial^2 u}{\partial x_i \partial x_j}$, $i, j = 1, \ldots, N$, belong to $L^p(\Omega)$.

(i) Prove that all the first order distributional derivatives $\frac{\partial u}{\partial x_i}$, $i = 1, \ldots, N$, belong to $L^1_{\text{loc}}(\Omega)$. Hint: Given $\Omega' \subset \subset \Omega$, cover Ω' with rectangles compactly contained in Ω and use mollification together with the previous theorem.

(ii) Prove that if $\Omega = \mathbb{R}$ and u and all the second order distributional derivatives $\frac{\partial^2 u}{\partial x_i \partial x_j}$, $i, j = 1, \ldots, N$, belong to $L^p(\Omega)$, then u belongs to $W^{1,p}(\Omega)$.

Next we consider uniformly Lipschitz domains (see Definition 12.10).

Exercise 9 Given $L > 0$, consider the sector

$$
\Xi_L := S^{N-1} \cap \{ x = (x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R} : |x'| < x_N \}.
$$

Prove that there exists a constant $C_{N,p,L} > 0$ such that

$$
\int_{\Xi_L} |z \cdot \nu|^p \, d\mathcal{H}^{N-1}(\nu) \geq C_{N,p,L} |z|^p
$$

for every $z \in \mathbb{R}^N$.

Theorem 10 ($m = 2$) Let $\Omega \subset \mathbb{R}^N$ be an open set with uniformly Lipschitz boundary (with parameters ε, L, M), let $u \in L^1_{\text{loc}}(\Omega)$, and let $1 \leq p \leq \infty$. Then u belongs to $W^{2,p}(\Omega)$ if and only if u belongs to $L^p(\Omega)$ and all its second order distributional derivatives $\frac{\partial^2 u}{\partial x_i \partial x_j}$, $i, j = 1, \ldots, N$, belong to $L^p(\Omega)$. In this case, for every $0 < \ell < \frac{1}{M+1}$,

$$
\| \nabla u \|_{L^p(\Omega; \mathbb{R}^N)} \leq C(p, N, L) \left(\frac{1}{\ell} \| u \|_{L^p(\Omega)} + \ell \| \nabla^2 u \|_{L^p(\Omega; \mathbb{R}^{N \times N})} \right)
$$

for all $i = 1, \ldots, N$.

Proof. Step 1: Assume that $1 \leq p < \infty$ and that $u \in C^\infty(\Omega)$ with $\frac{\partial^2 u}{\partial x_i \partial x_j} \in L^p(\Omega)$ for all $i, j = 1, \ldots, N$. Given $\ell > 0$ and $\nu \in S^{N-1}$, we define $\Omega(\nu, \ell)$ as the set of all points $x \in \Omega$ belonging to a segment, with length greater than ℓ, parallel to ν and contained in Ω. Let

$$
\Pi_\nu := \{ x \in \mathbb{R}^N : x \cdot \nu = 0 \}
$$

and for $y \in \Pi_\nu$ define the slice $\Omega(\nu, \ell, y)$ by

$$
\Omega(\nu, \ell, y) := \{ t \in \mathbb{R} : y + t\nu \in \Omega(\nu, \ell) \}.
$$
Note that if \(y \in \Pi_\nu \) is such that \(\Omega(\nu, \ell, y) \) is nonempty, then \(\Omega(\nu, \ell, y) \) is the union of a family of pairwise disjoint open intervals with length greater than \(\ell \) and we may define the function \(u_{y,\nu} : \Omega(\nu, \ell, y) \to \mathbb{R} \) by

\[
u_{y,\nu}(t) := u(y + t\nu).
\]

Applying Theorem 1 to the function \(u_{y,\nu} \) in each connected component of \(\Omega(\nu, \ell, y) \), we obtain

\[
\int_{\Omega(\nu, \ell, y)} |\nabla u(y + t\nu) \cdot \nu|^p \, dt \leq \frac{2^p}{\ell^p} \int_{\Omega(\nu, \ell, y)} |u(y + t\nu)|^p \, dt + 3^{p-1}\ell^p \int_{\Omega(\nu, \ell, y)} |\nabla^2 u(y + t\nu)\nu \cdot \nu|^p \, dt.
\]

Integrating both sides of the previous inequality over all \(y \in \Pi_\nu \) for which \(\Omega(\nu, \ell, y) \) is nonempty, by Tonelli’s Theorem, we get

\[
\int_{\Omega(\nu, \ell)} |\nabla u(x) \cdot \nu|^p \, dx \leq \frac{2^p}{\ell^p} \int_{\Omega} |u(x)|^p \, dx + 3^{p-1}\ell^p \int_{\Omega} |\nabla^2 u(x)|^p \, dx.
\]

We now integrate both sides of the previous inequality in the variable \(\nu \) over \(S^{n-1} \) and use again Tonelli’s theorem, to obtain

\[
\int \int_{G(\nu, \ell)} |\nabla u(x) \cdot \nu|^p \, d\mathcal{H}^{n-1}(\nu) \, dx = \int_{S^{n-1}} \int_{\Omega(\nu, \ell)} |\nabla u(x) \cdot \nu|^p \, dx \, d\mathcal{H}^{n-1}(\nu)
\]

\[
\leq \frac{3^p}{\ell^p} \int_{\Omega} |u(x)|^p \, dx + 3^{p-1}\ell^p \int_{\Omega} |\nabla^2 u(x)|^p \, dx,
\]

where \(\beta_N = \mathcal{H}^{n-1}(\Sigma^{n-1}) \) and \(G(\nu, \ell) := \{ \nu \in S^{n-1} : x \in \Omega(\nu, \ell) \} \).

Now fix \(0 < \ell < \frac{\varepsilon}{2(1+\ell)} \) and \(x \in \Omega \). There are two cases: If \(\text{dist}(x, \partial \Omega) \geq \ell \), then \(B(x, \ell) \subseteq \Omega \), and so \(G(\nu, \ell) = S^{n-1} \). In this case,

\[
\int_{G(\nu, \ell)} \nabla u(x) \cdot \nu|^p \, d\mathcal{H}^{n-1}(\nu) = C_{N,p} |\nabla u(x)|^p,
\]

(15)

where we used the fact that for every \(z \in \mathbb{R}^n \setminus \{0\} \), by a rotation,

\[
\int_{S^{n-1}} |z \cdot \nu|^p \, d\mathcal{H}^{n-1}(\nu) = |z|^p \int_{S^{n-1}} \left| \frac{z}{|z|} \right| \cdot \nu|^p \, d\mathcal{H}^{n-1}(\nu)
\]

\[
= |z|^p \int_{S^{n-1}} |e_1 \cdot \nu|^p \, d\mathcal{H}^{n-1}(\nu) = |z|^p C_{N,p}.
\]

On the other hand, if \(\text{dist}(x, \partial \Omega) < \ell \), then there exists \(x_0 \in \partial \Omega \) with \(|x - x_0| < \ell \).

By parts (i) and (iii) of Definition 12.10, there exist \(n \in \mathbb{N} \), local coordinates \(y = (y', y_N) \in \mathbb{R}^{n-1} \times \mathbb{R} \), and a Lipschitz function \(f : \mathbb{R}^{n-1} \to \mathbb{R} \) (both depending on \(n \)), with \(\text{Lip} f \leq L \), such that \(B(x_0, \varepsilon) \subseteq \Omega_n \) and

\[
\Omega_n \cap \Omega = \Omega_n \cap \{(y', y_N) \in \mathbb{R}^{n-1} \times \mathbb{R} : y_N > f(y') \}.
\]
In particular,
\[B(x_0, \varepsilon) \cap \Omega = B(x_0, \varepsilon) \cap \{(y', y_N) \in \mathbb{R}^{N-1} \times \mathbb{R} : y_N > f(y')\}. \]

Since \(\ell < \frac{\varepsilon}{4(1+L^4)} \), we have that \(x \in B(x_0, \frac{\varepsilon}{4(1+L^4)}) \). Using local coordinates, we can write \(x = (\tilde{y}', \tilde{y}_N) \). Consider the point \((\tilde{y}', f(\tilde{y}'))\). Since \(f \) is Lipschitz, with \(\text{Lip} f \leq L \), for \(y' \in \mathbb{R}^{N-1} \), we have that
\[f(y') \leq f(\tilde{y}') + L|y' - \tilde{y}'| < \tilde{y}_N + L|y' - \tilde{y}'|. \]

Hence, the cone
\[K_x = \left\{(y', y_N) \in B_{N-1} \left(\tilde{y}', \frac{\varepsilon}{4(1+L^4)}\right) \times \mathbb{R} : \tilde{y}_N + L|y' - \tilde{y}'| < y_N < \tilde{y}_N + \frac{\varepsilon}{4}\right\}. \]
is contained in \(B(x_0, \varepsilon) \cap \Omega \). Using local coordinates, consider the sector
\[\Xi_x := \left\{ \nu = (\nu', \nu_N) \in S^{N-1} : L|\nu'| < \nu_N \right\}. \]
Since \(\ell < \frac{\varepsilon}{4(1+L^4)} \), if \(t \in (0, \ell) \) and \(\nu \in \Xi_x \), then the point \(x + t\nu \) belongs to \(K_x \cap \Omega \). Hence, \(G(x, \ell) \supset \Xi_x \), and so
\[\int_{G(x, \ell)} |\nabla u(x) \cdot \nu|^p \, d\mathcal{H}^{N-1}(\nu) \geq \int_{\Xi_x} |\nabla u(x) \cdot \nu|^p \, d\mathcal{H}^{N-1}(\nu) \geq C_{N,p,L} |\nabla u(x)|^p, \]
where we have used the previous exercise. Together with (15)-(16), this shows that
\[C_{N,p,L} \int_{\Omega} |\nabla u|^p \, dx \leq \frac{2^{2p^*} \beta_N}{\ell^p} \int_{\Omega} |u|^p \, dx + 3^{p-1} \beta_N \ell^p \int_{\Omega} |\nabla^2 u|^p \, dx, \]
which is what we wanted to prove.

The additional hypothesis that \(u \in C^\infty(\Omega) \) can be removed as in Exercise 8. We omit the details.

Step 2: The case \(p = \infty \) is simpler and is left as an exercise. ■

Remark 11 Note that in the previous proof we only used a uniform cone property.

Remark 12 When \(p = 1 \) and \(u \in L^1(\Omega) \) is such that its second order distributional derivative belongs to \(\mathcal{M}_b(\Omega; \mathbb{R}^{N \times N}) \), then, using Theorem 13.9, inequality (1) continues to hold with \(\|\nabla^2 u\|_{L^1(\Omega; \mathbb{R}^{N \times N})} \) replaced by the total variation \(|\text{D} (\nabla u)|(\Omega) \) of \(\nabla u \). In turn, \(u \in W^{1,1}(\Omega) \) and \(\nabla u \in BV(\Omega; \mathbb{R}^N) \).

Next we consider the case \(m \geq 2 \).

Theorem 13 \((m \geq 2)\) Let \(\Omega \subset \mathbb{R}^N \) be an open set with uniformly Lipschitz boundary (with parameters \(\varepsilon, L, M \)), let \(u \in L^1_{\text{loc}}(\Omega) \), let \(1 \leq p \leq \infty \), and let \(m \in \mathbb{N} \), with \(m \geq 2 \). Then \(u \) belongs to \(W^{m,p}(\Omega) \) if and only if \(u \) belongs to \(L^p(\Omega) \) and all its distributional derivatives \(\frac{\partial^\alpha u}{\partial x^\alpha} \), \(|\alpha| = m \), belong to \(L^p(\Omega) \). In this case, for every \(0 < \ell < \frac{\varepsilon}{4(1+L^4)} \), for every \(j \in \mathbb{N} \) with \(1 \leq j \leq m \),
\[\|\nabla^j u\|_{L^p} \leq C(p, j, m, N, L) (\ell^{-j} \|u\|_{L^p} + \ell^{m-j} \|\nabla^m u\|_{L^p}). \]
Proof. The proof is very similar to the one of Theorem 4 and thus we omit it.

Corollary 14 Let $\Omega \subset \mathbb{R}^N$ be an open set with uniformly Lipschitz boundary (with parameters ε, L, M), let $1 \leq p \leq \infty$, let $m \in \mathbb{N}$, with $m \geq 2$, and let $u \in W^{m,p}(\Omega)$. Then for every $j \in \mathbb{N}$ with $1 \leq j < m$,

$$\|\nabla^j u\|_{L^p} \leq C(p, j, m, N, L) \|u\|_{L^p}^{(m-j)/m} \|\nabla^m u\|_{L^p}^{j/m} \quad (17)$$

if either $\varepsilon = \infty$ or $\varepsilon < \infty$ and $j \|u\|_{L^p} \leq (m - j) R^m \|\nabla^m u\|_{L^p}$, while

$$\|\nabla^j u\|_{L^p} \leq mC(p, j, m, N, L) R^{-j} \|u\|_{L^p}$$

if $\varepsilon < \infty$ and $(m - j) R^m \|\nabla^m u\|_{L^p} < j \|u\|_{L^p}$, where $R := \frac{\varepsilon}{4(1+L)}$.

Proof. The proof is the same of the one of Corollary 5.

Remark 15 If $\Omega = \mathbb{R}^N$ or $\Omega = \mathbb{R}^N_+$ or

$$\Omega := \{(x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R} : x_N > f(x')\},$$

where $f : \mathbb{R}^{N-1} \to \mathbb{R}$ is a Lipschitz function, then $\varepsilon = \infty$ and inequality (17) holds.