Solutions Manual to
MATHEMATICAL STATISTICS:
Asymptotic Minimax Theory

Alexander Korostelev
Wayne State University,
Detroit, MI 48202

Olga Korosteleva
California State University,
Long Beach, CA 90840
Chapter 1

Exercise 1.1 To verify first that the representation holds, compute the second partial derivative of $\ln p(x, \theta)$ with respect to θ. It is

$$\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} = -\frac{1}{p(x, \theta)} \left(\frac{\partial p(x, \theta)}{\partial \theta} \right)^2 + \frac{1}{p(x, \theta)} \frac{\partial^2 p(x, \theta)}{\partial \theta^2}$$

$$= -\left(\frac{\partial \ln p(x, \theta)}{\partial \theta} \right)^2 + \frac{1}{p(x, \theta)} \frac{\partial^2 p(x, \theta)}{\partial \theta^2}.$$

Multiplying by $p(x, \theta)$ and rearranging the terms produce the result,

$$\left(\frac{\partial \ln p(x, \theta)}{\partial \theta} \right)^2 p(x, \theta) = \frac{\partial^2 p(x, \theta)}{\partial \theta^2} - \left(\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} \right) p(x, \theta).$$

Now integrating both sides of this equality with respect to x, we obtain

$$I_n(\theta) = n \mathbb{E}_\theta \left[\left(\frac{\partial \ln p(X, \theta)}{\partial \theta} \right)^2 \right] = n \int_R \left(\frac{\partial \ln p(x, \theta)}{\partial \theta} \right)^2 p(x, \theta) \, dx$$

$$= n \int_R \frac{\partial^2 p(x, \theta)}{\partial \theta^2} \, dx - n \int_R \left(\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} \right) p(x, \theta) \, dx$$

$$= n \frac{\partial^2}{\partial \theta^2} \int_R p(x, \theta) \, dx - n \int_R \left(\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} \right) p(x, \theta) \, dx$$

$$= -n \int_R \left(\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} \right) p(x, \theta) \, dx = -n \mathbb{E}_\theta \left[\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} \right].$$

Exercise 1.2 The first step is to notice that θ_n^* is an unbiased estimator of θ. Indeed, $\mathbb{E}_\theta[\theta_n^*] = \mathbb{E}_\theta[(1/n) \sum_{i=1}^n (X_i - \mu)^2] = \mathbb{E}_\theta[(X_1 - \mu)^2] = \theta$.

Further, the log-likelihood function for the $\mathcal{N}(\mu, \theta)$ distribution has the form

$$\ln p(x, \theta) = -\frac{1}{2} \ln(2\pi \theta) - \frac{(x - \mu)^2}{2\theta}.$$

Therefore,

$$\frac{\partial \ln p(x, \theta)}{\partial \theta} = -\frac{1}{2\theta} + \frac{(x - \mu)^2}{2\theta^2}, \quad \text{and} \quad \frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} = \frac{1}{2\theta^2} - \frac{(x - \mu)^2}{\theta^3}.$$

Applying the result of Exercise 1.1, we get

$$I_n(\theta) = -n \mathbb{E}_\theta \left[\frac{\partial^2 \ln p(X, \theta)}{\partial \theta^2} \right] = -n \mathbb{E}_\theta \left[\frac{1}{2\theta^2} - \frac{(X - \mu)^2}{\theta^3} \right]$$

2
Next, using the fact that \(\sum_{i=1}^{n}(X_i - \mu)^2 / \theta \) has a chi-squared distribution with \(n \) degrees of freedom, and, hence its variance equals to \(2n \), we arrive at

\[
\text{Var}_\theta \left[\frac{\bar{X}_n}{\theta} \right] = \text{Var}_\theta \left[\frac{1}{n} \sum_{i=1}^{n}(X_i - \mu)^2 \right] = \frac{2n\theta^2}{n^2} = \frac{2\theta^2}{n} = \frac{1}{I_n(\theta)}.
\]

Thus, we have shown that \(\theta_n^* \) is an unbiased estimator of \(\theta \) and that its variance attains the Cramér-Rao lower bound, that is, \(\theta_n^* \) is an efficient estimator of \(\theta \).

Exercise 1.3 For the Bernoulli(\(\theta \)) distribution,

\[
\ln p(x, \theta) = x \ln \theta + (1 - x) \ln(1 - \theta),
\]

thus,

\[
\frac{\partial \ln p(x, \theta)}{\partial \theta} = \frac{x}{\theta} - \frac{1 - x}{1 - \theta} \quad \text{and} \quad \frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} = -\frac{x}{\theta^2} - \frac{1 - x}{(1 - \theta)^2}.
\]

From here,

\[
I_n(\theta) = -n \mathbb{E}_\theta \left[-\frac{X}{\theta^2} - \frac{1 - X}{(1 - \theta)^2} \right] = n \left(\frac{\theta}{\theta^2} + \frac{1 - \theta}{(1 - \theta)^2} \right) = \frac{n}{\theta(1 - \theta)}.
\]

On the other hand, \(\mathbb{E}_\theta [\bar{X}_n] = \mathbb{E}_\theta [X] = \theta \) and \(\text{Var}_\theta [\bar{X}_n] = \text{Var}_\theta [X] / n = \theta(1 - \theta) / n = 1 / I_n(\theta) \). Therefore \(\theta_n^* = \bar{X}_n \) is efficient.

Exercise 1.4 In the Poisson(\(\theta \)) model,

\[
\ln p(x, \theta) = x \ln \theta - \theta - \ln x!,
\]

hence,

\[
\frac{\partial \ln p(x, \theta)}{\partial \theta} = \frac{x}{\theta} - 1 \quad \text{and} \quad \frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} = -\frac{x}{\theta^2}.
\]

Thus,

\[
I_n(\theta) = -n \mathbb{E}_\theta \left[-\frac{X}{\theta^2} \right] = \frac{n}{\theta}.
\]

The estimate \(\bar{X}_n \) is unbiased with the variance \(\text{Var}_\theta [\bar{X}_n] = \theta / n = 1 / I_n(\theta) \), and therefore efficient.
Exercise 1.5 For the given exponential density,

$$\ln p(x, \theta) = -\ln \theta - x/\theta,$$

whence,

$$\frac{\partial \ln p(x, \theta)}{\partial \theta} = -\frac{1}{\theta} + \frac{x}{\theta^2} \quad \text{and} \quad \frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} = \frac{1}{\theta^2} - \frac{2x}{\theta^3}.$$

Therefore,

$$I_n(\theta) = -n \mathbb{E}_\theta \left[\frac{1}{\theta^2} - \frac{2X}{\theta^3} \right] = -n \left[\frac{1}{\theta^2} - \frac{2\theta}{\theta^3} \right] = \frac{n}{\theta^2}.$$

Also, $\mathbb{E}_\theta[\bar{X}_n] = \theta$ and $\text{Var}_\theta[\bar{X}_n] = \theta^2/n = 1/I_n(\theta)$. Hence efficiency holds.

Exercise 1.6 If X_1, \ldots, X_n are independent exponential random variables with the mean $1/\theta$, their sum $Y = \sum_{i=1}^n X_i$ has a gamma distribution with the density

$$f_Y(y) = \frac{y^{n-1} \theta^n e^{-y\theta}}{\Gamma(n)}, \quad y > 0.$$

Consequently,

$$\mathbb{E}_\theta \left[\frac{1}{\bar{X}_n} \right] = \mathbb{E}_\theta \left[\frac{n}{Y} \right] = n \int_0^\infty \frac{1}{y} \frac{y^{n-1} \theta^n e^{-y\theta}}{\Gamma(n)} \, dy \quad \text{and} \quad \int_0^\infty 0 \, dy = n \theta \frac{\Gamma(n-1)}{\Gamma(n)} = \frac{n \theta (n-2)!}{(n-1)!} = \frac{n \theta}{n-1}.$$

Also,

$$\text{Var}_\theta \left[\frac{1}{\bar{X}_n} \right] = \text{Var}_\theta \left[n/Y \right] = n^2 \left(\mathbb{E}_\theta \left[1/Y^2 \right] - \left(\mathbb{E}_\theta \left[1/Y \right] \right)^2 \right)$$

$$= n^2 \left[\frac{\theta^2 \Gamma(n-2)}{\Gamma(n)} - \frac{\theta^2}{(n-1)^2} \right] = n^2 \theta^2 \left[-\frac{1}{(n-1)(n-2)} - \frac{1}{(n-1)^2} \right]$$

$$= \frac{n^2 \theta^2}{(n-1)^2(n-2)}.$$

Exercise 1.7 The trick here is to notice the relation

$$\frac{\partial \ln p_0(x - \theta)}{\partial \theta} = \frac{1}{p_0(x - \theta)} \frac{\partial p_0(x - \theta)}{\partial \theta}.$$
Thus we can write

\[I_n(\theta) = n \mathbb{E}_\theta \left[\left(-\frac{p_0'(X - \theta)}{p_0(X - \theta)} \right)^2 \right] = n \int_\mathbb{R} \left(\frac{p_0'(y)}{p_0(y)} \right)^2 \, dy, \]

which is a constant independent of \(\theta \).

Exercise 1.8 Using the expression for the Fisher information derived in the previous exercise, we write

\[
I_n(\theta) = n \int_\mathbb{R} \left(\frac{p_0'(y)}{p_0(y)} \right)^2 \, dy = n \int_{-\pi/2}^{\pi/2} \left(-\frac{C \alpha \cos^{\alpha-1} y \sin y}{C \cos \alpha} \right)^2 \, dy \\
= n C \alpha^2 \int_{-\pi/2}^{\pi/2} \sin^2 y \cos^{\alpha-2} y \, dy = n C \alpha^2 \int_{-\pi/2}^{\pi/2} (1 - \cos^2 y) \cos^{\alpha-2} y \, dy \\
= n C \alpha^2 \int_{-\pi/2}^{\pi/2} \left(\cos^{\alpha-2} y - \cos^\alpha y \right) \, dy.
\]

Here the first term is integrable if \(\alpha - 2 > -1 \) (equivalently, \(\alpha > 1 \)), while the second one is integrable if \(\alpha > -1 \). Therefore, the Fisher information exists when \(\alpha > 1 \).
Chapter 2

Exercise 2.9 By Exercise 1.4, the Fisher information of the Poisson(θ) sample is \(I_n(\theta) = n/\theta \). The joint distribution of the sample is

\[p(X_1, \ldots, X_n, \theta) = C_n \theta^n e^{-n\theta} \]

where \(C_n = C_n(X_1, \ldots, X_n) \) is the normalizing constant independent of \(\theta \). As a function of \(\theta \), this joint probability has the algebraic form of a gamma distribution. Thus, if we select the prior density to be a gamma density, \(\pi(\theta) = C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta} \), \(\theta > 0 \), for some positive \(\alpha \) and \(\beta \), then the weighted posterior density is also a gamma density,

\[\tilde{f}(\theta | X_1, \ldots, X_n) = I_n(\theta) C_n \theta^n e^{-n\theta} C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta} \]

where \(\tilde{C}_n = n C_n(X_1, \ldots, X_n) C(\alpha, \beta) \) is the normalizing constant. The expected value of the weighted posterior gamma distribution is equal to

\[\int_0^\infty \theta \tilde{f}(\theta | X_1, \ldots, X_n) \, d\theta = \frac{\sum X_i + \alpha - 1}{n + \beta}. \]

Exercise 2.10 As shown in Example 1.10, the Fisher information \(I_n(\theta) = n/\sigma^2 \). Thus, the weighted posterior distribution of \(\theta \) can be found as follows:

\[\tilde{f}(\theta | X_1, \ldots, X_n) = C I_n(\theta) \exp \left\{ -\frac{\sum (X_i - \theta)^2}{2\sigma^2} - \frac{(\theta - \mu)^2}{2\sigma_0^2} \right\} \]

\[= C \frac{n}{\sigma^2} \exp \left\{ -\left(\frac{\sum X_i^2}{2\sigma^2} - \frac{2\theta \sum X_i}{2\sigma^2} + \frac{n\theta^2}{2\sigma^2} + \frac{\theta^2}{2\sigma_0^2} - \frac{2\theta\mu}{2\sigma_0^2} + \frac{\mu^2}{2\sigma_0^2} \right) \right\} \]

\[= C_1 \exp \left\{ -\frac{1}{2} \left[\theta^2 \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) - 2\theta \left(\frac{n\bar{X}_n + \mu}{\sigma^2 + \sigma_0^2} \right) \right] \right\} \]

\[= C_2 \exp \left\{ -\frac{1}{2} \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \theta - \left(n\sigma_0^2 \bar{X}_n + \mu\sigma_0^2 \right) / \left(n\sigma_0^2 + \sigma_0^2 \right) \right\} \].

Here \(C, C_1, \) and \(C_2 \) are the appropriate normalizing constants. Thus, the weighted posterior mean is \((n\sigma_0^2 \bar{X}_n + \mu\sigma_0^2) / (n\sigma_0^2 + \sigma_0^2) \) and the variance is \((n/\sigma^2 + 1/\sigma_0^2)^{-1} = \sigma^2\sigma_0^2 / (n\sigma_0^2 + \sigma_0^2) \).

Exercise 2.11 First, we derive the Fisher information for the exponential model. We have

\[\ln p(x, \theta) = \ln \theta - \theta x, \quad \frac{\partial \ln p(x, \theta)}{\partial \theta} = \frac{1}{\theta} - x, \]

\[\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} = 0. \]
and

\[\frac{\partial^2 \ln p(x, \theta)}{\partial \theta^2} = -\frac{1}{\theta^2}. \]

Consequently,

\[I_n(\theta) = -n \mathbb{E}_\theta \left[-\frac{1}{\theta^2} \right] = \frac{n}{\theta^2}. \]

Further, the joint distribution of the sample is

\[p(X_1, \ldots, X_n, \theta) = C_n \theta^{\sum X_i} e^{-\theta \sum X_i}, \]

with the normalizing constant \(C_n = C_n(X_1, \ldots, X_n) \) independent of \(\theta \). As a function of \(\theta \), this joint probability belongs to the family of gamma distributions, hence, if we choose the conjugate prior to be a gamma distribution, \(\pi(\theta) = C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta}, \theta > 0 \), with some \(\alpha > 0 \) and \(\beta > 0 \), then the weighted posterior is also a gamma,

\[
\tilde{f} = (\theta | X_1, \ldots, X_n) = I_n(\theta) C_n \theta^{\sum X_i} e^{-\theta \sum X_i} C(\alpha, \beta) \theta^{\alpha-1} e^{-\beta \theta} = \tilde{C}_n \theta^{\sum X_i + \alpha - 3} e^{-(\sum X_i + \beta) \theta}
\]

where \(\tilde{C}_n = n C_n(X_1, \ldots, X_n) C(\alpha, \beta) \) is the normalizing constant. The corresponding weighted posterior mean of the gamma distribution is equal to

\[
\int_0^\infty \theta \tilde{f}(\theta | X_1, \ldots, X_n) d\theta = \frac{\sum X_i + \alpha - 2}{\sum X_i + \beta}.
\]

Exercise 2.12 (i) The joint density of \(n \) independent Bernoulli(\(\theta \)) observations \(X_1, \ldots, X_n \) is

\[p(X_1, \ldots, X_n, \theta) = \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i}. \]

Using the conjugate prior \(\pi(\theta) = C \left[\theta (1 - \theta) \right]^{\sqrt{n}/2 - 1} \), we obtain the non-weighted posterior density \(f(\theta | X_1, \ldots, X_n) = C \theta^{\sum X_i + \sqrt{n}/2 - 1} (1 - \theta)^{n - \sum X_i + \sqrt{n}/2 - 1} \), which is a beta density with the mean

\[\theta^*_n = \frac{\sum X_i + \sqrt{n}/2}{\sum X_i + \sqrt{n}/2 + n - \sum X_i + \sqrt{n}/2} \]

\[= \frac{\sum X_i + \sqrt{n}/2}{n + \sqrt{n}}. \]

(ii) The variance of \(\theta^*_n \) is

\[\text{Var}_\theta [\theta^*_n] = \frac{n \text{Var}_\theta (X_1)}{(n + \sqrt{n})^2} = \frac{n\theta(1 - \theta)}{(n + \sqrt{n})^2}, \]

and the bias equals to

\[b_n(\theta, \theta^*_n) = \mathbb{E}_\theta[\theta^*_n] - \theta = \frac{n\theta + \sqrt{n}/2}{n + \sqrt{n}} - \theta = \frac{\sqrt{n}/2 - \sqrt{n} \theta}{n + \sqrt{n}}. \]
Consequently, the non-normalized quadratic risk of θ^*_n is
\[
\mathbb{E}_\theta[(\theta^*_n - \theta)^2] = \text{Var}_\theta[\theta^*_n] + b_n^2(\theta, \theta^*_n)
\]
\[
= \frac{n\theta(1 - \theta) + (\sqrt{n}/2 - \sqrt{n}\theta)^2}{(n + \sqrt{n})^2} = \frac{n/4}{(n + \sqrt{n})^2} = \frac{1}{4(1 + \sqrt{n})^2}.
\]

(iii) Let $t_n = t_n(X_1, \ldots, X_n)$ be the Bayes estimator with respect to a non-normalized risk function
\[
R_n(\theta, \theta^*_n, w) = \mathbb{E}_\theta[w(\theta^*_n - \theta)].
\]
The statement and the proof of Theorem 2.5 remain exactly the same if the non-normalized risk and the corresponding Bayes estimator are used. Since θ^*_n is the Bayes estimator for a constant non-normalized risk, it is minimax.

Exercise 2.13 In Example 2.4, let $\alpha = \beta = 1 + 1/b$. Then the Bayes estimator assumes the form
\[
t_n(b) = \sum \frac{X_i + 1/b}{n + 2/b},
\]
where X_i’s are independent Bernoulli(θ) random variables. The normalized quadratic risk of $t_n(b)$ is equal to
\[
R_n(\theta, t_n(b), w) = \mathbb{E}_\theta\left[\left(\sqrt{I_n(\theta)} (t_n(b) - \theta)\right)^2\right]
\]
\[
= I_n(\theta) \left[\text{Var}_\theta[t_n(b)] + b_n^2(\theta, t_n(b))\right]
\]
\[
= I_n(\theta) \left[\frac{n\text{Var}_\theta[X_1]}{(n + 2/b)^2} + \left(\frac{n\theta + 1/b}{n + 2/b} - \theta\right)^2\right]
\]
\[
= \frac{n}{\theta(1 - \theta)} \left[\frac{n\theta(1 - \theta)}{(n + 2/b)^2} + \left(\frac{n\theta + 1/b}{n + 2/b} - \theta\right)^2\right]
\]
\[
= \frac{n}{\theta(1 - \theta)} \left[\frac{n\theta(1 - \theta)}{(n + 2/b)^2} + \frac{(1 - 2\theta)^2}{b^2(n + 2/b)^2}\right]
\]
\[
\rightarrow \frac{n}{\theta(1 - \theta)} \frac{n\theta(1 - \theta)}{n^2} = 1 \text{ as } b \to \infty.
\]
Thus, by Theorem 2.8, the minimax lower bound is equal to 1. The normalized quadratic risk of $\bar{X}_n = \lim_{b \to \infty} t_n(b)$ is derived as
\[
R_n(\theta, \bar{X}_n, w) = \mathbb{E}_\theta\left[\left(\sqrt{I_n(\theta)} (\bar{X}_n - \theta)\right)^2\right]
\]
\[
= I_n(\theta) \text{Var}_\theta[\bar{X}_n] = \frac{n}{\theta(1 - \theta)} \frac{\theta(1 - \theta)}{n} = 1.
\]
That is, it attains the minimax lower bound, and hence \bar{X}_n is minimax.
Chapter 3

EXERCISE 3.14 Let $X \sim \text{Binomial}(n, \theta^2)$. Then

$$
\mathbb{E}_\theta \left(\sqrt{X/n - \theta} \right) = \mathbb{E}_\theta \left(\frac{|X/n - \theta^2|}{\sqrt{X/n + \theta}} \right)
$$

$$
\leq \frac{1}{\theta} \mathbb{E}_\theta \left(|X/n - \theta^2| \right) \leq \frac{1}{\theta} \sqrt{\mathbb{E}_\theta \left[(X/n - \theta^2)^2 \right]}
$$

(by the Cauchy-Schwarz inequality)

$$
= \frac{1}{\theta} \sqrt{\frac{\theta^2(1 - \theta^2)}{n}} = \sqrt{\frac{1 - \theta^2}{n}} \to 0 \text{ as } n \to \infty.
$$

EXERCISE 3.15 First we show that the Hodges estimator $\hat{\theta}_n$ is asymptotically unbiased. To this end write

$$
\mathbb{E}_\theta \left[\hat{\theta}_n - \theta \right] = \mathbb{E}_\theta \left[\hat{\theta}_n - \bar{X}_n + \bar{X}_n - \theta \right] = \mathbb{E}_\theta \left[\hat{\theta}_n - \bar{X}_n \right]
$$

$$
= \mathbb{E}_\theta \left[- \bar{X}_n \mathbb{I}(|\bar{X}_n| < n^{-1/4}) \right] < n^{-1/4} \to 0 \text{ as } n \to \infty.
$$

Next consider the case $\theta \neq 0$. We will check that

$$
\lim_{n \to \infty} \mathbb{E}_\theta \left[n (\hat{\theta}_n - \theta)^2 \right] = 1.
$$

Firstly, we show that

$$
\mathbb{E}_\theta \left[n (\hat{\theta}_n - \bar{X}_n)^2 \right] \to 0 \text{ as } n \to \infty.
$$

Indeed,

$$
\mathbb{E}_\theta \left[n (\hat{\theta}_n - \bar{X}_n)^2 \right] = n \mathbb{E}_\theta \left[(-\bar{X}_n)^2 \mathbb{I}(|\bar{X}_n| < n^{-1/4}) \right]
$$

$$
\leq n^{1/2} \mathbb{P}_\theta(|\bar{X}_n| < n^{-1/4}) = n^{1/2} \int_{-n^{-1/4} - \theta n^{1/2}}^{n^{-1/4} - \theta n^{1/2}} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz
$$

$$
= n^{1/2} \int_{-n^{-1/4}}^{n^{-1/4}} \frac{1}{\sqrt{2\pi}} e^{-(u - \theta n^{1/2})^2/2} du.
$$

Here we made a substitution $u = z + \theta n^{1/2}$. Now, since $|u| \leq n^{1/4}$, the exponent can be bounded from above as follows

$$
-(u - \theta n^{1/2})^2/2 = -u^2/2 + u \theta n^{1/2} - \theta^2 n/2 \leq -u^2/2 + \theta n^{3/4} - \theta^2 n/2,
$$
and, thus, for all sufficiently large n, the above integral admits the upper bound

$$n^{1/2} \int_{-n^{1/4}}^{n^{1/4}} \frac{1}{\sqrt{2\pi}} e^{-\left(u - \theta n^{1/2}\right)^2/2} \, du$$

$$\leq n^{1/2} \int_{-n^{1/4}}^{n^{1/4}} \frac{1}{\sqrt{2\pi}} e^{-u^2/2 + \theta n^{3/4} - \theta^2 n^{1/2}} \, du$$

$$\leq e^{-\theta^2 n^{1/4}} \int_{-n^{1/4}}^{n^{1/4}} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \, du \to 0 \text{ as } n \to \infty.$$

Further, we use the Cauchy-Schwarz inequality to write

$$\mathbb{E}_{\theta}\left[n (\hat{\theta}_n - \theta)^2\right] = \mathbb{E}_{\theta}\left[n (\hat{\theta}_n - \bar{X}_n + \bar{X}_n - \theta)^2\right]$$

$$= \mathbb{E}_{\theta}\left[n (\hat{\theta}_n - \bar{X}_n)^2\right] + 2 \mathbb{E}_{\theta}\left[n (\hat{\theta}_n - \bar{X}_n)(\bar{X}_n - \theta)\right] + \mathbb{E}_{\theta}\left[n (\bar{X}_n - \theta)^2\right]$$

$$\leq \left\{\mathbb{E}_{\theta}\left[n (\hat{\theta}_n - \bar{X}_n)^2\right] + 2 \mathbb{E}_{\theta}\left[n (\hat{\theta}_n - \bar{X}_n)^2\right]\right\}^{1/2} \times$$

$$\times \left\{\mathbb{E}_{\theta}\left[n (\bar{X}_n - \theta)^2\right]\right\}^{1/2} + \mathbb{E}_{\theta}\left[n (\bar{X}_n - \theta)^2\right] \to 1 \text{ as } n \to \infty.$$

Consider now the case $\theta = 0$. We will verify that

$$\lim_{n \to \infty} \mathbb{E}_{\theta}\left[n \hat{\theta}_n^2\right] = 0.$$

We have

$$\mathbb{E}_{\theta}\left[n \hat{\theta}_n^2\right] = \mathbb{E}_{\theta}\left[n \bar{X}_n^2 \mathbb{1}(|\bar{X}_n| \geq n^{-1/4})\right]$$

$$= \mathbb{E}_{\theta}\left[(\sqrt{n}\bar{X}_n)^2 \mathbb{1}(|\sqrt{n}\bar{X}_n| \geq n^{1/4})\right] = 2 \int_{n^{1/4}}^{\infty} \frac{z^2}{\sqrt{2\pi}} e^{-z^2/2} \, dz$$

$$\leq 2 \int_{n^{1/4}}^{\infty} e^{-z} \, dz = 2 e^{-n^{1/4}} \to 0 \text{ as } n \to \infty.$$

Exercise 3.16 The following lower bound holds:

$$\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta}\left[I_n(\theta) (\hat{\theta}_n - \theta)^2\right] \geq n I_* \max_{\theta \in \{\theta_0, \theta_1\}} \mathbb{E}_{\theta}\left[(\hat{\theta}_n - \theta)^2\right]$$

$$\geq \frac{n I_*}{2} \left\{\mathbb{E}_{\theta_0}\left[(\hat{\theta}_n - \theta_0)^2\right] + \mathbb{E}_{\theta_1}\left[(\hat{\theta}_n - \theta_1)^2\right]\right\}$$

$$= \frac{n I_*}{2} \mathbb{E}_{\theta_0}\left[(\hat{\theta}_n - \theta_0)^2 + (\hat{\theta}_n - \theta_1)^2 \exp\left\{\Delta L_n(\theta_0, \theta_1)\right\}\right] \quad \text{(by (3.8))}$$

10
\[
\geq \frac{n I_\star}{2} \mathbb{E}_{\theta_0} \left[\left((\hat{\theta}_n - \theta_0)^2 + (\hat{\theta}_n - \theta_1)^2 \exp\{z_0\} \right) \mathbb{I}(\Delta L_n(\theta_0, \theta_1) \geq z_0) \right]
\]
\[
\geq \frac{n I_\star}{2} \exp\{z_0\} \mathbb{E}_{\theta_0} \left[\left((\hat{\theta}_n - \theta_0)^2 \exp\{-z_0\} + (\hat{\theta}_n - \theta_1)^2 \right) \mathbb{I}(\Delta L_n(\theta_0, \theta_1) \geq z_0) \right]
\]
\[
\geq \frac{n I_\star}{2} \exp\{z_0\} \left[\left((\hat{\theta}_n - \theta_0)^2 + (\hat{\theta}_n - \theta_1)^2 \right) \mathbb{I}(\Delta L_n(\theta_0, \theta_1) \geq z_0) \right],
\]
since \(\exp\{-z_0\} \geq 1\) for \(z_0\) is assumed negative,
\[
\geq \frac{n I_\star}{2} \exp\{z_0\} \left(\frac{\theta_1 - \theta_0}{2} \right)^2 \mathbb{P}_{\theta_0} \left(\Delta L_n(\theta_0, \theta_1) \geq z_0 \right)
\]
\[
\geq \frac{n I_\star p_0}{4} \exp\{z_0\} \left(\frac{1}{\sqrt{n}} \right)^2 = \frac{1}{4} I_\star p_0 \exp\{z_0\}.
\]

Exercise 3.17 First we show that the inequality stated in the hint is valid. For any \(x\) it is necessarily true that either \(|x| \geq \frac{1}{2}\) or \(|x - 1| \geq \frac{1}{2}\), because if the contrary holds, then \(-\frac{1}{2} < x < \frac{1}{2}\) and \(-\frac{1}{2} < 1 - x < \frac{1}{2}\) imply that \(1 = x + (1 - x) < 1/2 + 1/2 = 1\), which is false.

Further, since \(w(x) = w(-x)\) we may assume that \(x > 0\). And suppose that \(x \geq \frac{1}{2}\) (as opposed to the case \(x - 1 \geq \frac{1}{2}\)). In view of the facts that the loss function \(w\) is everywhere nonnegative and is increasing on the positive half-axis, we have
\[
w(x) + w(x - 1) \geq w(x) \geq w(1/2).
\]

Next, using the argument identical to that in Exercise 3.16, we obtain
\[
\sup_{\theta \in \mathbb{R}} \mathbb{E}_\theta \left[w(\sqrt{n}(\hat{\theta}_n - \theta)) \right] \geq \frac{1}{2} \exp\{z_0\} \mathbb{E}_{\theta_0} \left[\left(w(\sqrt{n}(\hat{\theta}_n - \theta_0)) + w(\sqrt{n}(\hat{\theta}_n - \theta_1)) \right) \mathbb{I}(\Delta L_n(\theta_0, \theta_1) \geq z_0) \right].
\]

Now recall that \(\theta_1 = \theta_0 + 1/\sqrt{n}\) and use the inequality proved earlier to continue
\[
\geq \frac{1}{2} w(1/2) \exp\{z_0\} \mathbb{P}_{\theta_0} \left(\Delta L_n(\theta_0, \theta_1) \geq z_0 \right) \geq \frac{1}{2} w(1/2) p_0 \exp\{z_0\}.
\]

Exercise 3.18 It suffices to prove the assertion (3.14) for an indicator function, that is, for the bounded loss function \(w(u) = \mathbb{I}(\{|u| > \gamma\})\), where \(\gamma\) is a fixed constant. We write
\[
\int_{-b-a}^{b-a} w(c - u) e^{-u^2/2} du = \int_{-b-a}^{b-a} \mathbb{I}(\{|c - u| > \gamma\}) e^{-u^2/2} du
\]

11
\[\int_{c^2}^{c^x} e^{-(c-x)^2} du + \int_{c^x}^{c^2} e^{-(c-x)^2} du. \]

To minimize this expression over values of \(c \), take the derivative with respect to \(c \) and set it equal to zero to obtain
\[e^{-(c-x)^2} - e^{-(c-x)^2} = 0, \text{ or, equivalently, } (c-x)^2 = (c+x)^2. \]

The solution is \(c = 0 \).

Finally, the result holds for any loss function \(w \) since it can be written as a limit of linear combinations of indicator functions,
\[\int_{-(b-a)}^{b-a} w(c-u) e^{-u^2/2} du = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta w_i \int_{-(b-a)}^{b-a} \mathbb{I}(|c-u| > \gamma_i) e^{-u^2/2} du \]
where
\[\gamma_i = \frac{b-a}{n} i, \quad \Delta w_i = w(\gamma_i) - w(\gamma_{i-1}). \]

Exercise 3.19 We will show that for both distributions the representation (3.15) takes place.
(i) For the exponential model, as shown in Exercise 2.11, the Fisher information \(I_n(\theta) = n/\theta^2 \), hence,
\[L_n(\theta_0 + t/\sqrt{n}) - L_n(\theta_0) = L_n(\theta_0 + \frac{\theta_0 t}{\sqrt{n}}) - L_n(\theta_0) \]
\[= n \ln \left(\theta_0 + \frac{\theta_0 t}{\sqrt{n}} \right) - \left(\theta_0 + \frac{\theta_0 t}{\sqrt{n}} \right) n \bar{X}_n - n \ln(\theta_0) + \theta_0 n \bar{X}_n \]
\[= n \ln(\theta_0) + n \ln \left(1 + \frac{t}{\sqrt{n}} \right) - \theta_0 n \bar{X}_n - t \theta_0 \sqrt{n} \bar{X}_n - n \ln(\theta_0) + \theta_0 n \bar{X}_n. \]

Using the Taylor expansion, we get that for large \(n \),
\[n \ln \left(1 + \frac{t}{\sqrt{n}} \right) = n \left(\frac{t}{\sqrt{n}} - \frac{t^2}{2n} + o_n\left(\frac{1}{n} \right) \right) = t \sqrt{n} - t^2/2 + o_n(1). \]

Also, by the Central Limit Theorem, for all sufficiently large \(n \), \(\bar{X}_n \) is approximately \(\mathcal{N}(1/\theta_0, 1/(n\theta_0^2)) \), that is, \((\bar{X}_n - 1/\theta_0)\theta_0 \sqrt{n} = (\theta_0 \bar{X}_n - 1)\sqrt{n} \) is approximately \(\mathcal{N}(0, 1) \). Consequently, \(Z = - (\theta_0 \bar{X}_n - 1) \sqrt{n} \) is approximately standard normal as well. Thus,
\[n \ln \left(1 + \frac{t}{\sqrt{n}} \right) - t \theta_0 \sqrt{n} \bar{X}_n = t \sqrt{n} - t^2/2 + o_n(1) - t \theta_0 \sqrt{n} \bar{X}_n = - t (\theta_0 \bar{X}_n - 1) \sqrt{n} - t^2/2 + o_n(1) = tZ - t^2/2 + o_n(1). \]
(ii) For the Poisson model, by Exercise 1.4, $I_n(\theta) = n/\theta$, thus,

$$L_n(\theta_0 + t/\sqrt{I_n(\theta_0)}) - L_n(\theta_0) = L_n(\theta_0 + t/\sqrt{\theta_0/n}) - L_n(\theta_0)$$

$$= n \bar{X}_n \ln \left(\theta_0 + t/\sqrt{\theta_0/n} \right) - n \left(\theta_0 + t/\sqrt{\theta_0/n} \right) - n \bar{X}_n \ln(\theta_0) + n \theta_0$$

$$= n \bar{X}_n \ln \left(1 + \frac{t}{\sqrt{\theta_0/n}} \right) - t \sqrt{\theta_0/n} = n \bar{X}_n \left(\frac{t}{\sqrt{\theta_0/n}} - \frac{t^2}{2 \theta_0 n} + o_n(\frac{1}{n}) \right) - t \sqrt{\theta_0/n}$$

$$= t \bar{X}_n \sqrt{\frac{n}{\theta_0}} - t \sqrt{\theta_0/n} - \frac{t^2}{\theta_0} + o_n(1)$$

$$= t Z - \left(1 + \frac{Z}{\sqrt{\theta_0/n}} \right) \frac{t^2}{2} + o_n(1) = t Z - \frac{t^2}{2} + o_n(1).$$

Here we used the fact that by the CLT, for all large enough n, \bar{X}_n is approximately $\mathcal{N}(\theta_0, \theta_0/n)$, and hence,

$$Z = \frac{\bar{X}_n - \theta_0}{\sqrt{\theta_0/n}} = \bar{X}_n \sqrt{\frac{n}{\theta_0}} - \sqrt{\theta_0/n}$$

is approximately $\mathcal{N}(0,1)$ random variable. Also,

$$\frac{\bar{X}_n}{\theta_0} = \frac{(\sqrt{\theta_0/n} + Z)\sqrt{\theta_0/n}}{\theta_0} = 1 + \frac{Z}{\sqrt{\theta_0/n}} = 1 + o_n(1).$$

Exercise 3.20 Consider a truncated loss function $w_C(u) = \min(w(u), C)$ for some $C > 0$. As in the proof of Theorem 3.8, we write

$$\sup_{\theta \in \mathbb{R}} \mathbb{E}_\theta \left[w_C(\sqrt{nI(\hat{\theta}_n - \theta)}) \right]$$

$$\geq \frac{\sqrt{nI(\theta)}}{2b} \int_{-b/\sqrt{nI(\theta)}}^{b/\sqrt{nI(\theta)}} \mathbb{E}_\theta \left[w_C(\sqrt{nI(\hat{\theta}_n - \theta)}) \right] d\theta$$

$$= \frac{1}{2b} \int_{-b}^{b} \mathbb{E}_{i/\sqrt{nI(\theta)}} \left[w_C(\sqrt{nI(\hat{\theta}_n - t)}) \right] dt$$

where we used a change of variables $t = \sqrt{nI(\theta)}$. Let $a_n = nI(t/\sqrt{nI(\theta)})$. We continue

$$= \frac{1}{2b} \int_{-b}^{b} \mathbb{E}_0 \left[w_C(\sqrt{a_n \hat{\theta}_n - t}) \exp \{ \Delta L_n(0, t/\sqrt{nI(\theta)}) \} \right] dt.$$
Applying the LAN condition (3.16), we get

\[\frac{1}{2b} \int_{-b}^{b} \mathbb{E}_0 \left[w_C \left(\sqrt{a_n} \hat{\theta}_n - t \right) \exp \left\{ z_n(0) t - t^2/2 + \varepsilon_n(0, t) \right\} \right] dt. \]

An elementary inequality \(|x| \geq |y| - |x - y|\) for any \(x\) and \(y \in \mathbb{R}\) implies that

\[\geq \frac{1}{2b} \int_{-b}^{b} \mathbb{E}_0 \left[w_C \left(\sqrt{a_n} \hat{\theta}_n - t \right) \exp \left\{ \tilde{z}_n(0) t - t^2/2 \right\} dt + \]

\[+ \frac{1}{2b} \int_{-b}^{b} \mathbb{E}_0 \left[w_C \left(\sqrt{a_n} \hat{\theta}_n - t \right) \exp \left\{ z_n(0) t - t^2/2 + \varepsilon_n(0, t) \right\} \exp \left\{ \tilde{z}_n(0) t - t^2/2 \right\} dt. \]

Now, by Theorem 3.11, and the fact that \(w_C \leq C\), the second term vanishes as \(n\) grows, and thus is \(o_n(1)\) as \(n \to \infty\). Hence, we obtain the following lower bound

\[\sup_{\theta \in \mathbb{R}} \mathbb{E}_\theta \left[w_C \left(\sqrt{nI(\theta)} (\hat{\theta}_n - \theta) \right) \right] \]

\[\geq \frac{1}{2b} \int_{-b}^{b} \mathbb{E}_0 \left[w_C \left(\sqrt{a_n} \hat{\theta}_n - t \right) \exp \left\{ \tilde{z}_n(0) t - t^2/2 \right\} dt + \]

\[+ o_n(1). \]

Put \(\eta_n = \sqrt{a_n} \hat{\theta}_n - \tilde{z}_n(0)\). We can rewrite the bound as

\[\geq \frac{1}{2b} \int_{-b}^{b} \mathbb{E}_0 \left[\exp \left\{ \frac{1}{2} \tilde{z}_n(0)^2 \right\} w_C (\eta_n - (t - \tilde{z}_n(0))) \exp \left\{ - \frac{1}{2} (t - \tilde{z}_n(0))^2 \right\} dt + \]

\[+ o_n(1) \]

which, after the substitution \(u = t - \tilde{z}_n(0)\) becomes

\[\geq \frac{1}{2b} \int_{-b-a}^{b-a} \mathbb{E}_0 \left[\exp \left\{ \frac{1}{2} \tilde{z}_n(0)^2 \right\} 1(\tilde{z}_n(0) \leq a) w_C (\eta_n - u) \exp \left\{ - \frac{1}{2} u^2 \right\} du + \]

\[+ o_n(1). \]

As in the proof of Theorem 3.8, for \(n \to \infty\),

\[\mathbb{E}_0 \left[\exp \left\{ \tilde{z}_n(0)^2 \right\} 1(\tilde{z}_n(0) \leq a) \right] \to \frac{2a}{\sqrt{2\pi}}, \]

and, by an argument similar to the proof of Theorem 3.9,

\[\int_{-(b-a)}^{b-a} w_C (\eta_n - u) \exp \left\{ - \frac{1}{2} u^2 \right\} du \geq \int_{-(b-a)}^{b-a} w_C (u) \exp \left\{ - \frac{1}{2} u^2 \right\} du. \]

14
Putting $a = b - \sqrt{b}$ and letting b, C and n go to infinity, we arrive at the conclusion that

$$\sup_{\theta \in \mathbb{R}} E_{\theta} \left[w_C(\sqrt{nI(\theta)(\hat{\theta}_n - \theta)}) \right] \geq \int_{-\infty}^{\infty} \frac{w(u)}{\sqrt{2\pi}} e^{-u^2/2} \, du.$$

Exercise 3.21 Note that the distorted parabola can be written in the form

$$zt - t^2/2 + \varepsilon(t) = -(1/2)(t - z)^2 + z^2/2 + \varepsilon(t).$$

The parabola $-(1/2)(t - z)^2 + z^2/2$ is maximized at $t = z$. The value of the distorted parabola at $t = z$ is bounded from below by

$$-(1/2)(z - z)^2 + z^2/2 + \varepsilon(z) = z^2/2 + \varepsilon(z) \geq z^2/2 - \delta.$$

On the other hand, for all t such that $|t - z| > 2\sqrt{\delta}$, this function is strictly less than $z^2/2 - \delta$. Indeed,

$$-(1/2)(t - z)^2 + z^2/2 + \varepsilon(t) < -(1/2)(2\sqrt{\delta})^2 + z^2/2 + \varepsilon(t)$$

$$< -2\delta + z^2/2 + \delta = z^2/2 - \delta.$$

Thus, the value $t = t^*$ at which the function is maximized must satisfy $|t^* - z| \leq 2\sqrt{\delta}$.

15
Chapter 4

Exercise 4.22 (i) The likelihood function has the form

\[\prod_{i=1}^{n} p(X_i, \theta) = \theta^{-n} \prod_{i=1}^{n} \mathbb{I}(0 \leq X_i \leq \theta) \]

\[= \theta^{-n} \mathbb{I}(0 \leq X_1 \leq \theta, 0 \leq X_2 \leq \theta, \ldots, 0 \leq X_n \leq \theta) = \theta^{-n} \mathbb{I}(X_{(n)} \leq \theta). \]

Here \(X_{(n)} = \max(X_1, \ldots, X_n) \). As depicted in the figure below, function \(\theta^{-n} \) decreases everywhere, attaining its maximum at the left-most point. Therefore, the MLE of \(\theta \) is \(\hat{\theta}_n = X_{(n)} \).

(ii) The c.d.f. of \(X_{(n)} \) can be found as follows:

\[F_{X_{(n)}}(x) = \mathbb{P}_\theta(X_{(n)} \leq x) = \mathbb{P}_\theta(X_1 \leq x, X_2 \leq x, \ldots, X_n \leq x) \]

\[= \mathbb{P}_\theta(X_1 \leq x) \mathbb{P}_\theta(X_2 \leq x) \ldots \mathbb{P}_\theta(X_n \leq x) \text{ (by independence)} \]

\[= \left[\mathbb{P}(X_1 \leq x) \right]^n = \left(\frac{x}{\theta} \right)^n, \quad 0 \leq x \leq \theta. \]

Hence the density of \(X_{(n)} \) is

\[f_{X_{(n)}}(x) = F'_{X_{(n)}}(x) = \left(\frac{x^n}{\theta^n} \right)' = \frac{n x^{n-1}}{\theta^n}. \]

The expected value of \(X_{(n)} \) is computed as

\[\mathbb{E}_\theta[X_{(n)}] = \int_0^{\theta} x \frac{n x^{n-1}}{\theta^n} \, dx = \frac{n}{\theta^n} \int_0^{\theta} x^n \, dx = \frac{n \theta^{n+1}}{(n+1) \theta^n} = \frac{n \theta}{n + 1}, \]

and therefore,

\[\mathbb{E}_\theta[\theta_n] = \mathbb{E}_\theta\left[\frac{n + 1}{n} X_{(n)} \right] = \frac{n + 1}{n} \frac{n \theta}{n + 1} = \theta. \]
(iii) The variance of \(X(n) \) is

\[
\mathbb{V}ar_\theta [X(n)] = \int_0^\theta x^{2n} \frac{n x^{n-1}}{\theta^n} \, dx - \left(\frac{n \theta}{n+1} \right)^2
\]

\[
= \frac{n \theta^2}{n+2} - \frac{n^2 \theta^2}{(n+1)^2} = \frac{n \theta^2}{(n+1)^2 (n+2)}.
\]

Consequently, the variance of \(\theta^*_n \) is

\[
\mathbb{V}ar_\theta \left[\frac{n+1}{n} X(n) \right] = \frac{(n+1)^2}{n^2} \frac{n \theta^2}{(n+1)^2 (n+2)} = \frac{\theta^2}{n(n+2)}.
\]

Exercise 4.23 (i) The likelihood function can be written as

\[
\prod_{i=1}^n p(X_i, \theta) = \exp \left\{ - \left(\sum_{i=1}^n X_i - n \theta \right) \right\} \prod_{i=1}^n \mathbb{I}(X_i \geq \theta)
\]

\[
= \exp \left\{ - \sum_{i=1}^n X_i + n \theta \right\} \mathbb{I}(X_1 \geq \theta, X_2 \geq \theta, \ldots, X_n \geq \theta)
\]

\[
= \exp \left\{ n \theta \right\} \mathbb{I}(X_{(1)} \geq \theta) \exp \left\{ - \sum_{i=1}^n X_i \right\}
\]

with \(X_{(1)} = \min(X_1, \ldots, X_n) \). The second exponent is constant with respect to \(\theta \) and may be disregarded for maximization purposes. The function \(\exp \{ n \theta \} \) is increasing and therefore reaches its maximum at the right-most point \(\hat{\theta}_n = X_{(1)} \).

(ii) The c.d.f. of the minimum can be found by the following argument:

\[
1 - F_{X_{(1)}}(x) = \mathbb{P}_\theta (X_{(1)} \geq x) = \mathbb{P}_\theta (X_1 \geq x, X_2 \geq x, \ldots, X_n \geq x)
\]

\[
= \mathbb{P}_\theta (X_1 \geq x) \mathbb{P}_\theta (X_2 \geq x) \ldots \mathbb{P}_\theta (X_n \geq x) \quad \text{(by independence)}
\]

\[
= \left[\mathbb{P}_\theta (X_1 \geq x) \right]^n = \left[\int_x^\infty e^{-(y-\theta)} \, dy \right]^n = \left[e^{-(x-\theta)} \right]^n = e^{-n(x-\theta)},
\]

whence

\[
F_{X_{(1)}}(x) = 1 - e^{-n(x-\theta)}.
\]

Therefore, the density of \(X_{(1)} \) is derived as

\[
f_{X_{(1)}}(x) = F_{X_{(1)}}'(x) = \left[1 - e^{-n(x-\theta)} \right]' = ne^{-n(x-\theta)}, \quad x \geq \theta.
\]
The expected value of $X(1)$ is equal to

$$\mathbb{E}_\theta[X(1)] = \int_0^\infty x \, n \exp(-n(x-\theta)) \, dx$$

$$= \int_0^\infty \left(\frac{y}{n} + \theta \right) e^{-y} \, dy \quad \text{(after substitution } y = n(x-\theta))$$

$$= \frac{1}{n} \int_0^\infty y e^{-y} \, dy + \theta \int_0^\infty e^{-y} \, dy = \frac{1}{n} + \theta.$$

As a result, the estimator $\theta^*_n = \frac{X(1) - 1}{n}$ is an unbiased estimator of θ.

(iii) The variance of $X(1)$ is computed as

$$\text{Var}_\theta[X(1)] = \int_0^\infty x^2 \, n \exp(-n(x-\theta)) \, dx - \left(\frac{1}{n} + \theta \right)^2$$

$$= \int_0^\infty \left(\frac{y}{n} + \theta \right)^2 e^{-y} \, dy - \left(\frac{1}{n} + \theta \right)^2$$

$$= \frac{1}{n^2} \int_0^\infty y^2 e^{-y} \, dy + \frac{2}{n} \int_0^\infty y e^{-y} \, dy + \theta^2 \int_0^\infty e^{-y} \, dy -$$

$$- \frac{1}{n^2} - \frac{2}{n} - \theta^2 = \frac{1}{n^2}.$$

Exercise 4.24 We will show that the squared L_2-norm of $\sqrt{p(\cdot, \theta + \Delta \theta)} - \sqrt{p(\cdot, \theta)}$ is equal to $\Delta \theta + o(\Delta \theta)$ as $\Delta \theta \to 0$. Then by Theorem 4.3 and Example 4.4 it will follow that the Fisher information does not exist. By definition, we obtain

$$\| \sqrt{p(\cdot, \theta + \Delta \theta)} - \sqrt{p(\cdot, \theta)} \|^2_2 =$$

$$= \int_{\mathbb{R}} \left[e^{-(x-\theta-\Delta \theta)/2} \mathbb{I}(x \geq \theta + \Delta \theta) - e^{-(x-\theta)/2} \mathbb{I}(x \geq \theta) \right]^2 \, dx$$

$$= \int_{\theta}^{\theta+\Delta \theta} e^{-(x-\theta)} \, dx + \int_{\theta+\Delta \theta}^\infty \left(e^{-(x-\theta-\Delta \theta)/2} - e^{-(x-\theta)/2} \right)^2 \, dx$$

$$= \int_{\theta}^{\theta+\Delta \theta} e^{-(x-\theta)} \, dx + \left(e^{\Delta \theta/2} - 1 \right)^2 \int_{\theta+\Delta \theta}^\infty e^{-(x-\theta)} \, dx$$

$$= 1 - e^{-\Delta \theta} + \left(e^{\Delta \theta/2} - 1 \right)^2 e^{-\Delta \theta}$$

18
= 2 - 2 e^{-\Delta \theta^2} = \Delta \theta + o(\Delta \theta) \text{ as } \Delta \theta \to 0.

Exercise 4.25 First of all, we find the values of \(c_- \) and \(c_+ \) as functions of \(\theta \). By our assumption, \(c_+ - c_- = \theta \). Also, since the density integrates to one, \(c_+ + c_- = 1 \). Hence, \(c_- = (1 - \theta)/2 \) and \(c_+ = (1 + \theta)/2 \).

Next, we use the formula proved in Theorem 4.3 to compute the Fisher information. We have

\[
I(\theta) = 4 \left\| \frac{\partial \sqrt{p(\cdot, \theta)}}{\partial \theta} \right\|^2_2 = 4 \left[\int_{-1}^{0} \left(\frac{\partial \sqrt{(1 - \theta)/2}}{\partial \theta} \right)^2 dx + \int_{0}^{1} \left(\frac{\partial \sqrt{(1 + \theta)/2}}{\partial \theta} \right)^2 dx \right]
\]

\[
= 4 \left[\frac{1}{8(1 - \theta)} + \frac{1}{8(1 + \theta)} \right] = \frac{1}{1 - \theta^2}.
\]

Exercise 4.26 In the case of the shifted exponential distribution we have

\[
Z_n(\theta, \theta + u/n) = \prod_{i=1}^{n} \frac{\exp \{-X_i + (\theta + u/n)\} \mathbb{I}(X_i \geq \theta + u/n)}{\exp \{-X_i + \theta\} \mathbb{I}(X_i \geq \theta)}
\]

\[
= \frac{\exp \{-\sum_{i=1}^{n} X_i + n(\theta + u/n)\} \mathbb{I}(X_{(1)} \geq \theta + u/n)}{\exp \{-\sum_{i=1}^{n} X_i + n \theta\} \mathbb{I}(X_{(1)} \geq \theta)}
\]

\[
= e^u \frac{\mathbb{I}(X_{(1)} \geq \theta + u/n)}{\mathbb{I}(X_{(1)} \geq \theta)} = e^u \frac{\mathbb{I}(u \leq T_n)}{\mathbb{I}(X_{(1)} \geq \theta)} \text{ where } T_n = n(X_{(1)} - \theta).
\]

Here \(\mathbb{P}_\theta(X_{(1)} \geq \theta) = 1 \), and

\[
\mathbb{P}_\theta(T_n \geq t) = \mathbb{P}_\theta(n(X_{(1)} - \theta) \geq t)
\]

\[
= \mathbb{P}_\theta(X_{(1)} \geq \theta + t/n) = \exp \{-n(\theta + t/n - \theta)\} = \exp \{-t\}.
\]

Therefore, the likelihood ratio has a representation that satisfies property (ii) in the definition of an asymptotically exponential statistical experiment with \(\lambda(\theta) = 1 \). Note that in this case, \(T_n \) has an exact exponential distribution for any \(n \), and \(o_n(1) = 0 \).

Exercise 4.27 (i) From Exercise 4.22, the estimator \(\theta_n^* \) is unbiased and its variance is equal to \(\theta^2/[n(n + 2)] \). Therefore,

\[
\lim_{n \to \infty} \mathbb{E}_{\theta_0} \left[(n(\theta_n^* - \theta_0))^2 \right] = \lim_{n \to \infty} n^2 \text{Var}_{\theta_0} [\theta_n^*] = \lim_{n \to \infty} \frac{n^2 \theta_0^2}{n(n + 2)} = \theta_0^2.
\]
(ii) From Exercise 4.23, θ_n^* is unbiased and its variance is equal to $1/n^2$. Hence,
\[
\mathbb{E}_{\theta_0} \left[\left(n(\theta_n^* - \theta_0) \right)^2 \right] = n^2 \text{Var}_{\theta_0} [\theta_n^*] = \frac{n^2}{n^2} = 1.
\]

Exercise 4.28 Consider the case $y \leq 0$. Then
\[
\lambda_0 \min_{y \leq 0} \int_0^\infty |u - y| e^{-\lambda_0 u} du = \lambda_0 \min_{y \leq 0} \int_0^\infty (u - y) e^{-\lambda_0 u} du
\]
\[
= \min_{y \leq 0} \left(\frac{1}{\lambda_0} - y \right) = \frac{1}{\lambda_0}, \text{ attained at } y = 0.
\]
In the case $y \geq 0$,
\[
\lambda_0 \min_{y \geq 0} \int_0^\infty |u - y| e^{-\lambda_0 u} du
\]
\[
= \lambda_0 \min_{y \geq 0} \left(\int_y^\infty (u - y) e^{-\lambda_0 u} du + \int_0^y (y - u) e^{-\lambda_0 u} du \right)
\]
\[
= \min_{y \geq 0} \left(\frac{2 e^{-\lambda_0 y} - 1}{\lambda_0} + y \right) = \frac{\ln 2}{\lambda_0},
\]
attributed at $y = \ln 2/\lambda_0$.

Thus,
\[
\lambda_0 \min_{y \in \mathbb{R}} \int_0^\infty |u - y| e^{-\lambda_0 u} du = \min \left(\frac{\ln 2}{\lambda_0}, \frac{1}{\lambda_0} \right) = \frac{\ln 2}{\lambda_0}.
\]

Exercise 4.29 (i) For a normalizing constant C, we write by definition
\[
f_b(\theta | X_1, \ldots, X_n) = C f(X_1, \theta) \ldots f(X_n, \theta) \pi_b(\theta)
\]
\[
= C \exp \left\{ - \sum_{i=1}^n (X_i - \theta) \right\} \mathbb{I}(X_1 \geq \theta) \ldots \mathbb{I}(X_n \geq \theta) \frac{1}{b} \mathbb{I}(0 \leq \theta \leq b)
\]
\[
= C e^{n\theta} \mathbb{I}(X(1) \geq \theta) \mathbb{I}(0 \leq \theta \leq b) = C_1 e^{n\theta} \mathbb{I}(0 \leq \theta \leq Y)
\]
where
\[
C_1 = \left(\int_0^Y e^{n\theta} d\theta \right)^{-1} = \frac{n}{\exp\{nY\} - 1}, \quad Y = \min(X(1), b).
\]
The posterior mean follows by direct integration,
\[
\theta_n^*(b) = \int_0^n \frac{n \theta e^{n \theta}}{\exp\{n Y\} - 1} d\theta = \frac{1}{n} \int_0^n t e^t dt
\]
\[
= \frac{1}{n} \frac{n Y \exp\{n Y\} - (\exp\{n Y\} - 1)}{\exp\{n Y\} - 1} = Y - \frac{1}{n} \frac{Y}{\exp(n Y) - 1}. \quad \square
\]

(iii) Consider the last term in the expression for the estimator \(\theta_n^*(b) \). Since by our assumption \(\theta \geq \sqrt{b} \), we have that \(\sqrt{b} \leq Y \leq b \). Therefore, for all large enough \(b \), the deterministic upper bound holds with \(\mathbb{P}_\theta \) - probability 1:
\[
\frac{Y}{\exp\{n Y\} - 1} \leq \frac{b}{\exp\{n \sqrt{b}\} - 1} \to 0 \text{ as } b \to \infty.
\]
Hence the last term is negligible. To prove the proposition, it remains to show that
\[
\lim_{b \to \infty} \mathbb{E}_\theta \left[n^2 \left(Y - \frac{1}{n} - \theta \right)^2 \right] = 1.
\]
Using the definition of \(Y \) and the explicit formula for the distribution of \(X(1) \), we get
\[
\mathbb{E}_\theta \left[n^2 \left(Y - \frac{1}{n} - \theta \right)^2 \right] =
\mathbb{E}_\theta \left[n^2 \left(X(1) - \frac{1}{n} - \theta \right)^2 \mathbb{1}(X(1) \leq b) + n^2 \left(b - \frac{1}{n} - \theta \right)^2 \mathbb{1}(X(1) \geq b) \right]
\]
\[
= n^2 \int_{\frac{1}{n} + \theta}^{b} (y - \frac{1}{n} - \theta)^2 n e^{-n(y-\theta)} dy + n^2 \left(b - \frac{1}{n} - \theta \right)^2 \mathbb{P}_\theta(X(1) \geq b)
\]
\[
= \int_0^{n(b-\theta)} (t-1)^2 e^{-t} dt + \left(n(b-\theta) - 1 \right)^2 e^{-n(b-\theta)} \to 1 \text{ as } b \to \infty.
\]
Here the first term tends to 1, while the second one vanishes as \(b \to \infty \), uniformly in \(\theta \in [\sqrt{b}, b - \sqrt{b}] \).

(iv) We write
\[
\sup_{\theta \in \mathbb{R}} \mathbb{E}_\theta \left[\left(n (\hat{\theta}_n - \theta) \right)^2 \right] \geq \int_0^b \frac{1}{b} \mathbb{E}_\theta \left[\left(n (\hat{\theta}_n - \theta) \right)^2 \right] d\theta
\]
\[
\geq \frac{1}{b} \int_0^b \mathbb{E}_\theta \left[\left(n (\theta_n^*(b) - \theta) \right)^2 \right] d\theta \geq \frac{1}{b} \int_{\sqrt{b}}^{b-\sqrt{b}} \mathbb{E}_\theta \left[\left(n (\theta_n^*(b) - \theta) \right)^2 \right] d\theta
\]
\[
\geq \frac{b - 2 \sqrt{b}}{b} \inf_{\sqrt{b} \leq \theta \leq b - \sqrt{b}} \mathbb{E}_\theta \left[\left(n (\theta_n^*(b) - \theta) \right)^2 \right].
\]
The infimum is whatever close to 1 if \(b \) is sufficiently large. Thus, the limit as \(b \to \infty \) of the right-hand side equals 1.
Chapter 5

EXERCISE 5.30 The Bayes estimator θ_n^* is the posterior mean,

\[
\theta_n^* = \frac{(1/n) \sum_{\theta=1}^{n} \theta \exp\{L_n(\theta)\}}{(1/n) \sum_{\theta=1}^{n} \exp\{L_n(\theta)\}} = \frac{\sum_{\theta=1}^{n} \theta \exp\{L_n(\theta)\}}{\sum_{\theta=1}^{n} \exp\{L_n(\theta)\}}.
\]

Applying Theorem 5.1 and some transformations, we get

\[
\theta_n^* = \frac{\sum_{j: 1 \leq j + \theta_0 \leq n (j + \theta_0) \exp\{L_n(j + \theta_0) - L_n(\theta_0)\}}{\sum_{j: 1 \leq j + \theta_0 \leq n} \exp\{L_n(j + \theta_0) - L_n(\theta_0)\}}
\]

\[
= \theta_0 + \frac{\sum_{j: 1 \leq j + \theta_0 \leq n} j \exp\{c W(j) - c^2 |j|/2\}}{\sum_{j: 1 \leq j + \theta_0 \leq n} \exp\{c W(j) - c^2 |j|/2\}}.
\]

EXERCISE 5.31 We use the definition of $W(j)$ to notice that $W(j)$ has a $N(0, |j|)$ distribution. Therefore,

\[
\mathbb{E}_{\theta_0}\left[\exp\left\{c W(j) - c^2 |j|/2\right\}\right] = \exp\left\{-c^2 |j|/2\right\} \mathbb{E}_{\theta_0}\left[\exp\left\{c W(j)\right\}\right] = \exp\left\{-c^2 |j|/2 + c^2 |j|/2\right\} = 1.
\]

The expected value of the numerator in (5.3) is equal to

\[
\mathbb{E}_{\theta_0}\left[\sum_{j \in \mathbb{Z}} j \exp\{c W(j) - c^2 |j|/2\} \right] = \sum_{j \in \mathbb{Z}} j = \infty.
\]

Likewise, the expectation of the denominator is infinite,

\[
\mathbb{E}_{\theta_0}\left[\sum_{j \in \mathbb{Z}} \exp\{c W(j) - c^2 |j|/2\} \right] = \sum_{j \in \mathbb{Z}} 1 = \infty.
\]

EXERCISE 5.32 Note that

\[
-K_\pm = \int_{-\infty}^{\infty} \left[\ln \frac{p_0(x \pm \mu)}{p_0(x)} \right] p_0(x) dx
\]

\[
= \int_{-\infty}^{\infty} \left[\ln \left(1 + \frac{p_0(x \pm \mu) - p_0(x)}{p_0(x)} \right) \right] p_0(x) dx
\]

22
\[\int_{-\infty}^{\infty} \left[\frac{p_0(x \pm \mu) - p_0(x)}{p_0(x)} \right] p_0(x) \, dx \]

Here we have applied the inequality \(\ln(1 + y) < y \), if \(y \neq 0 \), and the fact that probability densities \(p_0(x \pm \mu) \) and \(p_0(x) \) integrate to 1.

Exercise 5.33 Assume for simplicity that \(\tilde{\theta}_n > \theta_0 \). By the definition of the MLE, \(\Delta L_n(\theta_0, \tilde{\theta}_n) = L_n(\tilde{\theta}_n) - L_n(\theta_0) \geq 0 \). Also, by Theorem 5.14,

\[\Delta L_n(\theta_0, \tilde{\theta}_n) = W(\tilde{\theta}_n - \theta_0) - K_+(\tilde{\theta}_n - \theta_0) = \sum_{i: \theta_0 < i \leq \tilde{\theta}_n} \varepsilon_i - K_+(\tilde{\theta}_n - \theta_0) \]

Therefore, the following inequalities take place

\[\mathbb{P}_{\theta_0}(\tilde{\theta}_n - \theta_0 = m) \leq \mathbb{P}_{\theta_0}(\tilde{\theta}_n - \theta_0 \geq m) \leq \sum_{l=m}^{\infty} \mathbb{P}_{\theta_0}(\Delta L_n(\theta_0, \theta_0 + l) \geq 0) = \sum_{l=m}^{\infty} \mathbb{P}_{\theta_0}(\sum_{i=1}^{l} \varepsilon_i \geq K_+ l) \]

\[\leq c_1 \sum_{l=m}^{\infty} l^{-(4+\delta)} \leq c_2 m^{-(3+\delta)} \]

A similar argument treats the case \(\tilde{\theta}_n < \theta_0 \). Thus, there exists a positive constant \(c_3 \) such that

\[\mathbb{P}_{\theta_0}(|\tilde{\theta}_n - \theta_0| = m) \leq c_3 m^{-(3+\delta)} \]

Consequently,

\[\mathbb{E}_{\theta_0}[|\tilde{\theta}_n - \theta_0|^2] = \sum_{m=0}^{\infty} m^2 \mathbb{P}_{\theta_0}(|\tilde{\theta}_n - \theta_0| = m) \leq c_3 \sum_{m=0}^{\infty} m^2 m^{-(3+\delta)} < \infty. \]

Exercise 5.34 We estimate the true change point value by the maximum likelihood method. The log-likelihood function has the form

\[L(\theta) = \sum_{i=1}^{\theta} \left[X_i \ln(0.4) + (1 - X_i) \ln(0.6) \right] + \sum_{i=\theta+1}^{30} \left[X_i \ln(0.7) + (1 - X_i) \ln(0.3) \right]. \]

23
Plugging in the concrete observations, we obtain the values of the log-likelihood function for different values of θ. They are summarized in the table below.

<table>
<thead>
<tr>
<th>θ</th>
<th>$L(\theta)$</th>
<th>θ</th>
<th>$L(\theta)$</th>
<th>θ</th>
<th>$L(\theta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-21.87</td>
<td>11</td>
<td>-19.95</td>
<td>21</td>
<td>-20.53</td>
</tr>
<tr>
<td>2</td>
<td>-21.18</td>
<td>12</td>
<td>-20.51</td>
<td>22</td>
<td>-21.09</td>
</tr>
<tr>
<td>3</td>
<td>-21.74</td>
<td>13</td>
<td>-21.07</td>
<td>33</td>
<td>-21.65</td>
</tr>
<tr>
<td>4</td>
<td>-21.04</td>
<td>14</td>
<td>-20.37</td>
<td>24</td>
<td>-20.96</td>
</tr>
<tr>
<td>5</td>
<td>-21.60</td>
<td>25</td>
<td>-20.93</td>
<td>25</td>
<td>-21.52</td>
</tr>
<tr>
<td>6</td>
<td>-20.91</td>
<td>16</td>
<td>-20.24</td>
<td>26</td>
<td>-20.83</td>
</tr>
<tr>
<td>7</td>
<td>-20.22</td>
<td>17</td>
<td>-19.55</td>
<td>27</td>
<td>-21.39</td>
</tr>
<tr>
<td>8</td>
<td>-20.78</td>
<td>18</td>
<td>-20.11</td>
<td>28</td>
<td>-21.95</td>
</tr>
<tr>
<td>9</td>
<td>-21.36</td>
<td>19</td>
<td>-20.67</td>
<td>29</td>
<td>-22.51</td>
</tr>
<tr>
<td>10</td>
<td>-20.64</td>
<td>20</td>
<td>-19.97</td>
<td>30</td>
<td>-21.81</td>
</tr>
</tbody>
</table>

The log-likelihood function reaches its maximum -19.55 when $\theta = 17$.

Exercise 5.35 Consider a set $\mathcal{X} \subseteq \mathbb{R}$ with the property that the probability of a random variable with the c.d.f. F_1 falling into that set is not equal to the probability of this event for a random variable with the c.d.f. F_2. Note that such a set necessarily exists, because otherwise, F_1 and F_2 would be identically equal. Ideally we would like the set \mathcal{X} to be as large as possible. That is, we want \mathcal{X} to be the largest set such that

$$\int_{\mathcal{X}} dF_1(x) \neq \int_{\mathcal{X}} dF_2(x).$$

Replacing the original observations X_i by the indicators $Y_i = \mathbb{I}(X_i \in \mathcal{X})$, $i = 1, \ldots, n$, we get a model of Bernoulli observations with the probability of a success $p_1 = \int_{\mathcal{X}} dF_1(x)$ before the jump, and $p_2 = \int_{\mathcal{X}} dF_2(x)$, afterwards. The method of maximum likelihood may be applied to find the MLE of the change point (see Exercise 5.34).
Chapter 6

Exercise 6.36 Take any event A in the σ-algebra F. Denote by A^c its complement. By definition, A^c belongs to F. Since an empty set can be written as the intersection of A and A^c, it is also F-measurable.

Exercise 6.37 (i) If $\tau = T$ for some positive integer T, then for any $t \geq 1$, the event $\{\tau = t\}$ is the whole probability space if $t = T$ and is empty if $t \neq T$. In either case, the event $\{\tau = t\} \in F_t$. To see this, proceed as in the previous exercise. Take any event $A \in F_t$. Then A^c belongs to F_t as well, and so do $A \cup A^c$ (the entire set) and $A \cap A^c$ (the empty set). Therefore, τ is a stopping time by definition.

(ii) If $\tau = \min \{i : X_i \in [a, b]\}$, then for any $t \geq 1$, we write

$$\{\tau = t\} = \bigcap_{i=1}^{t-1} \left(\{ X_i < a \} \cup \{ X_i > b \} \right) \cap \{ a \leq X_t \leq b \}.$$

Each of these events belongs to F_t, hence $\{\tau = t\}$ is F_t-measurable, and thus, τ is a stopping time.

(iii) Consider $\tau = \min(\tau_1, \tau_2)$. Then

$$\{\tau = t\} = \left(\{ \tau_1 > t \} \cap \{ \tau_2 = t \} \right) \cup \left(\{ \tau_2 > t \} \cap \{ \tau_1 = t \} \right).$$

As in the proof of Lemma 6.4, the events $\{\tau_1 > t\} = \{\tau_1 \leq t\}^c = \left(\bigcup_{s=1}^t \{ \tau_1 = s \} \right)^c$, and $\{\tau_2 > t\} = \left(\bigcup_{s=1}^t \{ \tau_2 = s \} \right)^c$ belong to F_t. Events $\{\tau_1 = t\}$ and $\{\tau_2 = t\}$ are F_t-measurable by definition of a stopping time. Consequently, $\{\tau = t\} \in F_t$, and τ is a stopping time.

As for $\tau = \max(\tau_1, \tau_2)$, we write

$$\{\tau = t\} = \left(\{ \tau_1 < t \} \cap \{ \tau_2 = t \} \right) \cup \left(\{ \tau_2 < t \} \cap \{ \tau_1 = t \} \right)$$

where each of these events is F_t-measurable. Thus, τ is a stopping time.

(iv) For $\tau = \tau_1 + s$, where τ_1 is a stopping time and s is a positive integer, we get

$$\{\tau = t\} = \{\tau_1 = t - s\}$$

which belongs to F_{t-s}, and therefore, to F_t. Thus, τ is a stopping time.
Exercise 6.38 (i) Let \(\tau = \max\{ i : X_i \in [a, b], 1 \leq i \leq n \} \). The event
\[
\{ \tau = t \} = \bigcap_{i=t+1}^{n} \left(\{ X_i < a \} \cup \{ X_i > b \} \right) \cap \{ a \leq X_t \leq b \}.
\]
All events for \(i \geq t + 1 \) are not \(\mathcal{F}_t \)-measurable since they depend on observations obtained after time \(t \). Therefore, \(\tau \) doesn’t satisfy the definition of a stopping time. Intuitively, one has to collect all \(n \) observations to decide when was the last time an observation fell in a given interval.

(ii) Take \(\tau = \tau_1 - s \) with a positive integer \(s \) and a given stopping time \(\tau_1 \). We have
\[
\{ \tau = t \} = \{ \tau_1 = t + s \} \in \mathcal{F}_{t+s} \not\subseteq \mathcal{F}_t.
\]
Thus, this event is not \(\mathcal{F}_t \)-measurable, and \(\tau \) is not a stopping time. Intuitively, one cannot know \(s \) steps in advance when a stopping time \(\tau_1 \) occurs.

Exercise 6.39 (i) Let \(\tau = \min\{ i : X_i^2 + \cdots + X_t^2 > H \} \). Then for any \(t \geq 1 \),
\[
\{ \tau = t \} = \left(\bigcap_{i=1}^{t-1} \{ X_i^2 + \cdots + X_t^2 \leq H \} \right) \cap \{ X_t^2 + \cdots + X_t^2 > H \}.
\]
All of these events are \(\mathcal{F}_t \)-measurable, hence \(\tau \) is a stopping time.

(ii) Note that \(X_1^2 + \cdots + X_t^2 > H \) since we defined \(\tau \) this way. Therefore, by Wald’s identity (see Theorem 6.5),
\[
H < \mathbb{E} \left[X_1^2 + \cdots + X_t^2 \right] = \mathbb{E}[X_1^2] \mathbb{E}[\tau] = \sigma^2 \mathbb{E}[\tau].
\]
Thus, \(\mathbb{E}[\tau] > H/\sigma^2 \).

Exercise 6.40 Let \(\mu = \mathbb{E}[X_1] \). Using Wald’s first identity (see Theorem 6.5), we note that
\[
\mathbb{E}[X_1 + \cdots + X_\tau - \mu \tau] = 0.
\]
Therefore, we write
\[
\text{Var}[X_1 + \cdots + X_\tau - \mu \tau] = \mathbb{E}\left[(X_1 + \cdots + X_\tau - \mu \tau)^2 \right]
\]
\[
= \mathbb{E}\left[\sum_{t=1}^{\infty} (X_1 + \cdots + X_t - \mu t)^2 \mathbb{I}(\tau = t) \right]
\]
\[
= \mathbb{E}\left[(X_1 - \mu)^2 \mathbb{I}(\tau \geq 1) + (X_2 - \mu)^2 \mathbb{I}(\tau \geq 2) + \cdots + (X_t - \mu)^2 \mathbb{I}(\tau \geq t) + \ldots \right]
\]

26
\[
= \sum_{t=1}^{\infty} \mathbb{E} \left[(X_t - \mu)^2 \mathbb{I}(\tau \geq t) \right].
\]

The random event \(\{\tau \geq t\}\) belongs to \(\mathcal{F}_{t-1}\). Hence, \(\mathbb{I}(\tau \geq t)\) and \(X_t\) are independent. Finally, we get

\[
\text{Var}[X_1 + \cdots + X_\tau - \mu \tau] = \sum_{t=1}^{\infty} \mathbb{E} \left[(X_t - \mu)^2 \right] \mathbb{P}(\tau \geq t)
\]

\[
= \text{Var}[X_1] \sum_{t=1}^{\infty} \mathbb{P}(\tau \geq t) = \text{Var}[X_1] \mathbb{E}[\tau].
\]

Exercise 6.41

(i) Using Wald’s first identity, we obtain

\[
\mathbb{E}_\theta[\hat{\theta}_\tau] = \frac{1}{h} \mathbb{E}_\theta[X_1 + \cdots + X_\tau] = \frac{1}{h} \mathbb{E}_\theta[X_1] \mathbb{E}_\theta[\tau] = \frac{1}{h} \theta h = \theta.
\]

Thus, \(\hat{\theta}_\tau\) is an unbiased estimator of \(\theta\).

(ii) First note the inequality derived from an elementary inequality \((x+y)^2 \leq 2(x^2 + y^2)\). For any random variables \(X\) and \(Y\) such that \(\mathbb{E}[X] = \mu_X\) and \(\mathbb{E}[Y] = \mu_Y\),

\[
\text{Var}[X + Y] = \mathbb{E} \left[(X - \mu_X)^2 \right]
\]

\[
\leq 2 \left(\mathbb{E}[(X - \mu_X)^2] + \mathbb{E}[(Y - \mu_Y)^2] \right) = 2 \left(\text{Var}[X] + \text{Var}[Y] \right).
\]

Applying this inequality, we arrive at

\[
\text{Var}_\theta[\hat{\theta}_\tau] = \frac{1}{h^2} \text{Var}_\theta[X_1 + \cdots + X_\tau - \theta \tau + \theta \tau]
\]

\[
\leq \frac{2}{h^2} \left(\text{Var}_\theta[X_1 + \cdots + X_\tau - \theta \tau] + \text{Var}_\theta[\theta \tau] \right).
\]

Note that \(\mathbb{E}_\theta[X_1] = \theta\). Using this notation, we apply Wald’s second identity from Exercise 6.40 to conclude that

\[
\text{Var}_\theta[\hat{\theta}_\tau] \leq \frac{2}{h^2} \left(\text{Var}_\theta[X_1] \mathbb{E}_\theta[\tau] + \theta^2 \text{Var}_\theta[\tau] \right) = \frac{2\sigma^2}{h} + \frac{2\sigma^2 \text{Var}_\theta[\tau]}{h^2}.
\]

Exercise 6.42

(i) Applying repeatedly the recursive equation of the autoregressive model (6.7), we obtain

\[
X_i = \theta X_{i-1} + \varepsilon_i = \theta \left[\theta X_{i-2} + \varepsilon_{i-1} \right] + \varepsilon_i = \theta^2 X_{i-2} + \theta \varepsilon_{i-1} + \varepsilon_i
\]
identities, we get
\[(iv) \text{ The covariance between } X_{i-3} + \varepsilon_{i-2} + \theta \varepsilon_{i-1} + \varepsilon_i = \ldots = \theta^{i-1}[\theta X_0 + \varepsilon_1] + \theta^{i-2} \varepsilon_2 + \ldots + \theta \varepsilon_{i-1} + \varepsilon_i \]
\[= \theta^{i-1} \varepsilon_1 + \theta^{i-2} \varepsilon_2 + \ldots + \theta \varepsilon_{i-1} + \varepsilon_i \]
since \(X_0 = 0 \). Alternatively, we can write out the recursive equations (6.7),
\[X_1 = \theta X_0 + \varepsilon_1 \]
\[X_2 = \theta X_1 + \varepsilon_2 \]
\[\ldots \]
\[X_{i-1} = \theta X_{i-2} + \varepsilon_{i-1} \]
\[X_i = \theta X_{i-1} + \varepsilon_i. \]

Multiplying the first equation by \(\theta^{i-1} \), the second one by \(\theta^{i-2} \), and so on, and finally the equation number \(i - 1 \) by \(\theta \), and adding up all the resulting identities, we get
\[X_i + \theta X_{i-1} + \ldots + \theta^{i-2} X_2 + \theta^{i-1} X_1 \]
\[= \theta X_{i-1} + \ldots + \theta^{i-2} X_2 + \theta^{i-1} X_0 + \varepsilon_i + \theta \varepsilon_{i-1} + \ldots + \theta^{i-2} \varepsilon_2 + \theta^{i-1} \varepsilon_1. \]

Canceling the like terms and taking into account that \(X_0 = 0 \), we obtain
\[X_i = \varepsilon_i + \theta \varepsilon_{i-1} + \ldots + \theta^{i-2} \varepsilon_2 + \theta^{i-1} \varepsilon_1. \]

(ii) We use the representation of \(X_i \) from part (i). Since \(\varepsilon_i \)'s are independent \(\mathcal{N}(0, \sigma^2) \) random variables, the distribution of \(X_i \) is also normal with mean zero and variance
\[\text{Var}[X_i] = \text{Var}[\varepsilon_i + \theta \varepsilon_{i-1} + \ldots + \theta^{i-2} \varepsilon_2 + \theta^{i-1} \varepsilon_1] \]
\[= \text{Var}[\varepsilon_1] \left(1 + \theta^2 + \ldots + \theta^{2(i-1)} \right) = \sigma^2 \frac{1 - \theta^{2i}}{1 - \theta^2}. \]

(iii) Since \(|\theta| < 1 \), the quantity \(\theta^{2i} \) goes to zero as \(i \) increases, and therefore,
\[\lim_{i \to \infty} \text{Var}[X_i] = \lim_{i \to \infty} \sigma^2 \frac{1 - \theta^{2i}}{1 - \theta^2} = \frac{\sigma^2}{1 - \theta^2}. \]

(iv) The covariance between \(X_i \) and \(X_{i+j}, j \geq 0 \), is calculated as
\[\text{Cov}[X_i, X_{i+j}] = \mathbb{E} \left[(\varepsilon_i + \theta \varepsilon_{i-1} + \ldots + \theta^{i-2} \varepsilon_2 + \theta^{i-1} \varepsilon_1) \times \right. \]
\[\left. (\varepsilon_{i+j} + \theta \varepsilon_{i+j-1} + \ldots + \theta^j \varepsilon_i + \theta^{j+1} \varepsilon_{i-1} + \ldots + \theta^{i+j-2} \varepsilon_2 + \theta^{i+j-1} \varepsilon_1) \right] \]
\[= \theta^j \mathbb{E} \left[(\varepsilon_i + \theta \varepsilon_{i-1} + \ldots + \theta^{i-2} \varepsilon_2 + \theta^{i-1} \varepsilon_1)^2 \right] \]
\[= \theta^j \text{Var}[\varepsilon_1] \left(1 + \theta^2 + \ldots + \theta^{2(i-1)} \right) = \sigma^2 \theta^j \frac{1 - \theta^{2i}}{1 - \theta^2}. \]
Chapter 7

Exercise 7.43 The system of normal equations (7.11) takes the form

\[
\begin{align*}
\hat{\theta}_0 n + \hat{\theta}_1 \sum_{i=1}^{n} x_i &= \sum_{i=1}^{n} y_i \\
\hat{\theta}_0 \sum_{i=1}^{n} x_i + \hat{\theta}_1 \sum_{i=1}^{n} x_i^2 &= \sum_{i=1}^{n} x_i y_i
\end{align*}
\]

with the solution

\[
\hat{\theta}_1 = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2},
\]

and \(\hat{\theta}_0 = \bar{y} - \hat{\theta}_1 \bar{x}\) where \(\bar{x} = \sum_{i=1}^{n} x_i / n\) and \(\bar{y} = \sum_{i=1}^{n} y_i / n\).

Exercise 7.44 (a) Note that the vector of residuals \((r_1, \ldots, r_n)'\) is orthogonal to the span-space \(S\), while \(g_0 = (1, \ldots, 1)'\) belongs to this span-space. Thus, the dot product of these vectors must equal to zero, that is, \(r_1 + \cdots + r_n = 0\).

Alternatively, as shown in the proof of Exercise 7.43, \(\hat{\theta}_0 = \bar{y} - \hat{\theta}_1 \bar{x}\), and therefore,

\[
\sum_{i=1}^{n} r_i = \sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} (y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i) = \sum_{i=1}^{n} (y_i - \bar{y} + \hat{\theta}_1 \bar{x} - \hat{\theta}_1 x_i)
\]

\[
= \sum_{i=1}^{n} (y_i - \bar{y}) + \hat{\theta}_1 \sum_{i=1}^{n} (\bar{x} - x_i) = 0.
\]

(b) In a simple linear regression through the origin, the system of normal equations (7.11) is reduced to a single equation

\[
\hat{\theta}_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i,
\]

hence, the estimate of the slope is

\[
\hat{\theta}_1 = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}.
\]

Consider, for instance, three observations \((0, 0), (1, 1), \) and \((2, 1)\). We get \(\hat{\theta}_1 = \sum_{i=1}^{3} x_i y_i / \sum_{i=1}^{3} x_i^2 = 0.6\) with the residuals \(r_1 = 0, r_2 = 0.4, \) and \(r_3 = -0.2\). The sum of the residuals is equal to 0.2.

29
Exercise 7.45 By definition, the covariance matrix \(D = \sigma^2 (G'G)^{-1} \). For the simple linear regression,
\[
D = \sigma^2 \left[\frac{n}{\sum_{i=1}^{n} x_i} \cdot \frac{n}{\sum_{i=1}^{n} x_i^2} \right]^{-1} = \frac{\sigma^2 \det D}{\det D} \left[-\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \right].
\]
By Lemma 7.6,
\[
\text{Var}_\theta \left[\hat{f}_n(x) \mid \mathcal{X} \right] = D_{00} + 2D_{01} x + D_{11} x^2 = \frac{\sigma^2}{\det D} \left(\sum_{i=1}^{n} x_i^2 - 2 \left(\sum_{i=1}^{n} x_i \right) x + n x^2 \right).
\]
Differentiating with respect to \(x \), we get
\[
-2 \sum_{i=1}^{n} x_i + 2nx = 0.
\]
Hence the minimum is attained at \(x = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x} \).

Exercise 7.46 (i) We write
\[
r = y - \hat{y} = y - G\hat{\theta} = y - G(G'G)^{-1}G'y = (I_n - H)y
\]
where \(H = G(G'G)^{-1}G' \). We see that the residual vector is a linear transformation of a normal vector \(y \), and therefore has a multivariate normal distribution. Its mean is equal to zero,
\[
\mathbb{E}_\theta [r] = (I_n - H)\mathbb{E}_\theta [y] = (I_n - H)G\theta = G\theta - G\theta = 0.
\]
Next, note that the matrix \(I_n - H \) is symmetric and idempotent. Indeed,
\[
(I_n - H)' = (I_n - G(G'G)^{-1}G')' = I_n - G(G'G)^{-1}G' = I_n - H,
\]
and
\[
(I_n - H)^2 = (I_n - G(G'G)^{-1}G') (I_n - G(G'G)^{-1}G') = I_n - G(G'G)^{-1}G' = I_n - H.
\]
Using these two properties, we conclude that
\[
(I_n - H)(I_n - H)' = (I_n - H).
\]
Therefore, the covariance matrix of the residual vector is derived as follows,
\[
\mathbb{E}_\theta [rr'] = \mathbb{E}_\theta [(I_n - H)yy'(I_n - H)'] = (I_n - H)\mathbb{E}_\theta [yy'] (I_n - H)'
\]

30
\[(I_n - H) \sigma^2 I_n (I_n - H)' = \sigma^2 (I_n - H).
\]

(ii) The vectors \(r\) and \(\hat{y} - G \theta\) are orthogonal since the vector of residuals is orthogonal to any vector that lies in the span-space \(S\). As shown in part (i), \(r\) has a multivariate normal distribution. By the definition of the linear regression model (7.7), the vector \(\hat{y} - G \theta\) is normally distributed as well. Therefore, being orthogonal and normal, these two vectors are independent.

Exercise 7.47 Denote by \(\varphi(t)\) the moment generating function of the variable \(Y\). Since \(X\) and \(Y\) are assumed independent, the moment generating functions of \(X\), \(Y\), and \(Z\) satisfy the identity

\[
(1 - 2t)^{-n/2} = (1 - 2t)^{-m/2} \varphi(t), \quad \text{for} \quad t < 1/2.
\]

Therefore, \(\varphi(t) = (1 - 2t)^{-(n-m)/2}\), implying that \(Y\) has a chi-squared distribution with \(n - m\) degrees of freedom.

Exercise 7.48 By the definition of a regular deterministic design,

\[
\frac{1}{n} = i - \frac{i - 1}{n} = F_X(x_i) - F_X(x_{i-1}) = p(x_i^*) (x_i - x_{i-1})
\]

for an intermediate point \(x_i^* \in (x_{i-1}, x_i)\). Therefore, we may write

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{i-1}) p(x_i^*) g(x_i) = \int_{0}^{1} g(x) p(x) \, dx.
\]

Exercise 7.49 Consider the matrix \(D^{-1}_{\infty}\) with the \((l, m)\)-th entry \(\sigma^2 \int_{0}^{1} x^l x^m \, dx\), where \(l, m = 0, \ldots, k\). To show that it is positive definite, we take a column-vector \(\lambda = (\lambda_0, \ldots, \lambda_k)'\) and write

\[
\lambda' D^{-1}_{\infty} \lambda = \sigma^2 \sum_{i=0}^{k} \sum_{j=0}^{k} \lambda_i \lambda_j \int_{0}^{1} x^i x^j \, dx = \sigma^2 \int_{0}^{1} \left(\sum_{i=0}^{k} \lambda_i x^i \right)^2 \, dx,
\]

which is equal to zero if and only if \(\lambda_i = 0\) for all \(i = 0, \ldots, k\). Hence, \(D^{-1}_{\infty}\) is positive definite by definition, and thus invertible.

Exercise 7.50 By Lemma 7.6, for any design \(\mathcal{X}\), the conditional expectation is equal to

\[
\mathbb{E}_{\theta} \left[\left(\hat{f}_n(x) - f(x) \right)^2 | \mathcal{X} \right] = \sum_{l, m=0}^{k} D_{l,m} g_l(x) g_m(x).
\]
The same equality is valid for the unconditional expectation, since X is a fixed non-random design. Using the fact that $nD \to D_{\infty}$ as $n \to \infty$, we obtain

$$
\lim_{n \to \infty} \mathbb{E}_{\theta} \left[\left(2 \sqrt{n} \left(\hat{f}_n(x) - f(x) \right) \right)^2 \right] = \lim_{n \to \infty} \sum_{l, m = 0}^{k} n \mathbf{D}_{l, m} g_l(x) g_m(x) = \sum_{l, m = 0}^{k} (D_{\infty})_{l, m} g_l(x) g_m(x).
$$

Exercise 7.51 If all the design points belong to the interval $\left(1/2, 1\right)$, then the vector $\mathbf{0} = (1, \ldots, 1)'$ and $\mathbf{1} = (1/2, \ldots, 1/2)'$ are co-linear. The probability of this event is $1/2^n$. If at least one design point belongs to $(0, 1/2)$, then the system of normal equations has a unique solution.

Exercise 7.52 The Hoeffding inequality claims that if ξ_i's are zero-mean independent random variables and $|\xi_i| \leq C$, then

$$
\mathbb{P} \left(|x_1 + \cdots + \xi| > t \right) \leq 2 \exp \left\{ -t^2/(2nC^2) \right\}.
$$

We apply this inequality to $\xi_i = g_l(x_i)g_m(x_i) - \int_0^1 g_l(x)g_m(x) \, dx$ with $t = \delta n$ and $C = C_0^2$. The result of the lemma follows.

Exercise 7.53 By Theorem 7.5, the distribution of $\hat{\theta} - \theta$ is $(k + 1)$-variate normal with mean 0 and covariance matrix D. We know that for regular random designs, nD goes to a deterministic limit D_{∞}, independent of the design. Thus, the unconditional covariance matrix (averaged over the distribution of the design points) goes to the same limiting matrix D_{∞}.

Exercise 7.54 Using the Cauchy-Schwarz inequality and Theorem 7.5, we obtain

$$
\mathbb{E}_{\theta} \left[\| \hat{f}_n - f \|_2^2 \mid \mathcal{X} \right] = \mathbb{E}_{\theta} \left[\int_0^1 \left(\sum_{i=0}^{k} (\hat{\theta}_i - \theta_i) g_l(x) \right)^2 \, dx \mid \mathcal{X} \right]
\leq \mathbb{E}_{\theta} \left[\sum_{i=0}^{k} (\hat{\theta}_i - \theta_i)^2 \mid \mathcal{X} \right] \sum_{i=0}^{k} \int_0^1 (g_l(x))^2 \, dx = \sigma^2 \text{tr}(D) \| g \|_2^2.
$$
Chapter 8

Exercise 8.55 (i) Consider the quadratic loss at a point

\[w(\hat{f}_n - f) = (\hat{f}_n(x) - f(x))^2. \]

The risk that corresponds to this loss function (the mean squared error) satisfies

\[R_n(\hat{f}_n, f) = \mathbb{E}_f[w(\hat{f}_n - f)] = \mathbb{E}_f\left[(\hat{f}_n(x) - f(x))^2 \right] = \mathbb{E}_f\left[(\hat{f}_n(x) - \mathbb{E}_f[\hat{f}_n(x)]) + \mathbb{E}_f[\hat{f}_n(x)] - f(x))^2 \right] = \mathbb{E}_f\left[(\hat{f}_n(x) - \mathbb{E}_f[\hat{f}_n(x)])^2 \right] + \mathbb{E}_f\left[(\mathbb{E}_f[\hat{f}_n(x)] - f(x))^2 \right] = \mathbb{E}_f[\xi_n^2(x)] + b_n^2(x) = \mathbb{E}_f[w(\xi_n)] + w(b_n). \]

The cross term in the above disappears since

\[\mathbb{E}_f\left[(\hat{f}_n(x) - \mathbb{E}_f[\hat{f}_n(x)]) (\mathbb{E}_f[\hat{f}_n(x)] - f(x)) \right] = \mathbb{E}_f[\hat{f}_n(x)] - \mathbb{E}_f[\hat{f}_n(x)] \mathbb{E}_f[\hat{f}_n(x)] - f(x) \]
\[= (\mathbb{E}_f[\hat{f}_n(x)] - \mathbb{E}_f[\hat{f}_n(x)]) b_n(x) = 0. \]

(ii) Take the mean squared difference

\[w(\hat{f}_n - f) = \frac{1}{n} \sum_{i=1}^{n} (\hat{f}_n(x_i) - f(x_i))^2. \]

The risk function (the discrete MISE) can be partitioned as follows.

\[R_n(\hat{f}_n, f) = \mathbb{E}_f[w(\hat{f}_n - f)] = \mathbb{E}_f\left[\frac{1}{n} \sum_{i=1}^{n} (\hat{f}_n(x_i) - f(x_i))^2 \right] = \mathbb{E}_f\left[\frac{1}{n} \sum_{i=1}^{n} (\hat{f}_n(x_i) - \mathbb{E}_f[\hat{f}_n(x_i)]) + \mathbb{E}_f[\hat{f}_n(x_i)] - f(x_i))^2 \right] = \mathbb{E}_f\left[\frac{1}{n} \sum_{i=1}^{n} (\hat{f}_n(x_i) - \mathbb{E}_f[\hat{f}_n(x_i)])^2 \right] + \mathbb{E}_f\left[\frac{1}{n} \sum_{i=1}^{n} (\mathbb{E}_f[\hat{f}_n(x_i)] - f(x_i))^2 \right] = \mathbb{E}_f\left[\frac{1}{n} \sum_{i=1}^{n} \xi_n^2(x_i) \right] + \frac{1}{n} \sum_{i=1}^{n} b_n^2(x_i) = \mathbb{E}_f[w(\xi_n)] + w(b_n). \]
In the above, the cross term is equal to zero, because for any \(i = 1, \ldots, n \),

\[
\mathbb{E}_f \left[(\hat{f}_n(x_i) - \mathbb{E}_f[\hat{f}_n(x_i)]) (\mathbb{E}_f[\hat{f}_n(x_i)] - f(x_i)) \right] \\
= \mathbb{E}_f \left[(\hat{f}_n(x_i) - \mathbb{E}_f[\hat{f}_n(x_i)]) \right] (\mathbb{E}_f[\hat{f}_n(x_i)] - f(x_i)) \\
= (\mathbb{E}_f[\hat{f}_n(x_i)] - \mathbb{E}_f[\hat{f}_n(x_i)]) b_n(x_i) = 0.
\]

Exercise 8.56 Take a linear estimator of \(f \),

\[
\hat{f}_n(x) = \sum_{i=1}^n v_{n,i}(x) y_i.
\]

Its conditional bias, given the design \(\mathcal{X} \), is computed as

\[
b_n(x, \mathcal{X}) = \mathbb{E}_f[\hat{f}_n(x) | \mathcal{X}] - f(x) = \mathbb{E}_f[\sum_{i=1}^n v_{n,i}(x) y_i | \mathcal{X}] - f(x) \\
= \sum_{i=1}^n v_{n,i}(x) \mathbb{E}_f[y_i | \mathcal{X}] - f(x) = \sum_{i=1}^n v_{n,i}(x) f(x_i) - f(x).
\]

The conditional variance satisfies

\[
\mathbb{E}_f[\xi_n^2(x, \mathcal{X}) | \mathcal{X}] = \mathbb{E}_f\left[(\hat{f}_n(x) - \mathbb{E}_f[\hat{f}_n(x) | \mathcal{X}])^2 | \mathcal{X} \right] \\
= \mathbb{E}_f\left[\hat{f}_n^2(x) | \mathcal{X} \right] - 2 \left(\mathbb{E}_f[\hat{f}_n(x) | \mathcal{X}] \right)^2 + \left(\mathbb{E}_f[\hat{f}_n(x) | \mathcal{X}] \right)^2 \\
= \mathbb{E}_f\left[\hat{f}_n^2(x) | \mathcal{X} \right] - \left(\mathbb{E}_f[\hat{f}_n(x) | \mathcal{X}] \right)^2 \\
= \mathbb{E}_f\left[\left(\sum_{i=1}^n v_{n,i}(x) y_i \right)^2 | \mathcal{X} \right] - \left(\mathbb{E}_f\left[\sum_{i=1}^n v_{n,i}(x) y_i | \mathcal{X} \right] \right)^2 \\
= \sum_{i=1}^n v_{n,i}^2(x) \mathbb{E}_f[y_i^2 | \mathcal{X}] - \left(\sum_{i=1}^n v_{n,i}(x) \mathbb{E}_f[y_i | \mathcal{X}] \right)^2
\]

Here the cross terms are negligible since for a given design, the responses are uncorrelated. Now we use the facts that \(\mathbb{E}_f[y_i^2 | \mathcal{X}] = \sigma^2 \) and \(\mathbb{E}_f[y_i | \mathcal{X}] = 0 \) to arrive at

\[
\mathbb{E}_f[\xi_n^2(x, \mathcal{X}) | \mathcal{X}] = \sigma^2 \sum_{i=1}^n v_{n,i}^2(x).
\]
Exercise 8.57 (i) The integral of the uniform kernel is computed as
\[\int_{-\infty}^{\infty} K(u) \, du = \int_{-\infty}^{\infty} (1/2) \mathbb{I}(-1 \leq u \leq 1) \, du = \int_{-1}^{1} (1/2) \, du = 1. \]
(ii) For the triangular kernel, we compute
\[\int_{-\infty}^{\infty} K(u) \, du = \int_{-\infty}^{\infty} (1 - |u|) \mathbb{I}(-1 \leq u \leq 1) \, du \]
\[= \int_{-1}^{0} (1 + u) \, du + \int_{0}^{1} (1 - u) \, du = 1/2 + 1/2 = 1. \]
(iii) For the bi-square kernel, we have
\[\int_{-\infty}^{\infty} K(u) \, du = \int_{-\infty}^{\infty} (15/16) (1 - u^2)^2 \mathbb{I}(-1 \leq u \leq 1) \, du \]
\[= (15/16) \left(\int_{-1}^{1} (1 - u^2)^2 \, du \right) = (15/16) \left(\int_{-1}^{1} (1 - 2u^2 + u^4) \, du \right) \]
\[= (15/16) \left(u - (2/3)u^3 + (1/5)u^5 \right) \bigg|_{-1}^{1} = (15/16) \left(2 - (2/3)(2) + (1/5)(2) \right) \]
\[= (15/16)(2-4/3+2/5) = (15/16)(30/15-20/15+6/15) = (15/16)(16/15) = 1. \]
(iv) For the Epanechnikov kernel,
\[\int_{-\infty}^{\infty} K(u) \, du = \int_{-\infty}^{\infty} (3/4) (1 - u^2) \mathbb{I}(-1 \leq u \leq 1) \, du \]
\[= (3/4) \left(u - (1/3)u^3 \right) \bigg|_{-1}^{1} = (3/4)(2 - (1/3)(2)) = (3/4)(2 - 2/3) \]
\[= (3/4)(6/3 - 2/3) = (3/4)(4/3) = 1. \]

Exercise 8.58 Fix a design \(\mathcal{X} \). Consider the Nadaraya-Watson estimator
\[\hat{f}_n(x) = \sum_{i=1}^{n} v_{n,i}(x) y_i \text{ where } v_{n,i}(x) = K \left(\frac{x - x_i}{h_n} \right) / \sum_{j=1}^{n} K \left(\frac{x - x_j}{h_n} \right). \]
Note that the weights sum up to one, \(\sum_{i=1}^{n} v_{n,i}(x) = 1. \)
(i) By (8.9), for any constant regression function \(f(x) = \theta_0 \), we have
\[b_n(x, \mathcal{X}) = \sum_{i=1}^{n} v_{n,i}(x) f(x_i) - f(x) \]
\[
= \sum_{i=1}^{n} v_{n,i}(x) \theta_0 - \theta_0 = \theta_0 \left(\sum_{i=1}^{n} v_{n,i}(x) - 1 \right) = 0.
\]

(ii) For any bounded Lipschitz regression function \(f \in \Theta(1, L, L_1) \), the absolute value of the conditional bias is limited from above by

\[
|b_n(x, x')| = \left| \sum_{i=1}^{n} v_{n,i}(x) f(x_i) - f(x) \right|
\leq \sum_{i=1}^{n} v_{n,i}(x) |f(x_i) - f(x)| \leq \sum_{i=1}^{n} v_{n,i}(x) L |x_i - x|
\leq \sum_{i=1}^{n} v_{n,i}(x) L h_n = L h_n.
\]

Exercise 8.59 Consider a polynomial regression function of the order not exceeding \(\beta - 1 \),

\[
f(x) = \theta_0 + \theta_1 x + \cdots + \theta_m x^m, \quad m = 1, \ldots, \beta - 1.
\]

The \(i \)-th observed response is \(y_i = \theta_0 + \theta_1 x_i + \cdots + \theta_m x_i^m + \varepsilon_i \) where the explanatory variable \(x_i \) has a Uniform(0,1) distribution, and \(\varepsilon_i \) is a \(N(0, \sigma^2) \) random error independent of \(x_i \), \(i = 1, \ldots, n \).

Take a smoothing kernel estimator (8.16) of degree \(\beta - 1 \), that is, satisfying the normalization and orthogonality conditions (8.17). To show that it is an unbiased estimator of \(f(x) \), we need to prove that for any \(m = 0, \ldots, \beta - 1 \),

\[
\frac{1}{h_n} \mathbb{E}_f \left[x_i^m K \left(\frac{x_i - x}{h_n} \right) \right] = x^m, \quad 0 < x < 1.
\]

Recalling that the smoothing kernel \(K(u) \) is non-zero only if \(|u| \leq 1 \), we write

\[
\frac{1}{h_n} \mathbb{E}_f \left[x_i^m K \left(\frac{x_i - x}{h_n} \right) \right] = \frac{1}{h_n} \int_{0}^{1} x_i^m K \left(\frac{x_i - x}{h_n} \right) dx_i
= \frac{1}{h_n} \int_{x-h_n}^{x+h_n} x_i^m K \left(\frac{x_i - x}{h_n} \right) dx_i = \int_{-1}^{1} (h_n u + x)^m K(u) du
\]

after a substitution \(x_i = h_n u + x \). If \(m = 0 \),

\[
\int_{-1}^{1} (h_n u + x)^m K(u) du = \int_{-1}^{1} K(u) du = 1,
\]
by the normalization condition. If $m = 1, \ldots, \beta - 1$,
\[
\int_{-1}^{1} (h_n u + x)^m K(u) \, du = x^m \int_{-1}^{1} K(u) \, du + \sum_{j=1}^{m} \binom{m}{j} h_n^j x^{m-j} \int_{-1}^{1} u^m K(u) \, du = x^m.
\]

Therefore,
\[
E_f \left[\frac{1}{n h_n} \sum_{i=1}^{n} y_i K \left(\frac{x_i - x}{h_n} \right) \right] = E_f \left[\frac{1}{n h_n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x_i + \cdots + \theta_m x_i^m + \varepsilon_i \right) K \left(\frac{x_i - x}{h_n} \right) \right] = \theta_0 + \theta_1 x + \cdots + \theta_m x^m = f(x).
\]
Here we also used the facts that x_i and ε_i are independent, and that ε_i has mean zero.

Exercise 8.60 (i) To find the normalizing constant, integrate the kernel
\[
\int_{-1}^{1} K(u) \, du = \int_{-1}^{1} C (1 - |u|^3)^3 \, du = 2 C \int_{0}^{1} (1 - u^3)^3 \, du
\]
\[
= 2 C \int_{0}^{1} \left(1 - 3u^3 + 3u^6 - u^9 \right) \, du = 2 C \left(u - \frac{3}{4} u^4 + \frac{3}{7} u^7 - \frac{1}{10} u^{10} \right) \bigg|_{0}^{1}
\]
\[
= 2 C \left(1 - \frac{3}{4} + \frac{3}{7} - \frac{1}{10} \right) = 2 C \frac{81}{140} = \frac{81}{70} C = 1 \iff C = \frac{70}{81}.
\]

(ii) Note that the tri-cube kernel is symmetric (an even function). Therefore, it is orthogonal to the monomial x (an odd function), but not the monomial x^2 (an even function). Indeed,
\[
\int_{-1}^{1} u (1 - |u|^3)^3 \, du = \int_{-1}^{0} u (1 + u^3)^3 \, du + \int_{0}^{1} u (1 - u^3)^3 \, du
\]
\[
= -\int_{-1}^{0} u (1 - u^3)^3 \, du + \int_{0}^{1} u (1 - u^3)^3 \, du = 0,
\]
whereas
\[
\int_{-1}^{1} u^2 (1 - |u|^3)^3 \, du = \int_{-1}^{0} u^2 (1 + u^3)^3 \, du + \int_{0}^{1} u^2 (1 - u^3)^3 \, du
\]
\[= 2 \int_0^1 u(1 - u^3)^3 \, du \neq 0. \]

Hence, the degree of the kernel is 1.

Exercise 8.61 (i) To prove that the normalization and orthogonal conditions hold for the kernel \(K(u) = 4 - 6u, \ 0 \leq u \leq 1, \) we write

\[
\int_0^1 K(u) \, du = \int_0^1 (4 - 6u) \, du = (4u - 3u^2)|_0^1 = 4 - 3 = 1
\]

and

\[
\int_0^1 uK(u) \, du = \int_0^1 u(4 - 6u) \, du = (2u^2 - 2u^3)|_0^1 = 2 - 2 = 0.
\]

(ii) Similarly, for the kernel \(K(u) = 4 + 6u, \ -1 \leq u \leq 0, \)

\[
\int_{-1}^0 K(u) \, du = \int_{-1}^0 (4 + 6u) \, du = (4u + 3u^2)|_{-1}^0 = 4 - 3 = 1
\]

and

\[
\int_{-1}^0 uK(u) \, du = \int_{-1}^0 u(4 + 6u) \, du = (2u^2 + 2u^3)|_{-1}^0 = -2 + 2 = 0.
\]

Exercise 8.62 (i) We will look for the family of smoothing kernels \(K_\theta(u) \) in the class of linear functions with support \([-\theta, 1]\). Let

\[K_\theta(u) = A_\theta u + B_\theta, \ -\theta \leq u \leq 1. \]

The constants \(A_\theta \) and \(B_\theta \) are functions of \(\theta \) and can be found from the normalization and orthogonality conditions. They satisfy

\[
\begin{cases}
\int_{-\theta}^{1} (A_\theta u + B_\theta) \, du = 1 \\
\int_{-\theta}^{1} u(A_\theta u + B_\theta) \, du = 0.
\end{cases}
\]

The solution of this system is

\[
A_\theta = -6 \frac{1 - \theta}{(1 + \theta)^3} \quad \text{and} \quad B_\theta = 4 \frac{1 + \theta^3}{(1 + \theta)^4}.
\]

Therefore, the smoothing kernel has the form

\[K_\theta(u) = 4 \frac{1 + \theta^3}{\theta(1 + \theta)^4} - 6u \frac{1 - \theta}{(1 + \theta)^3}, \ -\theta \leq u \leq 1. \]
Note that a linear kernel satisfying the above system of constaints is unique. Therefore, for \(\theta = 0 \), the kernel \(K_{\theta}(u) = 4 - 6u, 0 \leq u \leq 1 \), as is expected from Exercise 8.61 (i). If \(\theta = 1 \), then \(K_{\theta}(u) \) turns into the uniform kernel \(K_{\theta}(u) = 1/2, -1 \leq u \leq 1 \).

The smoothing kernel estimator

\[
\hat{f}_{n}(x) = \hat{f}_{n}(\theta h_{n}) = \frac{1}{nh_{n}} \sum_{i=1}^{n} y_{i} K_{\theta}\left(\frac{x_{i} - \theta h_{n}}{h_{n}}\right)
\]

utilizes all the observations with the design points between 0 and \(x + h_{n} \), since

\[
\left\{-\theta \leq \frac{x_{i} - \theta h_{n}}{h_{n}} \leq 1\right\} = \left\{0 \leq x_{i} \leq \theta h_{n} + h_{n}\right\} = \left\{0 \leq x_{i} \leq x + h_{n}\right\}.
\]

(ii) Take the smoothing kernel \(K_{\theta}(u), -\theta \leq u \leq 1 \), from part (i). Then the estimator that corresponds to the kernel \(K_{\theta}(-u), -1 \leq u \leq \theta \), at the point \(x = 1 - \theta h_{n} \), uses all the observations with the design points located between \(x - h_{n} \) and 1. It is so, because

\[
\left\{-1 \leq \frac{x_{i} - x}{h_{n}} \leq \theta \right\} = \left\{-1 \leq \frac{x_{i} - 1 + \theta h_{n}}{h_{n}} \leq \theta \right\}
\]

\[
= \left\{1 - \theta h_{n} - h_{n} \leq x_{i} \leq 1\right\} = \left\{x - h_{n} \leq x_{i} \leq 1\right\}.
\]
Chapter 9

Exercise 9.63 If \(h_n \) does not vanish as \(n \to \infty \), the bias of the local polynomial estimator stays finite. If \(nh_n \) is finite, the number of observations \(N \) within the interval \([x-h_n, x+h_n]\) stays finite, and can be even zero. Then the system of normal equations (9.2) either does not have a solution or the variance of the estimates does not decrease as \(n \) grows.

Exercise 9.64 Using Proposition 9.4 and the Taylor expansion (8.14), we obtain
\[
\hat{f}_n(0) = \sum_{m=0}^{\beta-1} (-1)^m \hat{\theta}_m = \left(\sum_{m=0}^{\beta-1} \frac{(-1)^m f^{(m)}(0)}{m!} h_n^m + \rho(0, h_n) \right) - \rho(0, h_n) + \\
+ \sum_{m=0}^{\beta-1} (-1)^m \left(b_m + N_m \right) = f(0) - \rho(0, h_n) + \sum_{m=0}^{\beta-1} (-1)^m b_m + \sum_{m=0}^{\beta-1} (-1)^m N_m.
\]

Hence the absolute conditional bias of \(\hat{f}_n(0) \) for a given design \(X \) admits the upper bound
\[
\left| \mathbb{E}_f [\hat{f}_n(0) - f(0)] \right| \leq \left| \rho(0, h_n) \right| + \sum_{m=0}^{\beta-1} \left| b_m \right| \leq \frac{Lh_n^\beta}{(\beta-1)!} + \beta C_b h_n^\beta = O(h_n^\beta).
\]

Note that the random variables \(N_m \) can be correlated. That is why the conditional variance of \(\hat{f}_n(0) \), given a design \(X \), may not be computed explicitly but only estimated from above by
\[
\text{Var}_f [\hat{f}_n(0) \mid X] = \text{Var}_f \left[\sum_{m=0}^{\beta-1} (-1)^m N_m \mid X \right] \leq \beta \sum_{m=0}^{\beta-1} \text{Var}_f [N_m \mid X] \leq \beta C_v/N = O(1/N).
\]

Exercise 9.65 Applying Proposition 9.4, we find that the bias of \(m! \hat{\theta}_m/(h_n^*)^m \) has the magnitude \(O\left((h_n^*)^{\beta-m} \right) \), while the random term \(m! N_m/(h_n^*)^m \) has the variance \(O\left((h_n^*)^{-2m} (n h_n^*)^{-1} \right) \). These formulas guarantee the optimality of \(h_n^* = n^{-1/(2\beta+1)} \). Indeed, for any \(m \),
\[
(h_n^*)^{2(\beta-m)} = (h_n^*)^{-2m} (n h_n^*)^{-1}.
\]

So, the rate \((h_n^*)^{2(\beta-m)} = n^{-2(\beta-m)/(2\beta+1)} \) follows.
EXERCISE 9.66 We proceed by contradiction. Assume that the matrix \mathbf{D}_{∞}^{-1} is not invertible. Then there exists a set of numbers $\lambda_0, \ldots, \lambda_{\beta-1}$, not all of which are zeros, such that the quadratic form defined by this matrix is equal to zero,

\[
0 = \sum_{l,m=0}^{\beta-1} (\mathbf{D}_{\infty}^{-1})_{l,m} \lambda_l \lambda_m = \frac{1}{2} \sum_{l,m=0}^{\beta-1} \lambda_l \lambda_m \int_{-1}^{1} u^{l+m} \, du \\
= \frac{1}{2} \int_{-1}^{1} \left(\sum_{l=0}^{\beta-1} \lambda_l u^l \right)^2 \, du .
\]

On the other hand, the right-hand side is strictly positive, which is a contradiction, and thus, \mathbf{D}_{∞}^{-1} is invertible.

EXERCISE 9.67 (i) Let $\mathbb{E}[\cdot]$ and $\text{Var}[\cdot]$ denote the expected value and variance with respect to the distribution of the design points. Using the continuity of the design density $p(x)$, we obtain the explicit formulas

\[
\mathbb{E} \left[\frac{1}{n h_n^*} \sum_{i=1}^{n} \varphi^2 \left(\frac{x_i - x}{h_n^*} \right) \right] = \frac{1}{h_n^*} \int_{0}^{1} \varphi^2 \left(\frac{t - x}{h_n^*} \right) p(t) \, dt \\
= \int_{0}^{1} \varphi^2 (u) p(x + h_n^* u) \, du \to p(x) \| \varphi \|_2^2 .
\]

(ii) Applying the fact that $(h_n^*)^{4\beta} = 1/(n h_n^*)^2$ and the independence of the design points, we conclude that the variance is equal to

\[
\text{Var} \left[\sum_{i=1}^{n} f_1^2(x_i) \right] = \sum_{i=1}^{n} \text{Var} \left[f_1^2(x_i) \right] \\
\leq \sum_{i=1}^{n} \mathbb{E} \left[f_1^4(x_i) \right] = \frac{1}{(n h_n^*)^2} \sum_{i=1}^{n} \mathbb{E} \left[\varphi^4 \left(\frac{x_i - x}{h_n^*} \right) \right] \\
= \frac{1}{n h_n^*} \int_{-1}^{1} \varphi^4(u) p(x + u h_n^*) \, du \leq \frac{1}{n h_n^*} \max_{-1 \leq u \leq 1} \varphi^4(u) .
\]

Since $n h_n^* \to \infty$, the variance of the random sum $\sum_{i=1}^{n} f_1^2(x_i)$ vanishes as $n \to \infty$.

(iii) From parts (i) and (ii), the random sum converges in probability to the positive constant $p(x) \| \varphi \|_2^2$. Thus, by the Markov inequality, for all large enough n,

\[
\mathbb{P} \left(\sum_{i=1}^{n} f_1^2(x_i) \leq 2p(x) \| \varphi \|_2^2 \right) \geq 1/2 .
\]
Exercise 9.68 The proof for a random design X follows the lines of that in Theorem 9.16, conditionally on X. It brings us directly to the analogue of inequalities (9.11) and (9.14),

$$
\sup_{f \in \Theta(\beta)} \mathbb{E}_f (\hat{f}_n(x) - f(x))^2 \geq \frac{1}{4} (h_n^*)^{2\beta} \varphi^2(0) \mathbb{E} \left[1 - \Phi \left(\frac{1}{2\sigma} \left[\sum_{i=1}^n f_i^2(x_i) \right]^{1/2} \right) \right].
$$

Finally, we apply the result of part (iii) of Exercise 9.67, which claim that the latter expectation is strictly positive.
Chapter 10

ExerciSe 10.69 Applying Proposition 10.2, we obtain

\[
\begin{align*}
\frac{d^m \hat{f}_n(x)}{dx^m} &= \sum_{i=m}^{\beta-1} \frac{i!}{(i-m)!} \frac{1}{h_n^m} \left(\frac{f^{(i)}(c_q)}{i!} h_n^i + b_{i,q} + \mathcal{N}_{i,q} \right) \left(\frac{x-c_q}{h_n} \right)^{i-m} \\
&= \sum_{i=m}^{\beta-1} \frac{f^{(i)}(c_q)}{(i-m)!} (x-c_q)^{i-m} + \frac{1}{h_n^m} \sum_{i=m}^{\beta-1} \frac{i!}{(i-m)!} b_{i,q} \left(\frac{x-c_q}{h_n} \right)^{i-m} \\
&\quad + \frac{1}{h_n^m} \sum_{i=m}^{\beta-1} \frac{i!}{(i-m)!} \mathcal{N}_{i,q} \left(\frac{x-c_q}{h_n} \right)^{i-m}.
\end{align*}
\]

The first term on the right-hand side is the Taylor expansion around \(c_q \) of the \(m \)-th derivative of the regression function, which differs from \(f^{(m)}(x) \) by no more than \(O(h_n^{\beta-m}) \). As in the proof of Theorem 10.3, the second bias term has the magnitude \(O(h_n^{\beta-m}) \), where the reduction in the rate is due to the extra factor \(h_n^{\beta-m} \) in the front of the sum. Finally, the third term is a normal random variable which variance does not exceed \(O(h_n^{\beta-2m} (nh_n)^{-1}) \).

Thus the balance equation takes the form

\[
h_n^{2(\beta-m)} = \frac{1}{(h_n^{\beta-m})^{2m} (nh_n)}.
\]

Its solution is \(h_n^* = n^{1/(2\beta+1)} \), and the respective convergence rate is \((h_n^*)^{\beta-m} \).

ExerciSe 10.70 For any \(y > 0 \),

\[
P \left(Z^* \geq y\beta \sqrt{2 \ln n} \right) \leq P \left(\bigcup_{q=1}^{Q} \bigcup_{m=0}^{\beta-1} \left| Z_{m,q} \right| \geq y\sqrt{2 \ln n} \right)
\]

\[
\leq Q\beta P \left(|Z| \geq y\sqrt{2 \ln n} \right) \text{ where } Z \sim \mathcal{N}(0,1)
\]

\[
\leq Q\beta n^{-y^2} \text{ since } P(|Z| \geq x) \leq \exp\{-x^2/2\}, \ x \geq 1.
\]

If \(n > 2 \) and \(y > 2 \), then \(Qn^{-y^2} \leq 2^{-y} \), and hence

\[
\mathbb{E} \left[\frac{Z^*}{\beta \sqrt{2 \ln n}} \big| \mathcal{X} \right] = \int_{0}^{\infty} P \left(\frac{Z^*}{\beta \sqrt{2 \ln n}} \geq y \big| \mathcal{X} \right) dy
\]

\[
\leq \int_{0}^{2} dy + \beta \int_{2}^{\infty} 2^{-y} dy = 2 + \frac{\beta}{4 \ln 2}.
\]

Thus (10.11) holds with \(C_z = (2 + \frac{\beta}{4 \ln 2}) \beta \sqrt{2} \).
Exercise 10.71 Note that
\[P\left(Z^* \geq y \sqrt{2\beta^2 \ln Q}\right) \leq Q\beta Q^{-y^2} = \beta Q^{-\left(y^2-1\right)} \leq \beta 2^{-y}, \]
if \(Q \geq 2 \) and \(y \geq 2 \). The rest of the proof follows as in the solution to Exercise 10.70. Further, if we seek to equate the squared bias and the variance terms, the bandwidth would satisfy
\[h_n^\beta = \sqrt{(nh_n)^{-1} \ln Q}, \text{ where } Q = 1/(2 h_n). \]
Omitting the constants in this identity, we arrive at the balance equation, which the optimal bandwidth solves,
\[h_n^\beta = \sqrt{- (nh_n)^{-1} \ln h_n}, \]
or, equivalently,
\[nh_n^{2\beta+1} = - \ln h_n. \]
To solve this equation, put
\[h_n = \left(\frac{b_n \ln n}{(2\beta + 1)n} \right)^{1/(2\beta+1)}. \]
Then \(b_n \) satisfies the equation
\[b_n = 1 + \frac{\ln(2\beta + 1) - \ln b_n - \ln \ln n}{\ln n} \]
with the asymptotics \(b_n \rightarrow 1 \) as \(n \rightarrow \infty \).

Exercise 10.72 Consider the piecewise monomial functions given in (10.12),
\[\gamma_{m,q}(x) = \mathbb{I}(x \in B_q) \left(\frac{x - c_q}{h_n} \right)^m, \quad q = 1, \ldots, Q, \quad m = 0, \ldots, \beta - 1. \quad (0.1) \]
The design matrix \(\mathbf{\Gamma} \) in (10.16) has the columns
\[\gamma_k = (\gamma_k(x_1), \ldots, \gamma_k(x_n))^t, \quad k = m+\beta(q-1), \quad q = 1, \ldots, Q, \quad m = 0, \ldots, \beta - 1. \quad (0.2) \]
The matrix \(\mathbf{\Gamma}'\mathbf{\Gamma} \) of the system of normal equations (10.17) is block-diagonal with \(Q \) blocks of dimension \(\beta \) each. Under Assumption 10.1, this matrix is invertible. Thus, the dimension of the span-space is \(\beta Q = K \).

Exercise 10.73 If \(\beta \) is an even number, then
\[f^{(\beta)}(x) = \sum_{k=1}^{\infty} (-1)^{\beta/2} (2\pi k)^{\beta} \left[a_k \sqrt{2} \cos(2\pi kx) + b_k \sqrt{2} \sin(2\pi kx) \right]. \]
If β is an odd number, then

$$f^{(\beta)}(x) = \sum_{k=1}^{\infty} (-1)^{(\beta+1)/2}(2\pi k)^{\beta} \left[a_k \sqrt{2} \cos(2\pi kx) - b_k \sqrt{2} \sin(2\pi kx) \right].$$

In either case,

$$\|f^{(\beta)}\|_2^2 = (2\pi)^\beta \sum_{k=1}^{\infty} k^{2\beta} \left[a_k^2 + b_k^2 \right].$$

Exercise 10.74 We will show only that

$$\sum_{i=1}^{n} \sin \left(\frac{2\pi mi}{n}\right) = 0.$$

To this end, we use the elementary trigonometric identity

$$2 \sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

to conclude that

$$\sin \left(\frac{2\pi mi}{n}\right) = \frac{\cos \left(\frac{2\pi m(i - 1/2)}{n}\right) - \cos \left(\frac{2\pi m(i + 1/2)}{n}\right)}{2 \sin \left(\frac{\pi m}{n}\right)}.$$

Thus, we get a telescoping sum

$$\sum_{i=1}^{n} \sin \left(\frac{2\pi mi}{n}\right) = \sum_{i=1}^{n} \left[\frac{\cos \left(\frac{2\pi m(i - 1/2)}{n}\right) - \cos \left(\frac{2\pi m(i + 1/2)}{n}\right)}{2 \sin \left(\frac{\pi m}{n}\right)} \right]$$

$$= \frac{1}{2 \sin \left(\frac{\pi m}{n}\right)} \left[\cos \left(\frac{\pi m}{n}\right) - \cos \left(\frac{2\pi m(n + 1/2)}{n}\right) \right]$$

$$= \frac{1}{2 \sin \left(\frac{\pi m}{n}\right)} \left[\cos \left(\frac{\pi m}{n}\right) - \cos \left(\frac{2\pi m + \pi m}{n}\right) \right]$$

$$= \frac{1}{2 \sin \left(\frac{\pi m}{n}\right)} \left[\cos \left(\frac{\pi m}{n}\right) - \cos \left(\frac{\pi m}{n}\right) \right] = 0.$$
Chapter 11

EXERCISE 11.75 The standard B-spline of order 2 can be computed as

$$S_2(u) = \int_{-\infty}^{\infty} I_{[0,1)}(z) I_{[0,1)}(u-z) \, dz = \begin{cases} \int_0^u dz = u, & \text{if } 0 \leq u < 1, \\ \int_1^u dz = 2 - u, & \text{if } 1 \leq u < 2. \end{cases}$$

The standard B-spline of order 3 has the form

$$S_3(u) = \int_{-\infty}^{\infty} S_2(z) I_{[0,1)}(u-z) \, dz$$

$$= \begin{cases} \int_0^u z \, dz = \frac{1}{2} u^2, & \text{if } 0 \leq u < 1, \\ \int_1^u z \, dz + \int_1^u (2-z) \, dz = -u^2 + 3u - \frac{3}{2}, & \text{if } 1 \leq u < 2, \\ \int_{u-1}^{u^2} (2-z) \, dz = \frac{1}{2} (3-u)^2, & \text{if } 2 \leq u < 3. \end{cases}$$

Both splines $S_2(u)$ and $S_3(u)$ are depicted in the figure below.
Exercise 11.76 For $k = 0$, (11.6) is a tautology. Assume that the statement is true for some $k \geq 0$. Then, applying (11.2), we obtain that

$$S_m^{(k+1)}(u) = \left(S_m^{(k)}(u) \right)' = \sum_{j=0}^{k} (-1)^j \binom{k}{j} S_{m-k}(u-j)$$

$$= \sum_{j=0}^{k} (-1)^j \binom{k}{j} [S_{m-k-1}(u-j) - S_{m-k-1}(u-j-1)]$$

$$= \binom{k}{0} S_{m-k-1}(u) + (-1)^1 \left[\binom{k}{1} + \binom{k}{0} \right] S_{m-k-1}(u-1) + \ldots + (-1)^k \left[\binom{k}{k} + \binom{k}{k-1} \right] S_{m-k-1}(u-k) - (-1)^k \binom{k}{k} S_{m-k-1}(u-k-1)$$

$$= \sum_{j=0}^{k+1} (-1)^j \binom{k+1}{j} S_{m-(k+1)}(u-j).$$

Here we used the elementary formulas

$$\binom{k}{j} + \binom{k}{j-1} = \binom{k+1}{j}, \quad \binom{k}{0} = 1,$$

and

$$-(-1)^k \binom{k}{k} = (-1)^{k+1} \binom{k+1}{k+1}.$$

Exercise 11.77 Applying Lemma 11.2, we obtain that

$$LS_{m-1}(u) = \sum_{i=0}^{m-2} a_i S_m^{(m-1)}(u-i) = \sum_{i=0}^{m-2} a_i \sum_{l=0}^{m-1} (-1)^l \binom{m-1}{l} \|_{(0,1)}(u-i-l).$$

If $u \in [j, j+1)$, then the only non-trivial contribution into the latter sum comes from i and l such that $i + l = j$. In view of the restriction, $0 \leq j \leq m-2$, the double sum in the last formula turns into

$$\lambda_j = \sum_{i=0}^{j} a_i (-1)^{j-i} \binom{m-1}{j-i}.$$

Exercise 11.78 If we differentiate j times the function

$$P_k(u) = \frac{(u-k)^{m-1}}{(m-1)!}, \quad u \geq k,$$

47
we find that
\[P^{(j)}_k(u) = (u - k)^{m-1-j} \frac{(m-1) (m-2) \ldots (m-j)}{(m-1)!} = \frac{(u - k)^{m-j-1}}{(m-j-1)!}. \]

Hence
\[\nu_j = LP^{(j)}(m-1) = \sum_{k=0}^{m-2} b_k \frac{(m - k - 1)^{m-j-1}}{(m-j-1)!}. \]

Exercise 11.79 The matrix \(\mathbf{M} \) has the explicit form,
\[
\mathbf{M} = \begin{bmatrix}
\frac{(m-1)^{m-1}}{(m-1)!} & \frac{(m-2)^{m-1}}{(m-1)!} & \cdots & \frac{(1)^{m-1}}{(m-1)!} \\
\frac{(m-1)^{m-2}}{(m-2)!} & \frac{(m-2)^{m-2}}{(m-2)!} & \cdots & \frac{(1)^{m-2}}{(m-2)!} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{(m-1)}{1!} & \frac{(m-2)}{1!} & \cdots & \frac{(1)}{1!}
\end{bmatrix}
\]

so that its determinant
\[
\det \mathbf{M} = \left(\prod_{k=1}^{m-1} k! \right)^{-1} \det \mathbf{V}_{m-1} \neq 0
\]

where \(\mathbf{V}_{m-1} \) is the \((m-1) \times (m-1)\) Vandermonde matrix with the elements \(x_1 = 1, \ldots, x_{m-1} = m - 1 \).

Exercise 11.80 In view of Lemma 11.4, the proof repeats the proof of Lemma 11.8. The polynomial \(g(u) = 1 - u^2 \) in the interval \([2, 3)\) has the representation
\[
g(u) = b_0 P_0(u) + b_1 P_1(u) + b_2 P_2(u) = (-1) \frac{u^2}{2!} + (-2) \frac{(u - 1)^2}{2!} + \frac{(u - 2)^2}{2!}
\]

with \(b_0 = -1, \ b_1 = -2, \) and \(b_2 = 1. \)

Exercise 11.81 Note that the derivative of the order \((\beta - j - 1)\) of \(f^{(j)} \) is \(f^{(j-1)} \) which is the Lipschitz function with the Lipschitz constant \(L \) by the definition of \(\Theta(\beta, L, L_1) \). Thus, what is left to show is that all the derivatives \(f^{(1)}, \ldots, f^{(\beta-1)} \) are bounded in their absolute values by some constant \(L_2 \). By Lemma 10.2, any function \(f \in \Theta(\beta, L, L_1) \) admits the Taylor approximation
\[
f(x) = \sum_{m=0}^{\beta-1} \frac{f^{(m)}(c)}{m!} (x - c)^m + \rho(x, c), \quad 0 \leq x, c \leq 1,
\]
with the remainder term \(\rho(x, c) \) such that
\[
|\rho(x, c)| \leq \frac{L|x - c|^{\beta}}{(\beta - 1)!} \leq C_\rho \text{ where } C_\rho = \frac{L}{(\beta - 1)!}
\]
That is why, if \(f \in \Theta(\beta, L, L_1) \), then at any point \(x = c \), the inequality holds
\[
\left| \sum_{m=0}^{\beta-1} \frac{f^{(m)}(c)}{m!} (x - c)^m \right| \leq |f(x)| + |\rho(x, c)| \leq L_1 + C_\rho = L_0.
\]
So, it suffices to show that if a polynomial \(g(x) = \sum_{m=0}^{\beta-1} b_m (x - c)^m \) is bounded, \(|g(x)| = \left| \sum_{m=0}^{\beta-1} b_m (x - c)^m \right| \leq L_0 \), for all \(x, c \in [0, 1] \), then
\[
\max \left[b_0, \ldots, b_{\beta-1} \right] \leq L_2 \tag{0.3}
\]
with a constant \(L_2 \) independent of \(c \in [0, 1] \). Assume for definiteness that \(0 \leq c \leq 1/2 \), and choose the points \(c < x_0 < \cdots < x_{\beta-1} \) so that \(t_i = x_i - c = (i + 1)\alpha, \ i = 0, \ldots, \beta - 1 \). A positive constant \(\alpha \) is such that \(\alpha \beta < 1/2 \), which yields \(0 \leq t_i \leq 1 \). Put \(g_i = g(x_i) \). The coefficients \(b_0, \ldots, b_{\beta-1} \) of polynomial \(g(x) \) satisfy the system of linear equations
\[
b_0 + b_1 t_i + b_2 t_i^2 + \ldots + b_{\beta-1} t_i^{\beta-1} = g_i, \ i = 0, \ldots, \beta - 1.
\]
The determinant of the system’s matrix is the Vandermonde determinant, that is, it is non-zero and independent of \(c \). The right-hand side elements of this system are bounded by \(L_0 \). Thus, the upper bound (0.3) follows. Similar considerations are true for \(1/2 \leq c \leq 1 \).
Chapter 12

Exercise 12.82 We have \(n \) design points in \(Q \) bins. That is why, for any design, there exist at least \(Q/2 \) bins with at most \(2n/Q \) design points. Indeed, otherwise we would have strictly more than \((Q/2)(2n/Q) = n \) points. Denote the set of the indices of these bins by \(\mathcal{M} \). By definition, \(|\mathcal{M}| \geq Q/2 \). In each such bin \(B_q \), the respective variance is bounded by

\[
\sigma_{q,n}^2 = \sum_{x_i \in B_q} f_q^2(x_i) \leq \sum_{x_i \in B_q} (h_n^*)^{2\beta} \varphi^2 \left(\frac{x_i - c_q}{h_n^*} \right)
\]

\[
\leq \|\varphi\|_\infty^2 (h_n^*)^{2\beta} (2n/Q) = 4n\|\varphi\|_\infty^2 (h_n^*)^{2\beta+1} = 4\|\varphi\|_\infty^2 \ln n
\]

which can be made less than \(2\alpha \ln Q \) if we choose \(\|\varphi\|_\infty \) sufficiently small.

Exercise 12.83 Select the test function defined by (12.3). Substitute \(M \) in the proof of Lemma 12.11 by \(Q \), to obtain

\[
\sup_{f \in \Theta(\beta)} \mathbb{E}_f \left[\psi_n^{-1} \| \hat{f}_n - f \|_\infty \right] \geq d_0 \psi_n^{-1} \max_{1 \leq q \leq Q} \mathbb{E}_{f_q} \left[\mathbb{E}_{f_q} \left[I(D_q) \mid \mathcal{X} \right] \right] \]

\[
\geq d_0 \psi_n^{-1} \mathbb{E}(\mathcal{X}) \left[\frac{1}{2} \mathbb{P}_0(D_0) + \frac{1}{2Q} \sum_{q=1}^Q \mathbb{P}_q(D_q) \mid \mathcal{X} \right] \]

where \(\mathbb{E}(\mathcal{X})[\cdot] \) denotes the expectation taken over the distribution of the random design.

Note that \(d_0 \psi_n^{-1} = (1/2)\|\varphi\|_\infty \). Due to (12.22), with probability 1, for any random design \(\mathcal{X} \), there exists a set \(\mathcal{M}(\mathcal{X}) \) such that

\[
\frac{1}{2} \mathbb{P}_0(D_0) + \frac{1}{2Q} \sum_{q=1}^Q \mathbb{P}(D_q) \geq \frac{|\mathcal{M}|}{4Q} \geq \frac{Q/2}{4Q} = \frac{1}{8}.
\]

Combining these bounds, we get that

\[
\sup_{f \in \Theta(\beta)} \mathbb{E}_f \left[\psi_n^{-1} \| \hat{f}_n - f \|_\infty \right] \geq (1/16)\|\varphi\|_\infty.
\]

Exercise 12.84 The log-likelihood function is equal to

\[
-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i, \omega'))^2 + \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i, \omega''))^2
\]

50
\[
\frac{1}{\sigma^2} \sum_{i=1}^{n} \left(y_i - f(x_i, \omega') \right) \left(f(x_i, \omega') - f(x_i, \omega'') \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} \left(f(x_i, \omega') - f(x_i, \omega'') \right)^2
\]

\[
= \sum_{i=1}^{n} \left(\frac{\varepsilon_i}{\sigma} \right) \left(\frac{f(x_i, \omega') - f(x_i, \omega'')}{\sigma} \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} \left(f(x_i, \omega') - f(x_i, \omega'') \right)^2
\]

so that (12.24) holds with

\[
\sigma_n^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} \left(f(x_i, \omega') - f(x_i, \omega'') \right)^2
\]

and

\[
N_n = \frac{1}{\sigma_n} \sum_{i=1}^{n} \left(\frac{\varepsilon_i}{\sigma} \right) \left(\frac{f(x_i, \omega') - f(x_i, \omega'')}{\sigma} \right)
\]

Exercise 12.85 By definition,

\[
E \left[\exp \left\{ z \xi_q' \right\} \right] = \frac{1}{2} e^{z^2/2} + \frac{1}{2} e^{-z^2/2} = \sum_{k=0}^{\infty} \frac{1}{(2k)!} \left(z^2 \right)^{2k}
\]

\[
= \sum_{k=0}^{\infty} \frac{1}{k!} \frac{1}{(k+1)(k+2) \ldots (k+k)} \left(\frac{z^2}{4} \right)^k \leq \sum_{k=0}^{\infty} \frac{1}{k!} \frac{1}{2^k} \left(\frac{z^2}{4} \right)^k = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{z^2}{8} \right)^k = e^{z^2/8}.
\]

Exercise 12.86 Consider the case \(\beta = 1 \). The bandwidth \(h_n^* = n^{-1/3} \), and the number of the bins \(Q = 1/(2h_n^*) = (1/2)n^{1/3} \). Let \(N = n/Q = 2n^{2/3} \) denote the number of design points in every bin. We assume that \(N \) is an integer. In the bin \(B_q \), \(1 \leq q \leq Q \), the estimator has the form

\[
f_n^* = \bar{y}_q = \sum_{i/n \in B_q} y_i/N = \bar{f}_q + \xi_q/\sqrt{N}
\]

with \(\bar{f}_q = \sum_{i/n \in B_q} f(x_i)/N \), and independent \(N(0, \sigma^2) \)-random variables \(\xi_q = \sum_{i/n \in B_q} (y_i - f(x_i))/\sqrt{N} = \sum_{i/n \in B_q} \varepsilon_i/\sqrt{N} \).

Put \(\bar{f}_n(x) = \bar{f}_q \) if \(x \in B_q \). From the Lipschitz condition on \(f \) it follows that \(\| \bar{f}_n - f \|_2 \leq Cn^{-2/3} \) with some positive constant \(C \) independent of \(n \). Next,

\[
\| f_n^* - f \|_2^2 \leq 2\| \bar{f}_n - f \|_2^2 + 2\| f_n^* - \bar{f}_n \|_2^2
\]

51
\[
= 2\|\hat{f}_n - f\|_2^2 + \frac{2}{QN} \sum_{q=1}^{Q} \xi_q^2 = 2\|\hat{f}_n - f\|_2^2 + \frac{2}{n} \sum_{q=1}^{Q} \xi_q^2,
\]
so that
\[
n^{2/3}\|f^*_n - f\|_2^2 \leq 2C + 2 \frac{n^{2/3}}{n} \sum_{q=1}^{Q} \xi_q^2 = 2C + 2n^{-1/3} \sum_{q=1}^{Q} \xi_q^2.
\]
By the Law of Large Numbers,
\[
2n^{-1/3} \sum_{q=1}^{Q} \xi_q^2 = \frac{1}{Q} \sum_{q=1}^{Q} \xi_q^2 \to \sigma^2
\]
almost surely as \(n \to \infty\). Hence for any constant \(c\) such that \(c^2 > 2C + \sigma^2\), the inequality holds \(n^{1/3}\|f^*_n - f\|_2 \leq c\) with probability whatever close to 1 as \(n \to \infty\). Thus, there is no \(p_0\) that satisfies
\[
P_f(\|\hat{f}_n - f\|_2 \geq cn^{-1/3} \mid \mathcal{X}) \geq p_0.
\]
Chapter 13

Exercise 13.87 The expected value $E_f[\hat{\Psi}_n] = n^{-1} \sum_{i=1}^{n} w(i/n)f(i/n)$. Since w and f are the Lipschitz functions, their product is also Lipschitz with some constant L_0 so that

$$|b_n| = |E_f[\hat{\Psi}_n] - \Psi(f)| = |E_f[\hat{\Psi}_n] - \int_{0}^{1} w(x)f(x)\,dx| \leq L_0/n.$$

Next, $\hat{\Psi}_n - E_f[\hat{\Psi}_n] = n^{-1} \sum_{i=1}^{n} w(i/n)\varepsilon_i$, hence the variance of $\hat{\Psi}_n$ equals to

$$\frac{\sigma^2}{n^2} \sum_{i=1}^{n} w^2(i/n) = \frac{\sigma^2}{n} \left(\int_{0}^{1} w^2(x)\,dx + O(n^{-1}) \right).$$

Exercise 13.88 Note that $\Psi(1) = e^{-\frac{1}{2}}\int_{0}^{1} e^{t} f(t)\,dt$, thus the estimator (13.4) takes the form

$$\hat{\Psi}_n = n^{-1} \sum_{i=1}^{n} \exp \{(i - n)/n\} y_i.$$

By Proposition 13.2, the bias of this estimator has the magnitude $O(n^{-1})$, and its variance is

$$\text{Var}[\hat{\Psi}_n] = \frac{\sigma^2}{n} \int_{0}^{1} e^{2(t-1)}\,dt + O(n^{-2}) = \frac{\sigma^2}{2n} (1 - e^{-2}) + O(n^{-2}), \text{ as } n \to \infty.$$

Exercise 13.89 Take any $f_0 \in \Theta(\beta, L, L_1)$, and put $\Delta f = f - f_0$. Note that

$$f^4 = f_0^4 + 4f_0^3(\Delta f) + 6f_0^2(\Delta f)^2 + 4f_0(\Delta f)^3 + (\Delta f)^4.$$

Hence

$$\Psi(f) = \Psi(f_0) + \int_{0}^{1} w(x, f_0)f(x)\,dx + \rho(f, f_0)$$

with a Lipschitz weight function $w(x, f_0) = 4f_0^2(x)$, and the remainder term

$$\rho(f_0, f) = \int_{0}^{1} (6f_0^2(\Delta f)^2 + 4f_0(\Delta f)^3 + (\Delta f)^4)\,dx.$$

Since f_0 and f belong to the set $\Theta(\beta, L, L_1)$, they are bounded by L_1, and, thus, $|\Delta f| \leq 2L_1$. Consequently, the remainder term satisfies the condition

$$|\rho(f_0, f)| \leq (6L_1^2 + 4L_1(2L_1) + (2L_1)^2) \|f - f_0\|_2^2$$

$$= 18L_1^2\|f - f_0\|_2^2 = C_\rho\|f - f_0\|_2^2 \text{ with } C_\rho = 18L_1^2.$$

53
Exercise 13.90 From (13.12), we have to verify is that

\[E_f\left[\left(\sqrt{n} \rho(f, f_n^*) \right)^2 \right] \to 0 \text{ as } n \to \infty. \]

Under the assumption on the remainder term, this expectation is bounded from above by

\[E_f\left[(\sqrt{n}C \| f_n^* - f \|_2^2) \right] = nC^2 \rho E_f\left[\left(\int_0^1 (f_n^*(x) - f(x))^2 \, dx \right)^2 \right] \leq nC^2 \rho E_f\left[\int_0^1 (f_n^*(x) - f(x))^4 \, dx \right] \to 0 \text{ as } n \to \infty. \]

Exercise 13.91 The expected value of the sample mean is equal to

\[\frac{1}{n} \sum_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} f(x_i)p(x_i)(x_i - x_{i-1})(np(x_i)(x_i - x_{i-1}))^{-1} \]

\[= \int_0^1 f(x)p(x)(1 + o_n(1)) \, dx, \]

because, as shown in the proof of Lemma 9.8, \(np(x_i)(x_i - x_{i-1}) \to 1 \) uniformly in \(i = 1, \ldots, n \). Hence

\[\hat{\Psi}_n = \frac{y_1 + \cdots + y_n}{n} \sim \mathcal{N}\left(\int_0^1 f(x) p(x) \, dx, \frac{\sigma^2}{n} \right). \]

To prove the efficiency, consider the family of the constant regression functions \(f_\theta(x) = \theta, \theta \in \mathbb{R} \). The corresponding functional is equal to

\[\Psi(f_\theta) = \int_0^1 f_\theta(x)p(x) \, dx = \theta \int_0^1 p(x) \, dx = \theta. \]

Thus, we have a parametric model of observations \(y_i = \theta + \epsilon_i \) with the efficient sample mean.
Chapter 14

EXERCISE 14.92 The number of monomials equals to the number of non-negative integer solutions of the equation $z_1 + \cdots + z_d = i$. Indeed, we can interpret z_j as the power of the j-th variable in the monomial, $j = 1, \ldots, d$. Consider all the strings of the length $d + (i - 1)$ filled with i ones and $d - 1$ zeros. For example, if $d = 4$ and $i = 6$, one possible such string is 10110111. Now count the number of ones between every two consecutive zeros. In our example, they are $z_1 = 1, z_2 = 0, z_3 = 2, z_4 = 3$. Each string corresponds to a solution of the equation $z_1 + \cdots + z_d = i$. Clearly, there are as many solutions of this equation as many strings with the described property. The latter number is the number of combinations of i objects from a set of $i + d - 1$ objects.

EXERCISE 14.93 As defined in (14.9),

$$\hat{f}_0 = \frac{1}{n} \sum_{i,j=1}^{m} \hat{y}_{ij} = \frac{1}{m^2} \sum_{i,j=1}^{m} \left[f_0 + f_1(i/m) + f_2(j/m) + \hat{\varepsilon}_{ij} \right]$$

$$= f_0 + \frac{1}{m} \sum_{i=1}^{m} f_1(i/m) + \frac{1}{m} \sum_{j=1}^{m} f_2(j/m) + \frac{1}{m} \hat{\varepsilon}$$

where

$$\hat{\varepsilon} = \frac{1}{m} \sum_{i,j=1}^{m} \hat{\varepsilon}_{ij} \sim \mathcal{N}(0, \sigma^2).$$

Put

$$z_i = \frac{1}{m} \sum_{j=1}^{m} (y_{ij} - \hat{f}_0) = \frac{1}{m} \sum_{j=1}^{m} \left[f_0 + f_1(i/m) + f_2(j/m) - \hat{f}_0 \right] + \frac{1}{m} \sum_{j=1}^{m} \varepsilon_{ij}$$

$$= f_1(i/m) + \delta_n + \frac{1}{\sqrt{m}} \bar{\varepsilon}_i - \frac{1}{m} \bar{\varepsilon} \text{ with } \delta_n = -\frac{1}{m} \sum_{i=1}^{m} f_1(i/m) = O(1/m).$$

The random error $\bar{\varepsilon}_i \sim \mathcal{N}(0, \sigma^2)$ is independent of $\bar{\varepsilon}$. The rest follows as in the proof of Proposition 14.5 with the only difference that in this case the variance of the stochastic term is bounded by $C_vN^{-1}(\sigma^2/m + \sigma^2/m^2)$.

EXERCISE 14.94 Define an anisotropic bin, a rectangle with the sides h_1 and h_2 along the respective coordinates. Choose the sides so that $h_1^\beta = h_2^\beta$. As our estimator take the local polynomial estimator from the observations in the selected bin. The bias of this estimator has the magnitude $O(h_1^\beta) =$
$O(h_2^\beta)$, while the variance is reciprocal to the number of design points in the
bin, that is, $O((nh_1h_2)^{-1})$. Under our choice of the bandwidths, we have
that $h_2 = h_1^{\beta_1/\beta_2}$. The balance equation takes the form

$$h_1^{2\beta_1} = (nh_1h_2)^{-1} \text{ or, equivalently, } (h_1^{\beta_1})^{2+1/\beta} = n^{-1}.$$

The magnitude of the bias term defines the rate of convergence which is equal
to $h_1^{\beta_1} = n^{-\beta/(2\beta+1)}$.

56
Chapter 15

Exercise 15.95 Choose the bandwidths \(h_{\beta_1} = (n / \ln n)^{-1/(2\beta_1+1)} \) and \(h_{\beta_2} = n^{-1/(2\beta_2+1)} \). Let \(\hat{f}_{\beta_1} \) and \(\hat{f}_{\beta_2} \) be the local polynomial estimators of \(f(x_0) \) with the chosen bandwidths.

Define \(\tilde{f}_n = \hat{f}_{\beta_1} \), if the difference of the estimators \(|\hat{f}_{\beta_1} - \hat{f}_{\beta_2}| \geq C (h_{\beta_1})^{\beta_1} \), and \(\tilde{f}_n = \hat{f}_{\beta_2} \), otherwise. A sufficiently large constant \(C \) is chosen below.

As in Sections 15.2 and 15.3, we care about the risk when the adaptive estimator does not match the true smoothness parameter. If \(f \in \Theta(\beta_1) \) and \(\tilde{f}_n = \hat{f}_{\beta_1} \), then the difference \(|\hat{f}_{\beta_1} - \hat{f}_{\beta_2}| \) does not exceed \(C (h_{\beta_1})^{\beta_1} = C \psi_n(f) \), and the upper bound follows similarly to (15.11).

If \(f \in \Theta(\beta_2) \), while \(\tilde{f}_n = \hat{f}_{\beta_1} \), then the performance of the risk is controlled by the probabilities of large deviations \(\mathbb{P}_f\{ |\hat{f}_{\beta_1} - \hat{f}_{\beta_2}| \geq C (h_{\beta_1})^{\beta_1} \} \). Note that each estimator has a bias which does not exceed \(C_b (h_{\beta_1})^{\beta_1} \). If the constant \(C \) is chosen so that \(C \geq 2C_b + 2C_0 \) for some large positive \(C_0 \), then the random event of interest can happen only if the stochastic term of at least one estimator exceeds \(C_0 (h_{\beta_1})^{\beta_1} \). The stochastic terms are zero-mean normal with the variances bounded by \(C_v(h_{\beta_1})^{2\beta_1} \) and \(C_v(h_{\beta_2})^{2\beta_2} \), respectively. The probabilities of the large deviations decrease faster that any power of \(n \) if \(C_0 \) is large enough.

Exercise 15.96 From (15.7), we have

\[
\|f_{n, \beta_1}^* - f\|_\infty^2 \leq 2 A_b^2 (h_{n, \beta_1}^*)^{2\beta_1} + 2 A_v^2 \left(n h_{n, \beta_1}^* \right)^{-1} (Z_{\beta_1}^*)^2.
\]

Hence

\[
(h_{n, \beta_1}^*)^{-2\beta_1} \mathbb{E}_f[\|f_{n, \beta_1}^* - f\|_\infty^2] \leq 2 A_b^2 + 2 A_v^2 \mathbb{E}_f[(Z_{\beta_1}^*)^2].
\]

In view of (15.8), the latter expectation is finite.
Chapter 16

Exercise 16.97 Note that by our assumption,

\[\alpha = \mathbb{P}_0(\Delta_n^* = 1) \geq \mathbb{P}_0(\Delta_n = 1). \]

It is equivalent to

\[\mathbb{P}_0(\Delta_n^* = 1, \Delta_n = 1) + \mathbb{P}_0(\Delta_n^* = 1, \Delta_n = 0) \geq \mathbb{P}_0(\Delta_n^* = 1, \Delta_n = 1) + \mathbb{P}_0(\Delta_n^* = 0, \Delta_n = 1), \]

which implies that

\[\mathbb{P}_0(\Delta_n^* = 0, \Delta_n = 1) \leq \mathbb{P}_0(\Delta_n^* = 1, \Delta_n = 0). \]

Next, the probabilities of type II error for \(\Delta_n^* \) and \(\Delta_n \) are respectively equal to

\[\mathbb{P}_{\theta_1}(\Delta_n^* = 0) = \mathbb{P}_{\theta_1}(\Delta_n^* = 0, \Delta_n = 0) + \mathbb{P}_{\theta_1}(\Delta_n^* = 0, \Delta_n = 1), \]

and

\[\mathbb{P}_{\theta_1}(\Delta_n = 0) = \mathbb{P}_{\theta_1}(\Delta_n^* = 0, \Delta_n = 0) + \mathbb{P}_{\theta_1}(\Delta_n^* = 1, \Delta_n = 0). \]

Hence, to prove that \(\mathbb{P}_{\theta_1}(\Delta_n = 0) \geq \mathbb{P}_{\theta_1}(\Delta_n^* = 0) \), it suffices to show that

\[\mathbb{P}_{\theta_1}(\Delta_n^* = 0, \Delta_n = 1) \leq \mathbb{P}_{\theta_1}(\Delta_n^* = 1, \Delta_n = 0). \]

From the definition of the likelihood ratio \(\Lambda_n \), and since \(\Delta_n^* = \mathbb{I}(L_n \geq c) \), we obtain

\[\mathbb{P}_{\theta_1}(\Delta_n^* = 0, \Delta_n = 1) = \mathbb{E}_0 \left[e^{L_n} \mathbb{I}(\Delta_n^* = 0, \Delta_n = 1) \right] \leq e^c \mathbb{P}_0(\Delta_n^* = 0, \Delta_n = 1) \leq e^c \mathbb{P}_0(\Delta_n^* = 1, \Delta_n = 0) \leq \mathbb{E}_0 \left[e^{L_n} \mathbb{I}(\Delta_n^* = 1, \Delta_n = 0) \right] = \mathbb{P}_{\theta_1}(\Delta_n^* = 1, \Delta_n = 0). \]