I would like to thank Max Lipton and Xinrui Zhao for providing a simple solution to Exercise 3.32(ii), please see the file Lipton-Zhao-exercise-3-32.pdf.

Another example can be obtained by modifying the function in Theorem 1.15 in the second edition.

Theorem 1 Let $v(x)=|x|$ for $x \in[-1,1]$ and extend v to \mathbb{R} as a periodic function of period 2. Then the function

$$
u(x)=\sum_{n=1}^{\infty} \frac{1}{4^{n / p}} v\left(4^{n} x\right), \quad x \in \mathbb{R}
$$

has finite p-variation but it is not p-absolutely continuous.
We recall that if $1<p<\infty$, then $A C_{p}([a, b])$ is given by all functions $v:[a, b] \rightarrow \mathbb{R}$ such that for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left(\sum_{i=1}^{n}\left|v\left(b_{i}\right)-v\left(a_{i}\right)\right|^{p}\right)^{1 / p} \leq \varepsilon
$$

for every finite number of nonoverlapping intervals $\left(a_{i}, b_{i}\right), i=1, \ldots, n$, with $\left[a_{i}, b_{i}\right] \subseteq I$ and

$$
\left(\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{p}\right)^{1 / p} \leq \delta
$$

Proof. To prove that $u \notin A C_{p}([0,1])$, take $x \in[0,1]$ and $h_{m}= \pm \frac{1}{2} \frac{1}{4^{m}}$, where the sign is chosen in such a way that in the open interval of endpoints $4^{m} x$ and $4^{m}\left(x+h_{m}\right)$ there is no integer. Then as in the proof of Theorem 1.15, we have that

$$
\begin{aligned}
v_{n}\left(x+h_{m}\right)-v_{n}(x) & =\frac{1}{4^{n / p}} v\left(4^{n}\left(x+h_{m}\right)\right)-\frac{1}{4^{n / p}} v\left(4^{n} x\right) \\
& =\frac{1}{4^{n / p}}\left[v\left(4^{n} x \pm \frac{1}{2} 4^{n-m}\right)-v\left(4^{n} x\right)\right] .
\end{aligned}
$$

If $n>m$, then by periodicity the right-hand side is zero. If $n=m$, then

$$
\left|v_{m}\left(x+h_{m}\right)-v_{m}(x)\right|=\frac{1}{4^{m / p}} 4^{m}\left|h_{m}\right|=\frac{1}{4^{m / p}} \frac{1}{2}
$$

Finally, if $n<m$, then using the fact that v is Lipschitz continuous with Lipschitz constant 1 we get

$$
\left|v_{n}\left(x+h_{m}\right)-v_{n}(x)\right| \leq \frac{1}{4^{n / p}} 4^{n}\left|h_{m}\right|=\frac{1}{2} \frac{1}{4^{m-n+n / p}} .
$$

Hence,

$$
u\left(x+h_{m}\right)-u(x)=\sum_{n=1}^{m}\left(v_{n}\left(x+h_{m}\right)-v_{n}(x)\right)
$$

and using the inequality $|a+b| \geq|b|-|a|$, we get

$$
\begin{align*}
\left|u\left(x+h_{m}\right)-u(x)\right| & =\left|v_{m}\left(x+h_{m}\right)-v_{m}(x)+\sum_{n=1}^{m-1}\left(v_{n}\left(x+h_{m}\right)-v_{n}(x)\right)\right| \\
& \geq\left|v_{m}\left(x+h_{m}\right)-v_{m}(x)\right|-\sum_{n=1}^{m-1}\left|v_{m}\left(x+h_{m}\right)-v_{m}(x)\right| \\
& \geq \frac{1}{4^{m / p}} \frac{1}{2}-\frac{1}{2} \sum_{n=1}^{m-1} \frac{1}{4^{m-n+n / p}}=\frac{1}{4^{m / p}} \frac{1}{2}-\frac{1}{2} \frac{1}{4^{m}} \sum_{n=1}^{m-1} 4^{n-n / p} \tag{1}\\
& =\frac{1}{4^{m / p}} \frac{1}{2}\left(1-\frac{1}{4^{1-1 / p}-1}\right)+\frac{1}{2} \frac{1}{4^{m}} \frac{4}{4-4^{1 / p}} \\
& \geq \frac{1}{4^{m / p}} \frac{1}{2}\left(1-\frac{1}{4^{1-1 / p}-1}\right)=c\left|h_{m}\right|^{1 / p}
\end{align*}
$$

Take $\ell=4^{m}, x=a_{i}=\frac{i}{4^{m}}, i=0, \ldots, 4^{m}-1$, and $h_{m}=\frac{1}{2} \frac{1}{4^{m}}$ and observe that in the open interval of endpoints $4^{m} a_{i}=i$ and $4^{m}\left(a_{i}+h_{m}\right)=4^{m}\left(\frac{i}{4^{m}}+\frac{1}{2} \frac{1}{4^{m}}\right)=i+\frac{1}{2}$ there is no integer. Moreover,

$$
b_{i}:=a_{i}+h_{m, i}=\frac{i}{4^{m}}+\frac{1}{2} \frac{1}{4^{m}}<\frac{i+1}{4^{m}}=a_{i+1} .
$$

Hence, the intervals $\left(a_{i}, b_{i}\right)$ are pairwise disjoint. Using (1),

$$
\sum_{i=1}^{4^{m}-1}\left|u\left(b_{i}\right)-u\left(a_{i}\right)\right|^{p} \geq c \sum_{i=1}^{4^{m}-1}\left|b_{i}-a_{i}\right|=c 4^{m-1}\left|h_{m}\right|=\frac{c}{2} \frac{4^{m}-1}{4^{m}} \rightarrow \frac{c}{2}>0
$$

while

$$
\sum_{i=1}^{4^{m}-1}\left|b_{i}-a_{i}\right|^{p}=\frac{1}{2^{p}} \frac{4^{m}-1}{4^{m p}} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

This shows that $u \notin A C_{p}([0,1])$.
To see that u has finite p-variation, let's prove that it is Hölder continuous of exponent $1 / p$. Given, $0 \leq x<y \leq 1$, let $m=\left\lfloor\log _{4}[1 /(y-x)]\right\rfloor$. Since v is Lipschitz continuous with Lipschitz constant 1, we can write

$$
\begin{aligned}
|u(x)-u(y)| & \leq \sum_{n=1}^{m} \frac{1}{4^{n / p}}\left|v\left(4^{n} x\right)-v\left(4^{n} y\right)\right|+2 \sum_{n=m+1}^{\infty} \frac{1}{4^{n / p}} \\
& \leq \sum_{n=1}^{m} 4^{n(1-1 / p)}(y-x)+2 \sum_{n=m+1}^{\infty} \frac{1}{4^{n / p}} \\
& \leq C 4^{m(1-1 / p)}(y-x)+C 4^{-m / p} \\
& \leq C(y-x)^{1 / p}
\end{aligned}
$$

where we used the fact that $4^{m} \leq 1 /(y-x)<4^{m+1}$. In turn, for any partition $0=x_{0}<\cdots<x_{\ell}=1$,

$$
\sum_{i=1}^{\ell}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|^{p} \leq C^{p} \sum_{i=1}^{\ell}\left(x_{i}-x_{i-1}\right)=C^{p}
$$

and so $\operatorname{Var}_{p} u \leq C$. $■$

