
I would like to thank Max Lipton and Xinrui Zhao for providing a simple
solution to Exercise 3.32(ii), please see the file Lipton-Zhao-exercise-3-32.pdf.
Another example can be obtained by modifying the function in Theorem

1.15 in the second edition.

Theorem 1 Let v(x) = |x| for x ∈ [−1, 1] and extend v to R as a periodic
function of period 2. Then the function

u(x) =

∞∑
n=1

1
4n/p

v(4nx), x ∈ R,

has finite p-variation but it is not p-absolutely continuous.

We recall that if 1 < p < ∞, then ACp([a, b]) is given by all functions
v : [a, b]→ R such that for every ε > 0 there exists δ > 0 such that( n∑

i=1

|v(bi)− v(ai)|p
)1/p

≤ ε

for every finite number of nonoverlapping intervals (ai, bi), i = 1, . . . , n, with
[ai, bi] ⊆ I and ( n∑

i=1

(bi − ai)p
)1/p

≤ δ.

Proof. To prove that u /∈ ACp([0, 1]), take x ∈ [0, 1] and hm = ± 12
1
4m , where

the sign is chosen in such a way that in the open interval of endpoints 4mx and
4m(x+ hm) there is no integer. Then as in the proof of Theorem 1.15, we have
that

vn(x+ hm)− vn(x) = 1
4n/p

v(4n(x+ hm))− 1
4n/p

v(4nx)

= 1
4n/p

[v(4nx± 1
2
4n−m)− v(4nx)].

If n > m, then by periodicity the right-hand side is zero. If n = m, then

|vm(x+ hm)− vm(x)| = 1
4m/p 4

m|hm| = 1
4m/p

1
2 .

Finally, if n < m, then using the fact that v is Lipschitz continuous with Lip-
schitz constant 1 we get

|vn(x+ hm)− vn(x)| ≤ 1
4n/p

4n|hm| = 1
2

1
4m−n+n/p .

Hence,

u(x+ hm)− u(x) =
m∑
n=1

(vn(x+ hm)− vn(x))
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and using the inequality |a+ b| ≥ |b| − |a|, we get

|u(x+ hm)− u(x)| =
∣∣∣vm(x+ hm)− vm(x) + m−1∑

n=1

(vn(x+ hm)− vn(x))
∣∣∣

≥ |vm(x+ hm)− vm(x)| −
m−1∑
n=1

|vm(x+ hm)− vm(x)|

≥ 1
4m/p

1
2 −

1
2

m−1∑
n=1

1
4m−n+n/p =

1
4m/p

1
2 −

1
2
1
4m

m−1∑
n=1

4n−n/p

(1)

= 1
4m/p

1
2

(
1− 1

41−1/p−1

)
+ 1

2
1
4m

4
4−41/p

≥ 1
4m/p

1
2

(
1− 1

41−1/p−1

)
= c|hm|1/p.

Take ` = 4m, x = ai =
i
4m , i = 0, . . . , 4

m−1, and hm = 1
2
1
4m and observe that in

the open interval of endpoints 4mai = i and 4m(ai+hm) = 4m( i
4m+

1
2
1
4m ) = i+ 1

2
there is no integer. Moreover,

bi := ai + hm,i =
i

4m
+
1

2

1

4m
<
i+ 1

4m
= ai+1.

Hence, the intervals (ai, bi) are pairwise disjoint. Using (1),

4m−1∑
i=1

|u(bi)− u(ai)|p ≥ c
4m−1∑
i=1

|bi − ai| = c4m−1|hm| =
c

2

4m − 1
4m

→ c

2
> 0,

while
4m−1∑
i=1

|bi − ai|p =
1

2p
4m − 1
4mp

→ 0 as m→∞.

This shows that u /∈ ACp([0, 1]).
To see that u has finite p-variation, let’s prove that it is Hölder continuous

of exponent 1/p. Given, 0 ≤ x < y ≤ 1, let m = blog4[1/(y − x)]c. Since v is
Lipschitz continuous with Lipschitz constant 1, we can write

|u(x)− u(y)| ≤
m∑
n=1

1
4n/p
|v(4nx)− v(4ny)|+ 2

∞∑
n=m+1

1
4n/p

≤
m∑
n=1

4n(1−1/p)(y − x) + 2
∞∑

n=m+1

1
4n/p

≤ C4m(1−1/p)(y − x) + C4−m/p

≤ C(y − x)1/p
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where we used the fact that 4m ≤ 1/(y − x) < 4m+1. In turn, for any partition
0 = x0 < · · · < x` = 1,

∑̀
i=1

|u(xi)− u(xi−1)|p ≤ Cp
∑̀
i=1

(xi − xi−1) = Cp,

and so Varp u ≤ C.
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