Exercise 0.0.1. Let p > 1 and define u(z) = Y. 55 cos(2rz) for # € [0,1]. Show that u has finite

p-variation but is not p-absolutely continuous. (see A First Course in Sobolev Spaces by Leoni, Exercise 3.32
(ii))

From Hardy Theorem 1.32, we get that u is %—Hélder continuous, which also means u has bounded
p-variation.

For N € N, let h = 27", and for j between 0 and 2V — 1, let T; = 427N, We now claim that for certain
j with conditions we will later derive, there is a constant ¢ > 0 independent of N and j (but not p) such
that |u(z; + h) — u(z;)| > chv for all N sufficiently large. To deduce that u is not in AC), it turns out we

won’t need to prove the more general claim for arbitrary = and h.

Let ug(z) = 55 cos(2rz), so u(z) = Y ug(z). Note that if k& > N, up(z; + h) — ug(z;) = 0 by
k=0

periodicity. Thus, for the infinite series of differences, we only need to examine the finite sum up to N. We
will consider the bound
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where s is an integer between 0 and N which we will see depends on p.

For the first term, observe that
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From here and onwards, assume j = —1 (mod 2°*1). As there is some m € N such that j = m25t1 — 1, for

0 <k <s, we have
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Hence, we can conclude that on these specially chosen j,

Ay =2 N/p zs: (1 _ Cos(i)) ok/p

ok
k=0
_ T T
> 2 N/p((l — cos(ﬁ)) 20/P 4 (1 — 008(2—1)> 21/P)
>3.27 N/,

Next, let ¢ be the Holder conjugate of p satisfying % + é = 1. For the remaining k =0,...,N —s—1
terms, we can apply the fact that cos(x) is 1-Lipschitz to get
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Applying the inequality |a + b| > |a| — |b| yields
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We will thus get the desired bound should we find an s such that
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Finding an s < N which satisfies is always possible provided N is sufficiently large. Note that once a

valid N is found, the chosen s is still valid for all larger N.

Finally, let S be the set of integers in {0, 1,...,2% —1} congruent to —1 modulo 25*1. There are 2V -1

such integers. Then
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Raise both sides to the power of % and send N — oo, which tends to zero. This proves u ¢ AC).



