
Exercise 0.0.1. Let p > 1 and define u(x) =
∞∑
k=0

1
2k/p cos(2kπx) for x ∈ [0, 1]. Show that u has finite

p-variation but is not p-absolutely continuous. (see A First Course in Sobolev Spaces by Leoni, Exercise 3.32

(ii))

From Hardy Theorem 1.32, we get that u is 1
p -Hölder continuous, which also means u has bounded

p-variation.

For N ∈ N, let h = 2−N , and for j between 0 and 2N −1, let xj = j2−N . We now claim that for certain

j with conditions we will later derive, there is a constant c > 0 independent of N and j (but not p) such

that |u(xj + h)− u(xj)| ≥ ch
1
p for all N sufficiently large. To deduce that u is not in ACp, it turns out we

won’t need to prove the more general claim for arbitrary x and h.

Let uk(x) = 1
2k/p cos(2kπx), so u(x) =

∞∑
k=0

uk(x). Note that if k > N , uk(xj + h) − uk(xj) = 0 by

periodicity. Thus, for the infinite series of differences, we only need to examine the finite sum up to N . We

will consider the bound

|u(xj + h)− u(xj)| =

∣∣∣∣∣
N∑

k=N−s

[uk(xj + h)− uk(xj)] +

N−s−1∑
k=0

[uk(xj + h)− uk(xj)]

∣∣∣∣∣
≥

∣∣∣∣∣
N∑

k=N−s

[uk(xj + h)− uk(xj)]

∣∣∣∣∣−
∣∣∣∣∣
N−s−1∑
k=0

[uk(xj + h)− uk(xj)]

∣∣∣∣∣
=: As −Bs,

where s is an integer between 0 and N which we will see depends on p.

For the first term, observe that

As =

∣∣∣∣∣ 1

2N/p
[cos((j + 1)π)− cos(jπ)]

+
1

2(N−1)/p

[
cos((j + 1)

π

2
)− cos(j

π

2
)
]

+ · · ·+ 1

2(N−s)/p

[
cos((j + 1)

π

2s
)− cos(j

π

2s
)
] ∣∣∣∣∣

=
1

2N/p

∣∣∣∣∣ [cos((j + 1)π)− cos(jπ)]

+ 2
1
p

[
cos((j + 1)

π

2
)− cos(j

π

2
)
]

+ · · ·+ 2
s
p

[
cos((j + 1)

π

2s
)− cos(j

π

2s
)
] ∣∣∣∣∣.
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From here and onwards, assume j ≡ −1 (mod 2s+1). As there is some m ∈ N such that j = m2s+1 − 1, for

0 ≤ k ≤ s, we have

cos((j + 1)
π

2k
)− cos(j

π

2k
) = cos(m2s−k+1π)− cos(m2s−k+1π − π

2k
)

= 1− cos(
π

2k
).

Hence, we can conclude that on these specially chosen j,

As = 2−N/p
s∑

k=0

(
1− cos(

π

2k
)
)
2k/p

≥ 2−N/p(
(
1− cos(

π

20
)
)
20/p +

(
1− cos(

π

21
)
)
21/p)

≥ 3 · 2−N/p.

Next, let q be the Hölder conjugate of p satisfying 1
p + 1

q = 1. For the remaining k = 0, . . . , N − s− 1

terms, we can apply the fact that cos(x) is 1-Lipschitz to get

Bs ≤
N−s−1∑
k=0

1

2k/p

∣∣cos(2k−Nπ(j + 1))− cos(2k−Nπj)
∣∣

≤
N−s−1∑
k=0

2k−Nπ

2k/p

= π2−N
N−s−1∑
k=0

(
2

1
q

)k

= π2−N

(
2(N−1)/q − 1

2
1
q − 1

)
≤ π2−N+(N−s)/q

2
1
q − 1

= 2−N/p π2−
s
q

2
1
q − 1

=: h
1
p ds

Applying the inequality |a+ b| ≥ |a| − |b| yields

|u(xj + h)− u(xj)| ≥ As −Bs

≥ (3− ds)h
1
p .
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We will thus get the desired bound should we find an s such that

2−s/q π

2
1
q − 1

< 3.(1)

Finding an s < N which satisfies (1) is always possible provided N is sufficiently large. Note that once a

valid N is found, the chosen s is still valid for all larger N .

Finally, let S be the set of integers in {0, 1, . . . , 2N−1} congruent to −1 modulo 2s+1. There are 2N−s−1

such integers. Then

∑
j∈S

|u(xj + h)− u(xj)|p ≥ cp|S|h

=
cp

2s+1
.

. However, we have

∑
j∈S

((xj + h)− xj)
p = (2N−s−1)(2−Np)

=
2−N(p−1)

2s+1
.

Raise both sides to the power of 1
p and send N → ∞, which tends to zero. This proves u ̸∈ ACp.
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