Exercise 0.0.1. Let $p>1$ and define $u(x)=\sum_{k=0}^{\infty} \frac{1}{2^{k / p}} \cos \left(2^{k} \pi x\right)$ for $x \in[0,1]$. Show that u has finite p-variation but is not p-absolutely continuous. (see A First Course in Sobolev Spaces by Leoni, Exercise 3.32 (ii))

From Hardy Theorem 1.32, we get that u is $\frac{1}{p}$-Hölder continuous, which also means u has bounded p-variation.

For $N \in \mathbb{N}$, let $h=2^{-N}$, and for j between 0 and $2^{N}-1$, let $x_{j}=j 2^{-N}$. We now claim that for certain j with conditions we will later derive, there is a constant $c>0$ independent of N and (but not p) such that $\left|u\left(x_{j}+h\right)-u\left(x_{j}\right)\right| \geq c h^{\frac{1}{p}}$ for all N sufficiently large. To deduce that u is not in $A C_{p}$, it turns out we won't need to prove the more general claim for arbitrary x and h.

Let $u_{k}(x)=\frac{1}{2^{k / p}} \cos \left(2^{k} \pi x\right)$, so $u(x)=\sum_{k=0}^{\infty} u_{k}(x)$. Note that if $k>N, u_{k}\left(x_{j}+h\right)-u_{k}\left(x_{j}\right)=0$ by periodicity. Thus, for the infinite series of differences, we only need to examine the finite sum up to N. We will consider the bound

$$
\begin{aligned}
\left|u\left(x_{j}+h\right)-u\left(x_{j}\right)\right| & =\left|\sum_{k=N-s}^{N}\left[u_{k}\left(x_{j}+h\right)-u_{k}\left(x_{j}\right)\right]+\sum_{k=0}^{N-s-1}\left[u_{k}\left(x_{j}+h\right)-u_{k}\left(x_{j}\right)\right]\right| \\
& \geq\left|\sum_{k=N-s}^{N}\left[u_{k}\left(x_{j}+h\right)-u_{k}\left(x_{j}\right)\right]\right|-\left|\sum_{k=0}^{N-s-1}\left[u_{k}\left(x_{j}+h\right)-u_{k}\left(x_{j}\right)\right]\right| \\
& =: A_{s}-B_{s},
\end{aligned}
$$

where s is an integer between 0 and N which we will see depends on p.
For the first term, observe that

$$
\begin{aligned}
& A_{s}=\left\lvert\, \frac{1}{2^{N / p}}[\cos ((j+1) \pi)-\cos (j \pi)]\right. \\
&+\frac{1}{2^{(N-1) / p}}\left[\cos \left((j+1) \frac{\pi}{2}\right)-\cos \left(j \frac{\pi}{2}\right)\right] \\
& \left.+\cdots+\frac{1}{2^{(N-s) / p}}\left[\cos \left((j+1) \frac{\pi}{2^{s}}\right)-\cos \left(j \frac{\pi}{2^{s}}\right)\right] \right\rvert\, \\
& \left.=\frac{1}{2^{N / p}} \right\rvert\,[\cos ((j+1) \pi)-\cos (j \pi)] \\
&+2^{\frac{1}{p}}\left[\cos \left((j+1) \frac{\pi}{2}\right)-\cos \left(j \frac{\pi}{2}\right)\right] \\
& \left.+\cdots+2^{\frac{s}{p}}\left[\cos \left((j+1) \frac{\pi}{2^{s}}\right)-\cos \left(j \frac{\pi}{2^{s}}\right)\right] \right\rvert\,
\end{aligned}
$$

From here and onwards, assume $j \equiv-1\left(\bmod 2^{s+1}\right)$. As there is some $m \in \mathbb{N}$ such that $j=m 2^{s+1}-1$, for $0 \leq k \leq s$, we have

$$
\begin{aligned}
\cos \left((j+1) \frac{\pi}{2^{k}}\right)-\cos \left(j \frac{\pi}{2^{k}}\right) & =\cos \left(m 2^{s-k+1} \pi\right)-\cos \left(m 2^{s-k+1} \pi-\frac{\pi}{2^{k}}\right) \\
& =1-\cos \left(\frac{\pi}{2^{k}}\right)
\end{aligned}
$$

Hence, we can conclude that on these specially chosen j,

$$
\begin{aligned}
A_{s} & =2^{-N / p} \sum_{k=0}^{s}\left(1-\cos \left(\frac{\pi}{2^{k}}\right)\right) 2^{k / p} \\
& \geq 2^{-N / p}\left(\left(1-\cos \left(\frac{\pi}{2^{0}}\right)\right) 2^{0 / p}+\left(1-\cos \left(\frac{\pi}{2^{1}}\right)\right) 2^{1 / p}\right) \\
& \geq 3 \cdot 2^{-N / p}
\end{aligned}
$$

Next, let q be the Hölder conjugate of p satisfying $\frac{1}{p}+\frac{1}{q}=1$. For the remaining $k=0, \ldots, N-s-1$ terms, we can apply the fact that $\cos (x)$ is 1-Lipschitz to get

$$
\begin{aligned}
B_{s} & \leq \sum_{k=0}^{N-s-1} \frac{1}{2^{k / p}}\left|\cos \left(2^{k-N} \pi(j+1)\right)-\cos \left(2^{k-N} \pi j\right)\right| \\
& \leq \sum_{k=0}^{N-s-1} \frac{2^{k-N} \pi}{2^{k / p}} \\
& =\pi 2^{-N} \sum_{k=0}^{N-s-1}\left(2^{\frac{1}{q}}\right)^{k} \\
& =\pi 2^{-N}\left(\frac{2^{(N-1) / q}-1}{2^{\frac{1}{q}}-1}\right) \\
& \leq \frac{\pi 2^{-N+(N-s) / q}}{2^{\frac{1}{q}}-1} \\
& =2^{-N / p} \frac{\pi 2^{-\frac{s}{q}}}{2^{\frac{1}{q}}-1} \\
& =: h^{\frac{1}{p}} d_{s}
\end{aligned}
$$

Applying the inequality $|a+b| \geq|a|-|b|$ yields

$$
\begin{aligned}
\left|u\left(x_{j}+h\right)-u\left(x_{j}\right)\right| & \geq A_{s}-B_{s} \\
& \geq\left(3-d_{s}\right) h^{\frac{1}{p}}
\end{aligned}
$$

We will thus get the desired bound should we find an s such that

$$
\begin{equation*}
2^{-s / q} \frac{\pi}{2^{\frac{1}{q}}-1}<3 \tag{1}
\end{equation*}
$$

Finding an $s<N$ which satisfies (1) is always possible provided N is sufficiently large. Note that once a valid N is found, the chosen s is still valid for all larger N.

Finally, let S be the set of integers in $\left\{0,1, \ldots, 2^{N}-1\right\}$ congruent to -1 modulo 2^{s+1}. There are 2^{N-s-1} such integers. Then

$$
\begin{aligned}
\sum_{j \in S}\left|u\left(x_{j}+h\right)-u\left(x_{j}\right)\right|^{p} & \geq c^{p}|S| h \\
& =\frac{c^{p}}{2^{s+1}}
\end{aligned}
$$

However, we have

$$
\begin{aligned}
\sum_{j \in S}\left(\left(x_{j}+h\right)-x_{j}\right)^{p} & =\left(2^{N-s-1}\right)\left(2^{-N p}\right) \\
& =\frac{2^{-N(p-1)}}{2^{s+1}}
\end{aligned}
$$

Raise both sides to the power of $\frac{1}{p}$ and send $N \rightarrow \infty$, which tends to zero. This proves $u \notin A C_{p}$.

