This note was written in collaboration with Daniel Spector.

1 The Riesz Transform in B!

Given j € {1,...,n} and a locally integrable function f : R®™ — R, the Riesz
transform of f is defined formally as

. Yj
R;i(f)(x) = ¢, lim flx—y dy, 1.1
D@ =entim [ i (11)

provided the limit exists. The constant c¢,, here is given by

1 — T((n + 1)/2)/x"+D/2, (1.2)

Cp =
1
fRn (a1 ) (rF0/z dx

where I' is the Gamma function. We show that Riesz transforms is bounded
from the homogeneous Besov space B!(R™) into itself when n > 2. Note that
this result is not trivial since the Riesz transform does not map L!(R™) into
itself, though it is well-known. Its classical proof makes use of the Littlewood—
Paley theory (see, e.g., [3] or [4, Section 5.2.2]), though to give a self-contained
argument of the results of this paper without recourse to Littlewood-Paley, we
give here a different proof that relies on the intrinsic seminorm of B*!(R™) and
is based on an argument of Devore, Riemenschneider, Sharpley [1].

Theorem 1.1 For every f € BLL(R™),

‘Rj(f)|Bl’1(R") = |f|Bl,1(Rn).

Remark 1.2 We observe that if f € BYY(R™), then f € WHHR™) (see [2,
Theorem 17.66]). If n = 1, this implies that f € L*(R) N L°°(R), and in turn,
f € LP(R) for all1 < p < co. On the other hand, if n > 2, then by the Sobolev—
Gagliardo—Nirenberg embedding theorem, we have f € L"/("_l)(R”). In both
cases the Riesz transform of f is well-defined.

Throughout this note, the expression
A=<XB means A< CB

for some constant C' > 0 that depends on the parameters quantified in the
statement of the result (usually n and p), but not on the functions and their
domain of integration.

Definition 1.3 Given 1 < p,q < o0 and 0 < s < 1, we say that a function
fe Ll (R™) belongs to the homogeneous Besov space B P(R™) if

loc
1/q
._ ls]+1 dh
|flBzr®ny = (/R [JAVA f|%p(uan)|h|n+sq) < 0,




where | s] is the integer part of s. The (non-homogeneous) Besov space By (R™)
is the space of all functions f € LP(R™) N B?”(R") endowed with norm

/1

i) = I lor@n) + 1157 @)

In what follows we will use the equivalent seminorm for B! (R"™):
> dr
Faey = [ sup 182l o
| 1B @) /O |Zl\lgpr” wfllo )3

(see [2, Proposition 17.17]).
Next, we recall some basic properties of the Riesz transform.

Proposition 1.4 Let 1 < p < oo and let f € LP(R™) N C*°(R"™). Then R;(f)
s well-defined with

i T) = T — Ui z—y) — f(x)] —Z .
RO =[ e [ e - >1|y|n+1(dy)
1.3

Proof. Since ‘Jfﬁrl is an odd function,

Yj Yj
- lady= [ -y By
/Rn\B(ma) |y|+ R\ B(0,1) |ly|"+t

+/ [f(z—y)— f(z)] nyH dy :=1+1II.
B(0,1)\B(0,¢) lyl

If p = 1, then the term I is well-defined since f is integrable, while if p > 1, we
can use Holder’s inequality to get

1 1/p
< len ([ —ody) <
R\ B(0,1) |y\

On the other hand, since f € C*°(R"),

1
< IIVfIILwB(m,l))Wv

Yj
(f(.’]? - y) - f(l')) |y|n+1

and since the function on the right-hand side is integrable in B(0,1), we can
apply the Lebesgue dominated convergence theorem and a change of variables
to conclude that (1.3) holds. m

Fix ¢ > 0 and let ¢ € C2°(R) be a nonnegative function such that supp ¢ =
[£,2] and

2

> r(z)=1 forallz R, (1.4)

k=—oc0



where

i) =v (1), (15
Note that
supp ¢ = B(0,2F+1t) \ B(0,2% 1¢). (1.6)

Lemma 1.5 Let ¢, be given by (1.5) and define

(@) = Vr(@) (L.7)
and
bi () == 2ay, (z) — 2%% (%) = (2¢k(33) — i (g)) JTJH (1.8a)
Then
kzoo bi( % for all z € R™\ {0}. (1.9)
Moreover,
[ a@lew=1 [ @l (1.10)
and for every h € R™ with |h| < t,
2 1 2 1
/Rn A0k (o) do < s, /R A2be(a) do < g (1.11)

Proof. Property (1.9) follows from (1.4) and (1.8a). By (1.5) and (1.6),

lz[} 1
ap(z)|dx < / ) (
/n| | BOFF\B0,2--11)  \2Ft ||

1 2
= Y ([2]) 7 dz < Bull¥loo —dr,
B(0,2)\B(0,2-1) |2| 2-1 T

where we made the change of variables z = x/(2¥t). This proves (1.10).
On the other hand, by the mean value theorem applied twice, the product

rule, and (1.6),
|z + 6h
2kt

/ |AZap ()| dz < |h|? Z/
1

1
— vl dz <
2kt22/02\B(021 v |ZH| rF2-t 7T = g2k

1
|z + oh| 2

dzr

for some 0 < § < 2 (depending on h and ). Hence, (1.11) holds. m



Lemma 1.6 Let by be defined as in Lemma 1.5 and let 1 < p < oo. Then for
every f € LP(R™) NC>®(R") and every x € R™,

Ri(f)(x)= > (bex f)(x). (1.12)
k=—o00
Proof. By (1.4) and (1.8a),
0o y 3
k;mlbk Yl < " |n k;m (Zwk(y) + U (5)) < W (1.13)
Hence, if p =1, then
bi(y)| dy < 3 — )| dy < oo,
/R"\B(o,l) k;@' w(y)ldy < /]R"\B(O,l) |f(z —y)ldy < oo

while if p > 1, we can use Holder’s inequality to get

1/p’
1
T—y bi(y)| dy < 3| f " / ——dy < 00,
/R"\B(o,l) ) Z | ) Flere rRe\B(0,1) [Y|™P

k=—o00
and so, by (1.9) we can write

oo

> / f(x—y)bk(y)dy=/ flz—y) Z bi(y)dy (1.14)
R™\B(0,1) R™\B(0,1)

k=—o0 k=—o0

Yj
= flx—y dy.
/]R"\B(O,l) ( ) y|m 1

Since by, is odd and in view of (1.6),

/ Fl@ — y)bily) dy = / (@ — ) — F@)]bely) dy.
B(0,1) B(0,1)

Using the fact that f € C>(R"),

1
f(z — )| Z bk (y)] < 3V fll oo (B21) s

k=—o0

Since the function on the right-hand side is integrable in B(0,1), by (1.9), we
have that

oo

Z/ by = 3 /B(Ol)mx—y)—f(w)]bk@)dy

k=—oc0 B(0,1) k=—oc0

:/B(Ol)[f(x—y)—f(l”)] > bly)dy

k=—o00
(1.15a)
= z—y) — f()—Z— dy.
-/ o =0 SN dy



Summing the two convergent series in (1.14) and (1.15a) and using (1.3) gives
(1.12). =

We turn to the proof of Theorem 1.1.
Proof of Theorem 1.1. Step 1: Given f € BYYH(R™) N C®(R"), define

Tk(f) = by, * f By (1.8&),

L) =5 [ (3) fe-wdy—2 [ a@) iy (116

_ / an () [f(x — 22) — 2f (2 — 2) + f(x)]d= = / ax (2) A2 () dz,

where we made the change of variables z = y/2 and used the fact that [, ax(z) dz =
0 since 1y, is even and Vﬁﬁ odd.

If k£ <0, by a change of variables, Tonelli’s theorem, (1.6), (1.10), and (1.16),
we have

/ AT ()()| de < / Te(f) ()] de < / /i lar, (2) || A2, f(2)| dzde
Rn R n JB(0,2F+16)\ B(0,25—1t)
(1.17)
2
= lzlgglt/n |AZ, f(z)| de.

If £ >0, for 7 > 0 and x € R" write

/Q(O 7) /Q(O ) Bypsf () dydz (1.18)
Tzn/ o )/Q(O f@x+2(y+2)) —2f(x +y + 2) dydz =: v (z) + w, ().

Then, by Tonelli’s theorem

/\UT )| dx < 2n/ / /|Ay+z )| dxdydz < sup /|Aif(x)|dx
" T JQo,r) JQ(o,7) JRn |h|<2y/nT JR™

(1.19)
Moreover, by [2, Step 3 of the proof of Theorem 17.24],

||V2w7||L1(Rn) = T72 sup ||A%Lf||L1(]Rn)
|h|<eT

By the mean value theorem applied twice, a change of variables, and the previous
inequality,
|hf?
”Aiw‘r”Ll(R) = \h|2||V2wr||L1(Rn) = =R \}jlip HAifHLl(Rny (1.20)
Write A2Ty(f) = (AZbg) * vy + by x (AZw,). Then by Tonelli’s theorem, a
change of variables, and (1.11), and (1.19),

1
[ @aiven@lde = [ (830@0: [ olds s g sw [ (adf@)d
n R™ R™ |h|<2y/nr JR7
(1.21)



Similarly, by Tonelli’s theorem, a change of variables, and (1.11), and (1.20),

[ lsatun@lae = [ s [ abula < B s [ 18k

72 |h|<er
(1.22)
Combining (1.21) and (1.22) and taking 7 = C2*+1¢, gives
> | >
AT (o) dr < A sup [ |ARf@)de. (1.23)
Rn (2Kt)2 | j<art1y Jrn

It follows from (1.17) and (1.23) that

sup [ IARTL(7)(a) | do < minfL 2 ) sup [ (AR f(a)| e

|h|<t [h|<2k+1¢

Since the function r — supy, <, [gn |A2 f(z)| dx is increasing, for k& < 0 we have

2"t dr
sup / A2 f(2)] de < / sup / A2 f ()| dx
|h|<2k+1t JR 2k ¢ |h| <27 JR™ r

while for k£ > 0,

2k+1g

g, s [l = [ sw [ adse)dny.

[h|<2k+1t J R 2kt |h|<2r

In turn,

o0

op [ AT o < S min{L 2%} sup [ aise)ae

k=—oo [PISt /R e —oo |n|<2k+1¢

t 00
j/ sup / |AZ f |dx— / t? sup / |A,21f(x)\dxd—§
0 |h|<2r JR® t |h|<2r JR7 r

By (1.12), for |h| <,

/ \A,zl x)| de < Z / |A2Ty(f)(2)| dx < Z sup/ |A2Ty(f)(z)| da.
R — n

* InI<t

Combining these two inequalities gives

o0

sup / |ARR;(f)(@)|dz < > sup /n |A2T3 (f) ()] dz

|n|<t e InI<t JR

t [e'e]
d
< [ sw [str@ia e [ [ai@)d,
0 |h|<2r JR" t |h|<2r JR7 r



Hence,

Ri(Dlpran = [ s [ 18RS
0 |h<tJRn
ot dr dt d
g/ / Sup/ |A2 f(2)| dz 17+/ / sup/ A2 f ()] dw = dt
0 JOo |h[<2r JR" |h|<2r r
(oo}
d
<2 [ swp [ (abf@)]de,
0 |h|<2r JRR r

where in the last inequality we used Hardy’s inequalities ([2, Theorem C.41]).
Step 2: Given f € BLY(R™), in view of Remark 1.2, we can find 1 < p < oo
such that

I fllzerny =2 fllBragrny-

Let f. € BLY(R™) N C*(R") be a mollification of f. By Step 1 and Tonelli’s
theorem

|Rj(f5)|Bl,l(Rn) =< |f8|Bl,1(]Rn) < ‘f|Bl,1(]Rn). (1.24)

On the other hand, by the boundedness of the Riesz transform in LP we have
that R;(f:) — R;(f) in LP(R™). By extracting a subsequence, we can assume
that R;(f.) — R;(f) pointwise a.e. in R™. Letting ¢ — 0" in (1.24) and using
Fatou’s lemma, we conclude the proof. m
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