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1 The Riesz Transform in B1,1

Given j ∈ {1, . . . , n} and a locally integrable function f : Rn → R, the Riesz
transform of f is defined formally as

Rj(f)(x) = cn lim
ε→0+

∫
Rn\B(0,ε)

f(x− y)
yj
|y|n+1

dy, (1.1)

provided the limit exists. The constant cn here is given by

cn =
1∫

Rn
1

(|x|2+1)(n+1)/2 dx
= Γ((n+ 1)/2)/π(n+1)/2, (1.2)

where Γ is the Gamma function. We show that Riesz transforms is bounded
from the homogeneous Besov space Ḃ1,1(Rn) into itself when n ≥ 2. Note that
this result is not trivial since the Riesz transform does not map L1(Rn) into
itself, though it is well-known. Its classical proof makes use of the Littlewood–
Paley theory (see, e.g., [3] or [4, Section 5.2.2]), though to give a self-contained
argument of the results of this paper without recourse to Littlewood-Paley, we
give here a different proof that relies on the intrinsic seminorm of Ḃ1,1(Rn) and
is based on an argument of Devore, Riemenschneider, Sharpley [1].

Theorem 1.1 For every f ∈ B1,1(Rn),

|Rj(f)|B1,1(Rn) � |f |B1,1(Rn).

Remark 1.2 We observe that if f ∈ B1,1(Rn), then f ∈ W 1,1(Rn) (see [2,
Theorem 17.66]). If n = 1, this implies that f ∈ L1(R) ∩ L∞(R), and in turn,
f ∈ Lp(R) for all 1 ≤ p ≤ ∞. On the other hand, if n ≥ 2, then by the Sobolev–
Gagliardo–Nirenberg embedding theorem, we have f ∈ Ln/(n−1)(Rn). In both
cases the Riesz transform of f is well-defined.

Throughout this note, the expression

A � B means A ≤ CB

for some constant C > 0 that depends on the parameters quantified in the
statement of the result (usually n and p), but not on the functions and their
domain of integration.

Definition 1.3 Given 1 ≤ p, q < ∞ and 0 < s ≤ 1, we say that a function
f ∈ Lploc(Rn) belongs to the homogeneous Besov space Ḃs,pq (Rn) if

|f |Bs,p
q (Rn) :=

(∫
Rn

‖∆bsc+1
h f‖qLp(Rn)

dh

|h|n+sq

)1/q

<∞,
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where bsc is the integer part of s. The (non-homogeneous) Besov space Bs,pq (Rn)

is the space of all functions f ∈ Lp(Rn) ∩ Ḃs,pq (Rn) endowed with norm

‖f‖Bs,p
q (Rn) := ‖f‖Lp(Rn) + |f |Bs,p

q (Rn).

In what follows we will use the equivalent seminorm for Ḃ1,1(Rn):

|f |∞B1,1(Rn) :=

∫ ∞
0

sup
|h|≤r

‖∆2
hf‖L1(Rn)

dr

r2

(see [2, Proposition 17.17]).
Next, we recall some basic properties of the Riesz transform.

Proposition 1.4 Let 1 ≤ p < ∞ and let f ∈ Lp(Rn) ∩ C∞(Rn). Then Rj(f)
is well-defined with

Rj(f)(x) =

∫
Rn\B(0,1)

f(x− y)
yj
|y|n+1

dy +

∫
B(0,1)

[f(x− y)− f(x)]
yj
|y|n+1

dy.

(1.3)

Proof. Since
xj

|x|n+1 is an odd function,∫
Rn\B(0,ε)

f(x− y)
yj
|y|n+1

dy =

∫
Rn\B(0,1)

f(x− y)
yj
|y|n+1

dy

+

∫
B(0,1)\B(0,ε)

[f(x− y)− f(x)]
yj
|y|n+1

dy := I + II.

If p = 1, then the term I is well-defined since f is integrable, while if p > 1, we
can use Hölder’s inequality to get

|I| ≤ ‖f‖Lp(Rn)

(∫
Rn\B(0,1)

1

|y|np′
dy

)1/p′

<∞.

On the other hand, since f ∈ C∞(Rn),∣∣∣∣(f(x− y)− f(x))
yj
|y|n+1

∣∣∣∣ ≤ ‖∇f‖L∞(B(x,1))
1

|y|n−1
,

and since the function on the right-hand side is integrable in B(0, 1), we can
apply the Lebesgue dominated convergence theorem and a change of variables
to conclude that (1.3) holds.

Fix t > 0 and let ψ ∈ C∞c (R) be a nonnegative function such that suppψ =
[ 12 , 2] and

∞∑
k=−∞

ψk(x) = 1 for all x ∈ Rn, (1.4)
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where

ψk(x) := ψ

(
|x|
2kt

)
. (1.5)

Note that
suppψk = B(0, 2k+1t) \B(0, 2k−1t). (1.6)

Lemma 1.5 Let ψk be given by (1.5) and define

ak(x) := ψk(x)
xj
|x|n+1

, (1.7)

and

bk(x) := 2ak (x)− 1

2n
ak

(x
2

)
=
(

2ψk(x)− ψk
(x

2

)) xj
|x|n+1

. (1.8a)

Then
∞∑

k=−∞

bk(x) =
xj
|x|n+1

for all x ∈ Rn \ {0}. (1.9)

Moreover, ∫
Rn

|ak(x)| dx � 1,

∫
Rn

|bk(x)| dx � 1, (1.10)

and for every h ∈ Rn with |h| ≤ t,∫
Rn

|∆2
hak(x)| dx � 1

22k
,

∫
Rn

|∆2
hbk(x)| dx � 1

22k
. (1.11)

Proof. Property (1.9) follows from (1.4) and (1.8a). By (1.5) and (1.6),∫
Rn

|ak(x)| dx ≤
∫
B(0,2k+1t)\B(0,2k−1t)

ψ

(
|x|
2kt

)
1

|x|n
dx

=

∫
B(0,2)\B(0,2−1)

ψ (|z|) 1

|z|n
dz ≤ βn‖ψ‖∞

∫ 2

2−1

1

r
dr,

where we made the change of variables z = x/(2kt). This proves (1.10).
On the other hand, by the mean value theorem applied twice, the product

rule, and (1.6),∫
Rn

|∆2
hak(x)| dx � |h|2

2∑
l=0

∫
Rn

1

(2kt)l

∣∣∣∣∇lψ( |x+ δh|
2kt

)∣∣∣∣ 1

|x+ δh|n+2−l dx

=
|h|2

(2kt)2

2∑
l=0

∫
B(0,2)\B(0,2−1)

∣∣∇lψ (|z|)
∣∣ 1

|z|n+2−l dz �
1

22k

for some 0 < δ < 2 (depending on h and x). Hence, (1.11) holds.
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Lemma 1.6 Let bk be defined as in Lemma 1.5 and let 1 ≤ p < ∞. Then for
every f ∈ Lp(Rn) ∩ C∞(Rn) and every x ∈ Rn,

Rj(f)(x) =

∞∑
k=−∞

(bk ∗ f)(x). (1.12)

Proof. By (1.4) and (1.8a),

∞∑
k=−∞

|bk(y)| ≤ 1

|y|n
∞∑

k=−∞

(
2ψk(y) + ψk

(y
2

))
≤ 3

|y|n
. (1.13)

Hence, if p = 1, then∫
Rn\B(0,1)

|f(x− y)|
∞∑

k=−∞

|bk(y)| dy ≤ 3

∫
Rn\B(0,1)

|f(x− y)| dy <∞,

while if p > 1, we can use Hölder’s inequality to get∫
Rn\B(0,1)

|f(x−y)|
∞∑

k=−∞

|bk(y)| dy ≤ 3‖f‖Lp(Rn)

(∫
Rn\B(0,1)

1

|y|np′
dy

)1/p′

<∞,

and so, by (1.9) we can write

∞∑
k=−∞

∫
Rn\B(0,1)

f(x− y)bk(y) dy =

∫
Rn\B(0,1)

f(x− y)

∞∑
k=−∞

bk(y) dy (1.14)

=

∫
Rn\B(0,1)

f(x− y)
yj
|y|n+1

dy.

Since bk is odd and in view of (1.6),∫
B(0,1)

f(x− y)bk(y) dy =

∫
B(0,1)

[f(x− y)− f(x)]bk(y) dy.

Using the fact that f ∈ C∞(Rn),

|f(x− y)− f(x)|
∞∑

k=−∞

|bk(y)| ≤ 3‖∇f‖L∞(B(x,1))
1

|y|n−1
.

Since the function on the right-hand side is integrable in B(0, 1), by (1.9), we
have that

∞∑
k=−∞

∫
B(0,1)

f(x− y)bk(y) dy =

∞∑
k=−∞

∫
B(0,1)

[f(x− y)− f(x)]bk(y) dy

=

∫
B(0,1)

[f(x− y)− f(x)]

∞∑
k=−∞

bk(y) dy

(1.15a)

=

∫
B(0,1)

[f(x− y)− f(x)]
yj
|y|n+1

dy.
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Summing the two convergent series in (1.14) and (1.15a) and using (1.3) gives
(1.12).

We turn to the proof of Theorem 1.1.
Proof of Theorem 1.1. Step 1: Given f ∈ B1,1(Rn) ∩ C∞(Rn), define
Tk(f) := bk ∗ f . By (1.8a),

Tk(f)(x) =
1

2n

∫
Rn

ak

(y
2

)
f(x− y) dy − 2

∫
Rn

ak (y) f(x− y) dy (1.16)

=

∫
Rn

ak (z) [f(x− 2z)− 2f(x− z) + f(x)] dz =

∫
Rn

ak (z) ∆2
−zf(x) dz,

where we made the change of variables z = y/2 and used the fact that
∫
Rn ak(z) dz =

0 since ψk is even and
zj
|z|n+1 odd.

If k ≤ 0, by a change of variables, Tonelli’s theorem, (1.6), (1.10), and (1.16),
we have∫
Rn

|∆2
hTk(f)(x)| dx �

∫
Rn

|Tk(f)(x)| dx ≤
∫
Rn

∫
B(0,2k+1t)\B(0,2k−1t)

|ak (z) ||∆2
−zf(x)| dzdx

(1.17)

� sup
|z|≤2k+1t

∫
Rn

|∆2
−zf(x)| dx.

If k > 0, for τ > 0 and x ∈ Rn write

f(x) =
1

τ2n

∫
Q(0,τ)

∫
Q(0,τ)

∆2
y+zf(x) dydz (1.18)

− 1

τ2n

∫
Q(0,τ)

∫
Q(0,τ)

(f(x+ 2(y + z))− 2f(x+ y + z)) dydz =: vτ (x) + wτ (x).

Then, by Tonelli’s theorem∫
Rn

|vτ (x)| dx ≤ 1

τ2n

∫
Q(0,τ)

∫
Q(0,τ)

∫
Rn

|∆2
y+zf(x)| dxdydz ≤ sup

|h|≤2
√
nτ

∫
Rn

|∆2
hf(x)| dx.

(1.19)
Moreover, by [2, Step 3 of the proof of Theorem 17.24],

‖∇2wτ‖L1(Rn) � τ−2 sup
|h|≤cτ

‖∆2
hf‖L1(Rn).

By the mean value theorem applied twice, a change of variables, and the previous
inequality,

‖∆2
hwτ‖L1(R) � |h|2‖∇2wτ‖L1(Rn) �

|h|2

τ2
sup
|h|≤cτ

‖∆2
hf‖L1(Rn). (1.20)

Write ∆2
hTk(f) = (∆2

hbk) ∗ vτ + bk ∗ (∆2
hwτ ). Then by Tonelli’s theorem, a

change of variables, and (1.11), and (1.19),∫
Rn

|(∆2
hbk)∗vτ )(x)| dx �

∫
Rn

|∆2
hbk(z)|dz

∫
Rn

|vτ (y)| dy � 1

22k
sup

|h|≤2
√
nτ

∫
Rn

|∆2
hf(x)| dx.

(1.21)
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Similarly, by Tonelli’s theorem, a change of variables, and (1.11), and (1.20),∫
Rn

|(bk∗(∆2
hwτ ))(x)| dx �

∫
Rn

|bk(z)|dz
∫
Rn

|∆2
hwτ (y)| dy � |h|

2

τ2
sup
|h|≤cτ

∫
Rn

|∆2
hf(x)| dx.

(1.22)
Combining (1.21) and (1.22) and taking τ = C2k+1t, gives∫

Rn

|∆2
hTk(f)(x)| dx � |h|2

(2kt)2
sup

|h|≤2k+1t

∫
Rn

|∆2
hf(x)| dx. (1.23)

It follows from (1.17) and (1.23) that

sup
|h|≤t

∫
Rn

|∆2
hTk(f)(x)| dx � min{1, 2−2k} sup

|h|≤2k+1t

∫
Rn

|∆2
hf(x)| dx.

Since the function r 7→ sup|h|≤r
∫
Rn |∆2

hf(x)| dx is increasing, for k < 0 we have

sup
|h|≤2k+1t

∫
Rn

|∆2
hf(x)| dx �

∫ 2k+1t

2kt

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r

while for k ≥ 0,

1

(2kt)2
sup

|h|≤2k+1t

∫
Rn

|∆2
hf(x)| dx �

∫ 2k+1t

2kt

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r3
.

In turn,

∞∑
k=−∞

sup
|h|≤t

∫
Rn

|∆2
hTk(f)(x)| dx ≤

∞∑
k=−∞

min{1, 2−2k} sup
|h|≤2k+1t

∫
Rn

|∆2
hf(x)| dx

�
∫ t

0

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r
+

∫ ∞
t

t2 sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r3
.

By (1.12), for |h| ≤ t,∫
Rn

|∆2
hRj(f)(x)| dx ≤

∞∑
k=−∞

∫
Rn

|∆2
hTk(f)(x)| dx ≤

∞∑
k=−∞

sup
|h|≤t

∫
Rn

|∆2
hTk(f)(x)| dx.

Combining these two inequalities gives

sup
|h|≤t

∫
Rn

|∆2
hRj(f)(x)| dx ≤

∞∑
k=−∞

sup
|h|≤t

∫
Rn

|∆2
hTk(f)(x)| dx

≤
∫ t

0

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r
+ t2

∫ ∞
t

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r3
.
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Hence,

|Rj(f)|B1,1(Rn) =

∫ ∞
0

sup
|h|≤t

∫
Rn

|∆2
hR(f)(x)|dt

t2

≤
∫ ∞
0

∫ t

0

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r

dt

t2
+

∫ ∞
0

∫ ∞
t

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r3
dt

≤ 2

∫ ∞
0

sup
|h|≤2r

∫
Rn

|∆2
hf(x)| dxdr

r2
,

where in the last inequality we used Hardy’s inequalities ([2, Theorem C.41]).
Step 2: Given f ∈ B1,1(Rn), in view of Remark 1.2, we can find 1 < p <∞

such that
‖f‖Lp(Rn) � ‖f‖B1,1(Rn).

Let fε ∈ B1,1(Rn) ∩ C∞(Rn) be a mollification of f . By Step 1 and Tonelli’s
theorem

|Rj(fε)|B1,1(Rn) � |fε|B1,1(Rn) ≤ |f |B1,1(Rn). (1.24)

On the other hand, by the boundedness of the Riesz transform in Lp we have
that Rj(fε) → Rj(f) in Lp(Rn). By extracting a subsequence, we can assume
that Rj(fε)→ Rj(f) pointwise a.e. in Rn. Letting ε→ 0+ in (1.24) and using
Fatou’s lemma, we conclude the proof.
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