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FOREWORD

This addendum to the Reader’s Companion completes the solutions and an-
notations to the problems in Hadamard’s elementary geometry text (Lessons in
Geometry. I. Plane Geometry , Jacques Hadamard, Amer. Math. Soc. (2008)).
Because of space constraints, they were not included in the printed volume con-
taining solutions to most of Hadamard’s problems (Hadamard’s Plane Geometry:
A Reader’s Companion, Mark Saul, Amer. Math. Soc. (2010)).

Hadamard revised his geometry textbook a dozen times during his long life, and
kept adding interesting problems to the miscellany he had provided in the original
edition. So this collection of problems is the result of Hadamard’s lifetime love of
synthetic Euclidean geometry. The textbook itself is written in an abbreviated,
almost telegraphic style. The problems offered for each chapter invite the reader
to unfold the compressed exposition, discovering its implications through hands-on
experience with geometry.

These problems have a somewhat different feel to them. Their results sometimes
take us far from the main stream of the exposition in the text. Often, they require
a deep, almost virtuosic control of the techniques and theorems offered in the text.
Many of them generalize or build on problems mentioned earlier. While some of
these problems fall more easily to advanced (i.e. analytic) methods, we have here
provided solutions for the most part within the bounds of Hadamard’s text and his
synthetic approach.

As with most large efforts, much credit must be given to others. Behzad
Mehrdad patiently reviewed each piece of the manuscript, offering valuable insights,
correcting errors, and in some cases providing improved solutions to the problem.
Alexei Kopylov likewise suggested significant corrections to and improvements on
the original manuscript. I am also indebted to the Education Development Center
(EDC) and Al Cuoco in particular for significant and sustained support in this
translation project.

But the lion’s share of the work was actually done by others. More than is
the case with the problems in the textbook, these solutions are often based on
those of D. I. Perepelkin and his colleagues, who prepared the Russian edition of
Hadamard’s book (Gosudarstvenoye Uchebno-Pedagogicheskoye Izdatelstvo Minis-
terstva Prosveshcheniya RSFSR Moscow, 1957). Perepelkin’s solutions are written
for a professional mathematical audience, and even where his ideas are central
to the solution, the exposition has been reworked significantly. Of course, I take
responsibility for any errors that have crept in during this process.

The work on Hadamard’s Elementary Geometry was initiated under National
Science Foundation grant ESI 0242476-03 to the Educational Development Center.
Additional support was provided by the John Templeton Foundation through a
grant to the Mathematical Sciences Research Institute, and the Alfred P. Sloan
Foundation through a grant to the Courant Institute of Mathematical Sciences at
New York University.

Mark Saul
New York City
August 2011
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PROBLEMS, SOLUTIONS, AND NOTES

Exercises 349, 350, 353, 354,384, 386, 387, 393, 394, 400, 404, 413 are taken
from the General Competition of Lycées and Colleges. Exercises 365, 374, 397, 406,
409, 412, 421 were taken from the contest of the Assembly of the Mathematical
Sciences. We have not felt obligated to give these problems in the form in which
they were originally proposed; we have, in particular, made certain changes in their
formulation to correspond to other exercises given in the rest of this work.

Problem 343. If A, B, C, D are four points on a circle (in that order), and

if a, b, c, d are the midpoints of arcs AB, BC, CD,DA, show that lines ac, bd
are perpendicular.

Solution. We have aB= 1
2 AB, Bb=

1
2 BC, cD= 1

2 CD, Dd= 1
2 DA .

Thus ab + cd= 1
2

(
AB + BC + CD + DA

)
= 180◦, and since the angle be-

tween lines ac and bd is measured by half this arc, it must be a right angle.

Figure t344a

Problem 344. We take points D, E, F on sides BC, CA, AB of a triangle,
and construct circles AEF , BFD, and CDE. Prove that :

1o. These three circles are concurrent at a point O;
2o. If an arbitrary point P in the plane is joined to A, B, C, then the new

points a, b, c where PA, PB, PC intersect these circles belong to a circle passing
through O and P .

Solution. (1◦) Suppose circlesAEF andBFD intersect at pointO (fig. t344a).
We must show that O is on the circle through C, E, and D as well. We will do
this by showing that quadrilateral CEOD is cyclic, using the criterion of 80.
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Since quadrilateral AEOF is cyclic, we know (79) that ÊOF = 180◦ − ĈAB.

Since quadrilateral BFOD is cyclic, we have F̂OD = 180◦ − ÂBC. By adding

the angles about point O, we see that ÊOD = 360◦ − (ÊOF + F̂OD) = 360◦ −
(180◦− ĈAB+ 180◦− ÂBC) = ĈAB+ ĈBA = 180◦− ÂCB (this last because the
three angles involved are the angles of triangle ABC). Thus the opposite angles of
CEOD are supplementary, and point O must lie on the circle through C, E, and
D.

Note. This is a relatively easy problem. If students need a hint, it is usually
enough to suggest using cyclic quadrilaterals and the criteria of 79 and 80. Some-
times students have a slight problem imagining that O is the intersection of only
two of the circles, and will make some assumption in their argument equivalent to
the assumption that O is on the third circle as well. This error is worth examining
in detail in the classroom.

In constructing a diagram with dynamic software, students may discover that
the proof needs modification in certain cases. For some positions of D, E, and F ,
point O will end up outside the triangle, and the quadrilaterals referred to above
won’t lead to a solution. But other quadrilaterals will, and students can look at
various such cases to convince themselves that the argument does not essentially
change. Certain angles that are equal in some cases are supplementary in others,
and vice versa.

In more advanced work, greater unity is achieved if we consider angles as ori-
ented, defining equality of angles slightly differently. See the note below.

(2◦) The solution to this exercise is again straightforward, but the relationship
of the elements in the figure offer many different cases for exploration. We give just
one here. We will show that the quadrilateral with vertices P, a, O, b (in some
order) is cyclic. The argument can be repeated for the quadrilateral with vertices
P, b, c, O, which proves the theorem.

In figure t344b, P̂ aO is supplementary to ÂaO, which in turn is supplementary

to ÂFO (because these are opposite angles in cyclic quadrilateral AaOF ). Hence

P̂ aO = ÂFO.
Similarly, using cyclic quadrilateral BbOF , we see that B̂bO is supplementary

to both P̂ bO and B̂FO, so these last two angles are equal. But clearly ÂFO and

B̂FO are supplementary, so P̂ aO and P̂ bO are also supplementary, showing that
PaOb is cyclic.

To show that PcOb is cyclic, we note that P̂ bO supplements B̂bO, which is

equal to B̂DO (they both intercept arc BFO). And B̂DO supplements ĈDO,

so P̂ bO = ĈDO. Finally, from cyclic quadrilateral CDOc, we see that ĈDO

supplements ĈcO = P̂ cO, so P̂ bO also supplements P̂ cO. This last statement
shows that quadrilateral PcOb is cyclic, and the argument is completed as indicated
above.

Note. In other cases, we can make use of angles P̂ aO, ÂaO, ÔFB, and so on.
In each case, certain angles are equal, and others are supplementary. In advanced
work, we consider oriented angles, and define ‘equality’ so that ‘equal’ oriented
angles are either equal or supplementary, if orientation is not considered.
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Figure t344b

The solution we have presented here can motivate this step, which students
and teachers can take using other references. See, for example, Roger A. Johnson,
Advanced Euclidean Geometry, New York: Dover Books, 2007 (reprint of 1929
edition).

See also exercise 214.

Problem 345. With each side of a cyclic quadrilateral ABCD as a chord, we
draw an arbitrary circular segment. The four new points A′, B′ , C ′, D′ where
each of these four circles S1, S2, S3, S4 intersects the next are also the vertices of
a cyclic quadrilateral.

Solution. Since quadrilateral ABB′A′ (figure t345) is cyclic, we know that

Â′AB+B̂B′A′ = 180◦. Since quadrilateral BCC ′B′ is cyclic, we know that B̂CC ′+

B̂B′C ′ = 180◦. Adding, we find that Â′AB + B̂B′A′ + B̂CC ′ + B̂B′C ′ = 360◦ =

B̂B′A′+Â′B′C ′+B̂B′C ′, or Â′AB+B̂CC ′ = Â′B′C ′. Similarly, using other cyclic

quadrilaterals, we can prove that D̂AA′ + D̂CC ′ = Â′D′C ′.

Adding again, we find Â′AB + B̂CC ′ + D̂AA′ + D̂CC ′ = Â′B′C ′ + Â′D′C ′.

But the first sum is equal to D̂AB + D̂CB = 180◦, because these are the opposite

angles of cyclic quadrilateral ABCD. Hence D̂′A′B′ + D̂′C ′B′ = 180◦, so that
A′B′C ′D′ is cyclic.

Note. The result is slightly more general than is indicated by the figure. The
four points can be in any order on the circle, and the result will hold. That is, the
given cyclic quadrilateral can have ‘sides’ which intersect (we don’t usually consider
these true quadrilaterals), and the result will hold.
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Figure t345

Students can be challenged to show that this is true. They will find that
essentially the same proof holds, with certain equal pairs of angles replaced by
supplementary pairs. In more advanced work with oriented angles, all these cases
can be treated at once. (See the note to exercise 341)

Problem 346. Two circles S1, S2 intersect at A, A′; S2 and a third circle
S3 intersect at B, B′; S3 and a fourth circle S4 at C,C ′; and S4, S1 at D, D′.
A condition for quadrilateral ABCD (and, by the previous exercise, quadrilateral
A′B′C ′D′) to be cyclic is that the angle between S1 and S2, plus the angle between
S3 and S4 (these angles being taken with an appropriate orientation1) be the same
as the angle between S2 and S3 plus the angle between S4 and S1.

Solution. We will not give a general solution using oriented angles: this is
beyond the scope of Hadamard’s exposition. But we will give an indication, as in
other solutions, of how some of the special cases can be treated more uniformly.

Lemma: The angle between two circles is equal to the sum of the inscribed
angles in each circle which cut off the arc between the circles’ points of intersection.

1One should try to orient the angles, using, as needed, the conventions of Trigonometry
(Leçons de BOURLET, book I, chapter I) in order to give a proof which applies for all possible

cases of the figure.
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Figure t346a

Proof: In figure t346a, circles O1 and O2 intersect at points P and Q, and

XY, V W are tangents at P . We take the angle between the circles to be Ŷ PW .

Then, adding the angles about point P , we find Ŷ PW+ŴPO2+Ô2PO1+Ô1PY =

360◦ = Ŷ PW + Ô2PO1 + 180◦, since PY ⊥ O1P and PW ⊥ O2P . Thus we have

Ŷ PW + Ô2PO1 = 180◦, or

(1) 2Ŷ PW + 2Ô2PO1 = 360◦.

On the other hand, adding the interior angles of quadrilateral O1PO2Q, we have

(2) Ô1PO2 + P̂O2Q+ Ô2QO1 + Q̂O1P = P̂O2Q+ Q̂O1P + 2Ô1PO2 = 360◦,

since the quadrilateral is symmetric around line O1O2.

It follows from (1) and (2) that 2Ŷ PW = P̂O2Q+Q̂O1P , or Ŷ PW = 1
2 P̂O2Q+

1
2 Q̂O1P . Since an inscribed angle is half of a central angle with the same arc, this
proves the lemma.

We turn now to the proof of the main statement. Figure t346b shows the four
circles and the quadrilateral in question. The interior angles of the quadrilateral
are each broken, by the segments shown, into four smaller angles labeled a through
p in the figure.
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Figure t346b

Let the angle between S1 and S2 (not shown in figure t346b) be α̂, the angle

between S2 and S3 be β̂, the angle between S3 and S4 be γ̂, and the angle between

S4 and S1 be δ̂.
We must show that if α̂ + γ̂ = β̂ + δ̂, then â + b̂ + ĉ + d̂ + î + ĵ + k̂ + l̂ =

ê+ f̂ + ĝ + ĥ+ m̂+ n̂+ ô+ p̂
By our lemma, we know that:

α̂ = ê+ p̂,

β̂ = d̂+ î,

γ̂ = ĥ+ m̂,

δ̂ = l̂ + â,

Thus we have:

(1) ê+ p̂+ ĥ+ m̂ = d̂+ î+ l̂ + â.

We will build the required sum around this equality, using the cyclic quadrilat-
erals in the figure.

From cyclic quadrilateral ABB′A′, we have f̂ = ĉ. Similarly, using the other
cyclic quadrilaterals, we have:

ĝ = ĵ

n̂ = k̂

ô = b̂

Adding these equalities to (1), we get the desired result
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Note. This problem is not that difficult, but it is complicated. Students gener-
ally can get the result themselves, especially given the lemma (which is interesting
in its own right).

As with other such problems, the result holds even when ABCD is not a convex
quadrilateral: it is true for any four points which are the intersections of pairs of
circles from among four circles. Again, the general proof requires the use of oriented
angles. See the note to exercise 344.

Problem 347. Consider four circles S1, S2, S3, S4, and pairs of common
tangents of the same kind (that is, both internal or both external) α, α′ for S1, S2;
β, β′ for S2, S3; γ, γ′ for S3, S4; δ, δ′ for S4, S1. If there is a circle tangent to
α, β, γ, δ, then there is also a circle tangent to α′, β′, γ′, δ′. A condition for
the existence of such circles is that the sum of the lengths of two of these tangents
(between their points of contact) be equal to the sum of the other two.

Solution. We give the solution for just one of the many possible cases de-
scribed in the problem statement, a case involving pairs of common external tan-
gents, leaving for students various other cases. The proof is not difficult in concept,
although a written explanation is a bit complicated. For clarity, equal tangent
segments in the diagrams bear the same lower-case letter.

Recall that a necessary and sufficient condition that a given quadrilateral have
an inscribed circle is that the sums of the opposite sides of the quadrilateral are
equal. In the present case, we assume (figure t347a) that we know this for quadri-
lateral PQRS: that

PS +QR = PQ+RS;

that is,

(1) δ + β = α+ γ.

We must prove that the corresponding sums are equal for quadrilateral ABCD.
Using (1) and also the segments marked in figure 347a, we see that (α + p + q) +
(γ + r + s) = (δ + p + s) + (β + q + r). But α + p + q = α′, since they are the
two common external tangents of circles S1, S2. And γ + r + s = γ′, since they
are the common external tangents of circles S3, S4. Similarly, β + q + r = β′ and
δ + p + s = δ′. Thus we have α′ + γ′ = β′ + δ′. Adding to this equation pairs of
equal tangent segments we get the desired result.

That is, we have (α′ + a + b) + (γ′ + c + d) = (β′ + b + c) + (δ′ + a + d), and
this is the statement required: that AB + CD = AD +BC.

Note. A subtle point in this problem is that there is much implicit in the
diagram: more than just the equality of certain segments. For the problem state-
ment does not tell use which pairs of the eight common external tangents form the
quadrilateral which is assumed to have an inscribed circle.

For example, if we decide to choose AB, BC, CD, DA as the original common
tangents referred to in the problem statement, then (still using figure t347a) the
given argument, traced backwards, assures us that PQRS has an inscribed circle.

However, Figure t347b shows a case in which PQRS is formed by common
external tangents, but the ‘wrong’ pairs. In this case, ABCD does not have an
inscribed circle.
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Figure t347a

On the other hand, the argument is valid for certain pairs of internal common
tangents, and even for certain combinations of internal and external common tan-
gents. It turns out that if an even number of pairs of external tangents are replaced
by internal tangents, the result will hold.

Students can draw for themselves diagrams showing the situation when we use
internal common tangents. Looking at such diagrams, or at figures t347a and t347b,
they may be able to see that the trouble is that the tangent segments (p, q, etc.)
that we want to add are in the ‘wrong direction’: We must sometimes subtract
them instead of adding, and this doesn’t give us the equality we want.

Using this as a hint, we can in fact make a more general argument by considering
the given circles to be oriented . If we do this, then the orientation of a circle
‘induces’ an orientation of its tangents, and a line which touches the circle at just
one point will be considered a tangent if and only if it also has the orientation of
the circle. Likewise, four lines will be considered to form a quadrilateral if and only
if their orientations allow one to trace the perimeter of the figure formed, moving
in one direction only.
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Figure t347b

Using these conventions, two circles have only two common tangents, not four.
The common tangents will be external if the circles have the same orientation,
and internal if they have opposite orientations. (The other two lines which ‘look’
tangent cannot be given the proper orientation for both circles.)

It turns out that this set of conventions eliminates exactly those cases for which
the result of this problem are false, and allows for a simple general argument. Thus
the best setting for this problem is one in which the given circles are oriented.

Problem 348. Given an arbitrary pentagon, we construct the circles circum-
scribing the triangles formed by three consecutive sides (extended if necessary).
Show that the five points (other than the vertices of the pentagon) where each
circle intersects the next are concyclic. (Exercise 106.)

Solution. Suppose the given pentagon is ABCDE, that the two sides adjacent
to each side intersect at KLMNP (figure t348), and that the circles described in
the problem statement intersect again at A′, B′, C ′, D′, and E′.

We will prove that these five points are concyclic by proving that points B′,
C ′, D′, and E′ are concyclic. Applying the same reasoning to A′, B′, C ′, and D′,
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Figure t348

we see that these four points are concyclic. Then, since there is only one circle
through points B′, C ′, D′, all five points lie on the same circle.

We will show that B′, C ′, D′, and E′ are concyclic by showing that Ĉ ′B′E′ is

supplementary to Ĉ ′D′E′. We examine this last angle by drawing segment DD′,

which splits it into two parts. Then Ĉ ′D′D supplements Ĉ ′CD (they are opposite

angles in cyclic quadrilateral CDD′C ′), which in turn supplements Ĉ ′CL = Ĉ ′B′L.

It follows that Ĉ ′D′D = Ĉ ′B′L.
Now we look at D̂D′E′, which is the other piece of Ĉ ′D′E′. But we cannot

quite make use of similar arguments: they would get us results about angles with
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vertices at A′. We want to get results about angles with vertices at B′, so our
reasoning takes a slightly different course.

We have not yet used the hint in the problem, which suggests that we re-
examine the situation of problem 106. That problem concerns four lines, in general
position, which form four triangles. The first part of the problem tells us that the
circumscribed circles of these four triangles pass through the same point.

To apply this result to the present problem, it is natural to try considering four
out of five of the lines forming the given pentagon. For example, let us look at the
diagram formed by all the lines except for DE. The triangles formed by these four
lines are ABK, BCL, NCK, and ANL, and the result of problem 106 shows that
their circumcircles pass through the same point, which must be point B′ (since two
of the circumcircles already intersect there). In particular, points LB′AN lie on
the same circle, (as do KB′CN , but in this proof we will need only the first four
concyclic points).

Reasoning analogously, but starting with the diagram formed by all the lines
except for BC, we can show that points LNE′A lie on the same circle. Thus the
five points L, N, A, B′, E′ all lie on the same circle.

Returning now to our examination of angles about point D′, we see (from

circle DEN) that D̂D′E′ = D̂NE′. And from the previous paragraph, we know

that quadrilateral LB′E′N is cyclic, and D̂NE′ is the same angle as L̂NE′, which

supplements L̂B′E′. It follows that D̂D′E′ supplements L̂B′E′.
Now we have:

(1) Ĉ ′D′D = L̂B′C ′,

(2) D̂D′E′ + L̂B′E′ = 180◦,

(3) L̂B′E′ = L̂B′C ′ + Ĉ ′B′E′,

From (2) and (3) we have:

(4) D̂D′E′ + L̂B′C ′ + Ĉ ′B′E′ = 180◦

So from (1) and (4) we have D̂D′E′ + Ĉ ′D′D + Ĉ ′B′E′ = 180◦, or Ĉ ′B′E′ +

Ĉ ′D′E′ = 180◦.
This last equation shows that quadrilateral B′C ′D′E′ is cyclic, and the result

of the problem follows from the comments in the second paragraph of this solution.

Note. We have drawn the diagram, and expressed the argument, for a convex
pentagon ABCDE. But in fact the proposition holds true quite generally, for
any five points on the plane, if we consider the circles circumscribing the triangles
formed by three consecutive segments formed by the five points, connected in any
order.

Students can experiment with a dynamic sketch, to test the truth of this asser-
tion. They can even use the same five points, connected in different orders, to test
the assertion. They will find that it is always true, and that the proof above ‘almost’
holds for any diagram. For some diagrams, equal angles become supplementary,
and vice-versa.
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A general argument can be constructed, as with many other such problems, by
introducing oriented angles.

Problem 349. Two congruent triangles ABC, abc are given. Find the locus
of points O with the following property: when triangle ABC is rotated about center
O until AB occupies a new position a′b′ parallel to ac, the new position b′ of B is
on the line OC. Also find, under these conditions, the loci of the points a′, b′, c′.

Solution. Suppose (fig.349) O is a point with the property described. Then
α, the angle of rotation, is one of the two supplementary angles formed by the lines
of segments AB, ac. If a′b′ is the image of AB under a rotation through α about

O, then by hypothesis, Ob′ passes through point C. Thus either B̂Ob′ = B̂OC = α

(they are the same angle), or B̂Ob′, B̂OC are supplementary and are equal to
α, 180◦ − α. Thus O lies on a circle through B and C which is the locus of points
at which BC subtends angle α or 180◦ − α. Conversely, if O′ lies on such an arc,

then B̂O′b will also be α or 180◦ − α (this is the angle of rotation), so point b′ will
lie on line OC.

Figure t349

Now for any choice of point O on this locus, triangle AOa′ will be isosceles.

Since ÂOa′ = α, the angles of this triangle will be constant, and the ratio AO : Aa′

will likewise be constant. Thus the locus of points a′ will be the image of the locus
of point O under a homothecy with center A and ratio AO : Aa′ followed by a
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rotation. Thus the locus of a′ is also a circle. Similar results hold for points b′ and
c′.

If we neglect the sense of the angle of rotation, there are two possible rotations
(α and 180◦−α). So there are two possible shapes for the isosceles triangle referred
to, and thus two ratios of homothecy. Point a′ can lie on either of two homothetic
images of the circle along which O lies.

Notes. Constructing a diagram similar to figure t349, using geometry software,
can be a challenge in itself. Some subtle points include determining the correct angle
of rotation and constructing the circle which is the locus of O. Because it is difficult
to find ‘by hand’ even one of the required positions of O, it is best to determine the
locus of O first, then draw the figure. The loci of a′, b′, c′ can then be investigated
using a ‘trace’ command.

Very attentive students will note the special case when AB ‖ ac. In this case
the loci in question are all lines. They may also note that the circles around which
the images of C move must pass through point C itself.

Problem 350. Let A′, B′, C ′ be the reflections of the intersection point of
the altitudes of a triangle in its sides BC, CA, AB. Let points M, N be the
intersections of line B′C ′ with AC and AB respectively; let points P, Q be the
intersections of C ′A′ with BA, BC; and let points R, S be the intersections of
A′B′ with CB, CA. Show that lines MQ, NR, PS are concurrent. (Their point
of intersection is just the point of intersection of the altitudes of the triangle ABC.)

Figure t350
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Solution. Suppose D, E, and F are the feet of the altitudes of triangle ABC
(figure t350), and H is its orthocenter. Then the construction of triangle A′B′C ′

described in the problem guarantees that A′B′C ′, DEF are homothetic about
center H (with ratio 2:1). The result of problem 71 tells us that DH, EH and
FH are the angle bisectors of triangle DEF , and so, because the triangles are
homothetic, these lines are also the angle bisectors of triangle A′B′C ′.

In other words, an altitude of triangle A′QR is also an angle bisector, so this
triangle is isosceles (see exercise 5). Similarly, triangles B′SM and C ′NP are
isosceles, so QD = DR, SE = EM, NF = FP . Thus quadrilaterals A′QHR,
B′SHM, C ′NHP are rhomboi, since their diagonals are perpendicular and bisect
each other. It follows that QH and MH are both parallel to A′B′, and pass through
H, so M, H, and Q must be collinear. In the same way, we can prove that points
N, H, R and P, H, S are collinear as well.

Note. The hint in the problem statement guides us in the proof, because it
gives us a priori the required point of intersection. The usual concurrence proof,
without such a hint, would involve studying the intersection point of two of the
given lines, to show that the third line passes through the point of intersection.
Here, we’ve actually proved more than just the concurrence of three lines: we have
proved that each of these three lines passes through the orthocenter of the triangle.

Problem 351. Inscribe a trapezoid in a given circle, knowing its altitude and
the sum or difference of the bases.

Solution. Lemma 1: A trapezoid inscribed in a circle must be isosceles.

Proof: This statement follows from the second theorem of 64 and the theorem
of 65.

Lemma 2: In isosceles trapezoid ABDC, we draw altitude AH (figure t351).
Then HD is half the sum, and CH is half the difference, of the bases.

Proof: If we draw altitude BJ , then ABJH is a rectangle, so AB = HJ ,
and, by symmetry, CH = JD. Then AB + CD = AB + CH + HJ + JD =
HJ+JD+HJ+JD = 2(HJ+JD) = 2HD, and CD−AB = CH+HJ+JD−AB =
CH +AB + JD −AB = CH + JD = 2CH. This proves the lemma.

We turn now to the statement in the problem. We assume that we are given a
circle, and the sum of the bases of the required trapezoid. Suppose this trapezoid is
ABDC (figure t351), and that we’ve drawn altitude AH. Then we know segments
AH (the given altitude) and segment HD (half the sum of the bases, by lemma 2),
so we can construct right triangle AHD. The perpendicular bisector of AD will
pass through the center of the circle. The distance from this center O to point A
will be the radius of the given circle, so we can find O by drawing a circle with the
given radius about A, and finding its point of intersection with the perpendicular
bisector of AD. We can then draw perpendicular OK to HD, and line OK will
be an axis of symmetry for the required trapezoid. Since we know the positions of
points A and D, we can reflect in line OK to get vertices B and C. For a solution
to exist, AD cannot be greater than the diameter of the given circle; equivalently,
AO > AM .

If we are given the difference of the bases of the trapezoid, we can construct
triangle ACH, knowing AH (the given altitude) and CH (half the given difference,
by lemma 2). As before, the perpendicular bisector of AC will be a centerline, and
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Figure t351

we can determine the location of point O by drawing a circle with the given radius,
centered at A. Then we draw OK, which is again an axis of symmetry for the
required trapezoid, and the construction can proceed as before.

Problem 352. Let AB be a diameter of a given circle. A circle CMD, with
center A, intersects the first one at C and D, and M is an arbitrary point on this
circle. Let points N, P, Q be the intersections of lines BM, CM, DM respectively
with the original circle. Then:

1o. MPBQ is a parallelogram.
2o. MN is the geometric mean of NC and ND.

Solution. (1◦) We will show that the opposite sides of MPBQ are parallel, by

examining pairs of equal angles. Note first that ÂDB = 90◦, since it is inscribed in

semicircle AB. Hence DB is tangent to circle A at D, and ĈDB = 1
2 DMC (74).

On the other hand ĈMD = 1
2 (major) CD (in circle A), so ĈDB supplements

ĈMD. But ĈMQ also supplements ĈMD, so ĈDB = ĈMQ. Also, ĈDB =

ĈPB, since the both intercept arc CB in the original circle. So ĈMQ = ĈPB,
and MQ ‖ PB.

We now show that PM ‖ QB. By symmetry about line AB, arcs BC and BD

are equal, so D̂QB = ĈPB, since they intercept these equal arcs. Since MQ ‖ PB,
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we know that angles M̂QB, Q̂BP are supplementary. This means that angles

M̂PB, Q̂BP are supplementary, and PM ‖ QB.

Figure t352

(2◦) We will show that triangles CMN, MDN are similar. Indeed, triangle

BCD is isosceles (it is formed by tangents BC, BD to circle M), so B̂DC = B̂CD.

Also, B̂DC = 1
2 BQC= M̂NC, and B̂CD = 1

2 BPD= M̂ND , so ĈNB = M̂ND.

Finally, N̂DQ = 1
2 NCQ= Q̂BN = B̂MP (from parallelogram MQBP ), and

B̂MP = ĈMN (they are vertical angles), so N̂DQ = ĈMN . Thus triangles
CMN, MDN have two pairs of common angles, so are similar. The required mean
proportion follows immediately.

Note. One key to this diagram is to note that BC, BD are both tangent to
circle M , so that these lines (and the arcs they intercept on cirlce O) are symmetric
in line AB.

Problem 353. Given an isosceles triangle OAB (in which OA = OB), we
draw a variable circle with center O, and two tangents from A, B to this circle
which do not intersect on the altitude of the triangle.

1◦. Find the locus of the intersection M of these two tangents.
2o. Show that the product of MA and MB is equal to the difference of the

squares of OM and OA.
3o. Find the locus of point I on MB such that MI = MA.

Solution. Suppose P and Q are the points of contact of the two tangents from
A and B to the circle in question (figure t353a), and let M be the intersection of
lines AP, BQ.

(1◦) We have OA = OB and OP = OQ, so triangles OAP, OBQ are congruent

(34, second case). Thus angles ÔAM, ÔBM are equal. Let R be the intersection
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of lines BM, OA. Then M̂RA = Q̂RB, and triangles ORB, MRA have two pairs

of common angles, so their third pair of angles is equal, and ÂMB = ÂOB. But
this last angle is constant, so M must lie on an arc of circle AOB.

Conversely, if M lies on arc AOB, then we can draw OP ⊥ AM, OQ ⊥ BM .

Then ÔAM = ÔBM , and triangles OPA, OQB are congruent (44, 24), so the
distances OP, OQ from point O to lines AM, BM are equal. Thus these two lines
are tangents to the same circle centered at O.

Thus the locus of point M is the circumcircle of OAB. (But see the note
below.)

Figure t353a

Note. There are four tangents from A and B to any given circle, and so four
points of intersection of pairs of these tangents. But two of these intersections lie
along the altitude of the given triangle, and their locus is trivial. This exercise
studies the locations of the other two intersections.

Figure t353a shows a case where these intersections P, Q are on the same side
of line AB as point O. But if the given circle is large enough, these points will be
on the other side of line AB. To get the full locus (the circumcircle of OAB), it is
necessary to consider these positions as well.

The proof requires some adjustment in this situation. In particular, certain
angles will be supplementary rather than equal. The proof will remain valid after
these adjustments.

Note that the circle about point O cannot have a radius larger than OA, since
there are no lines tangent to a given circle from a point inside. It is interesting to
consider the limiting cases. When the circle centered at O passes through A and
B, point M is diametrically opposite O on the circumcircle. And when the circle
centered at O is tangent to AB, point M coincides with either A or B.

(2◦.) From the congruent triangles identified in (1◦), we have PA = QB. And
PM = QM (92 so we have MA ·MB = (PA− PM)(QB +QM) = PA2 − PM2.
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From right triangles OAP, OMP we have PA2 = OA2−OP 2 and PM2 = OM2−
OP 2. Then we have MA ·MB = (OA2 −OP 2)− (OM2 −OP 2) = OA2 −OM2.

If point M is on the opposite side of AB from point O, we will have MA·MB =
OM2 −OA2.

Figure t353b

(3◦.) Suppose MA = MI, where I is on line MB (fig. t353b). Then triangle

AMI is isosceles, and exterior angle ÂMB = 2ÂIB. But, since M is on circle

AOB, ÂMB = ÂOB. Hence ÂIB is constant, and I lies on an arc through A and
B. In fact, the center of this arc is point O. Indeed, this center must lie on the
perpendicular bisector of AB, and this segment must subtend an angle equal to

twice ÂIB at O. This describes point O and only point O.

Note. Figure t353b shows the case where I is not on ray MB. There is a
second point (labeled I ′ in the figure), on ray MB, such that AM = MI ′. It is not
hard to see that this point also traces out a circular arc, but of a different circle.

Conversely, consider the circle centered at O and passing through A and B

(so that at each of its points segment AB subtends an angle equal to 1
2 ÂOB).

We can show that such a point is a position of point I. Indeed, if I is on this
circle, we can draw IA and IB, then find a point M on IB such that MI = MA.
(Point M is the intersection of IB with the perpendicular bisector of IA.) Then

ÂMB = ÂIB + ÎAM = 2ÎAM = ÂOB, so M is on circle AOB. That is (by 2◦),
M is the intersection of two tangents to the same circle centered at O, one from B
(which can only be BM) and one from A. Thus point I is on the tangent to this
circle from B, and MI = AM .
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In constructing a diagram like figure t353b, the whole locus is not traced out
unless various pairs of tangents from A and B are considered. If point I is inside

the angle vertical to ÂOB (not shown), then the corresponding point M is the
intersection of two tangents, but the tangent from A is the one ‘below’ the circle,
not (as in the figure) the one ‘above’. This fine point can be made clear with a
dynamic sketch.

A similar proof, and similar notes, apply to point I ′ and its circle. A result
close to this one is given in exercise 63.

Problem 354. On base BC of an arbitrary triangle ABC, we take any point
D. Let O, O′ be the circumcenters of triangles ABD, ACD.

1o. Show that the ratio of the radii of the two circles is constant.
2o. Determine the position of D for which these radii are as small as possible.
3o. Show that triangle AOO′ is similar to triangle ABC.
4o. Find the locus of the point M which divides segment OO′ in a given ratio;

examine the special case when M is the projection of A onto OO′.

Figure t354

Solution. (1◦) We use the result of 130b (statement 4◦) to examine the radii
of the two circles referred to. Let H be the foot of the perpendicular from A to
BC. Then we have AO = AB·AD

2·AH , while AO′ = AC·AD
2·AH (fig t354). The ratio of
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these two quantities is just AB : AC, which is constant, and does not depend on
the choice of point D.

(2◦.) In the expressions given above for AO, AO′, only AD varies, and it is not
hard to see that each radius is smallest when the length of AD is smallest. This
happens when AD = AH, or D coincides with H.

Note. Students can also see from this result when AO, AO′ are largest (if D
is restricted to segment BC). (This occurs when AD coincides with the larger of
AB, AC.)

Note that the wording of this question is very slightly ambiguous: the conditions
for the minimum values of AO and AO′ might be different. But because they remain
in the same ratio, they are in fact minimal (or maximal) under the same condition.

(3◦.) We have, from 1◦, AO : AO′ = AB : AC, so isosceles trianglesABO, ACO′

are similar. Thus ÔAB = Ô′AC, and therefore ÔAO′ = B̂AC. It then follows from
118, case II, that triangles OAO′, BAC are similar.

(4o.) Suppose point M is such that OM ′ : MO = k, for some fixed ratio k.

Then OM = OO′

1+k . We know (3◦) that AO : OO′ = AB : BC, a constant, and

it is not hard to see that this implies that AO : MO′ is also constant. Now (also

from 3◦) ÂOM = ÂOO′ = ÂBC, which is constant. Thus triangle AOM retains
its shape as D varies: for any two positions of D, the two corresponding triangles
AOM are similar (118, case 2). Hence the ratio AM : AO is constant, as is angle

ÔAM . It follows that the locus of M is a figure similar to the locus of O (see 150,
and also the solution to exercise 160). The locus of O is certainly the perpendicular
bisector of AB, so the locus of M is also a straight line.

Notes. Students can fill in the algebraic details showing that the ratio AO :
OM is constant, and also the proof that any point on the line mentioned is a
possible position of point M .

Now let P (not shown in the figure) be that position of M which is the projec-
tion of A onto OO′; that is, AP ⊥ OO′. Then, since AO = OD and AO′ = O′D,
we see that OO′ is the perpendicular bisector of AD, and in particular P is the
midpoint of AD. The locus of P is thus a line parallel to BC, passing through the
midpoints of AB, AC.

Note. To get the full loci of various points mentioned in this proof, we must
consider positions of D outside segment BC. Students can explore this situation
more fully.

Problem 355. An angle of fixed size rotates around a common point of two
circles O, O′. Its sides intersect the two circles again at M, M ′ respectively. Find
the locus of points which divide MM ′ in a given ratio. More generally, find the
locus of the vertex of a triangle with base MM ′, and similar to a given triangle.

Solution. We will use the result of exercise 162 to show that the vertex de-
scribed moves along a figure similar to the two given circles: that is, along a third
circle.

Suppose (fig. t355) that A is one of the intersections of given circles O, O′,

and that M̂AM ′ is the given angle. We will show that there is a similarity taking
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Figure t355

circle O onto circle O′, and also taking M onto M ′. This gives us the situation of
exercise 162.

To this end, we construct angle M̂AM ′′ = ÔAO′, and with the same orien-

tation. Then it is not hard to see that angles ÔAM, Ô′AM ′′ are equal, and so
isosceles triangles OAM, O′AM ′′ are similar. Thus the ratio AM : AM ′′ is con-

stant, and if we rotate M about A through angle M̂AM ′′ = ÔAO′, then dilate it
about A in the ratio AM : AM ′′, it falls on M ′′. And if we do the same to circle
O, it falls on circle O′, with M, M ′′ a pair of corresponding points.

We now compose this with a rotation taking M ′′ onto M ′. Indeed, angles

M̂AM ′, M̂AM ′′ are both constant, so their difference, or M̂ ′′AM ′, is also constant.

Then M̂ ′′OM ′ = 2M̂ ′′AM ′ is also constant, and M ′′ falls on M ′ when rotated
through this angle about point O′.

Hence if we rotate circle O about A through ÔAO′, then dilate it about A in

the ratio AO : AO′′, then rotate it about O′ through M̂ ′′OM ′ (which is constant),
it will coincide with circle O′, and points M, M ′ will correspond. The result of
exercise 162 now implies that the required loci are all circles.

Problem 356. If five lines A, B, C, D, E are such that two of them, for
instance A and B, are divided in the same ratio by the other three, then any two of
them are divided in the same ratio by the other three. (The proof must distinguish
two cases: of the two new line to which we want to apply it, one line may or may
not be one of the original lines.)

Solution. We denote the given lines by a, b, c, d and e (rather than with the
corresponding capital letters). Let Pab denote the intersection of lines a, b, let Pcd

the intersection of lines c, d, and so on (fig. t356). We will apply the Menelaus’
Theorem (192) to various triangles.
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Figure t356

Applying this theorem to the triangle formed by lines a, c, d, and transversal
e, we find:

PaePad

PaePac
· PcePac

PcePcd
· PdePcd

PdePad
= 1.

Next we apply the same theorem to the triangle formed by b, c, d:

PbePbd

PbePbc
· PcePbc

PcePcd
· PdePcd

PdePbd
= 1.

We equate the two left-hand members of these and simplify:

PaePac

PaePad
· PdePad

PcePac
=
PbePbc

PbePbd
· PdePbd

PcePbc
.

Now if lines c, d, e cut off proportional segments on a, b, then we have PaePac

PaePad
=

PbePbc

PbePbd
.

These last two equations imply that PdePad

PcePac
= PdePbd

PcePbc
, or PcePbc

PcePac
= PdePbd

PdePad
, or

that a, b, e cut off proportional segments on c, d.
This shows that if two lines a, b cut off proportional segments on three different

lines c, d, e, then the same is true of the pair of lines c, d; that is, these two lines cut
off proportional segments on a, b, e, which are three different lines. This reasoning
applies also to the pairs of lines c, e and d, e.
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We must now look at a pair of lines which include a or b. For example, if
a, b cut off proportional segments on c, d, e, we must show that a, c also cuts off
proportional segments on b, d, e.

We can do this by applying the reasoning above twice in succession: The state-
ment is true about a, b, and therefore also about d, e. And if it is true about d, e,
it must also be true about a, c. The full statement is proved.

Notes. This proof is complicated, but not hard to scaffold. Students can be
given the hint to use theorems on triangles and transversals, or even which triangles
to single out. The algebraic part of the derivation is much simpler than the geometry
which sets it up.

Details of the proof are tedious, but not difficult, except for the subtle argument
in the last two paragraphs.

Problem 357. Let a, b, c be the three sides of a triangle, and x, y, z the
distances from a point in the plane to these three sides. If this point is on the
circumscribed circle, one of the ratios a

x ,
b
y ,

c
z is equal to the sum of the other two,

and conversely.

Solution. Suppose M is a point on the circumcircle of triangle ABC. Without

loss of generality, we assume that M is on the arc BC not containing point A (fig.
t357a). Let MD = x, ME = y, MF = z be the perpendiculars from M to the
sides of the triangle, and let AB = c, BC = a, CA = b.

We apply Ptolemy’s theorem (237) to cyclic quadrilateral ABMC:

(1) MA · a = MB · b+MC · c.

Now ÂCM = 180◦ − ÂBM = M̂BF , so right triangles MFB, MEC are
similar, and MB : MC = z : y = xz : xy. In the same way (using similar
triangles MBD, MAE), we have MA : MB = y : x = yz : xz. Hence we can
write MA = kyz, MB = kxz, MC = kxy, for some constant k. Substituting
these values in (1), we have akyz = bkxz + ckxy, and dividing by kxyz, we have
a
x = b

y + c
z .

For M on the arc AC not containing B, we have, similarly, b
y = a

x + c
z , and if

M is on AB we have c
z = a

x + b
y .

This theorem is stated elegantly if we use the convention established in the
solution to exercise 301, about the signs of the distance of a point to the sides of a
triangle. In this situation, one of these signs is positive and the other two negative,
so we have, both in magnitude and sign:

(2)
a

x
+
b

y
+
c

z
= 0.

It is convenient to use this convention also in proving the converse theorem.
We will prove that if point M satisfies relation (2) (in both magnitude and sign,
for the distances), then M lies on the circumcircle of triangle ABC.

Indeed, suppose M ′ is a point not on this circumcircle, and suppose x′, y′, z′

are its distances to the sides of the triangle (taken with the appropriate sign).
Let M be the intersection of AM ′ with the circumcircle, and x, y, z its (signed)
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Figure t357a

distances to the sides of the triangle, as before. Let AM ′ and side BC intersect at
P .

Using various similar triangles, and noting that A, P, M, M ′ are collinear, we
find: y : y′ = z : z′ = AM : AM ′; x : x′ = PM : PM ′ = (PA+AM) : (PA+AM ′).
Now it is not hard to prove (for example, by examining cross products) that ifm 6= n
and p 6= 0, then (m+ p) : (n+ p) 6= m : n. Therefore x : x′ 6= AM : AM ′. In other
words, 1

y′ = AM
AM ′ · 1y ; 1

z′ = AM
AM ′ · 1z , but 1

x′ 6= AM
AM ′ · 1x .

Since M is on the circumcircle, the original theorem assures us that
a
x′ +

b
y′ +

c
z′ = a

x′ +( b
y + c

z )· AM
AM ′ = a

x′− a
x ·

AM
AM ′ = a

x
x
x′− a

x ·
AM
AM ′ = a

x ( x
x′− AM

AM ′ ) 6= 0.

This proves the converse theorem.

Notes. In the direct theorem, one central idea is that MA : MB : MC = 1
x :

1
y : 1

z . We have avoided the use of continued proportions, but students familiar

with them may find it easier to understand the proof expressed in these terms.
In the converse theorem, we have omitted details (involving similar triangles)

of the proofs of various proportions. Students can be asked to supply these.
The proof of the converse theorem needs some changes for certain positions

of M ′. Most obviously, M ′ might be inside the circumcircle. But there are also
changes needed if AM ′ turns out to be tangent to the circumcircle, or parallel to
BC. Students can be asked to explore these situations.
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Figure t357b

The converse theorem is in fact not true unless we consider signed distances
to the sides of the triangle. The following example shows this. If ABC is an
equilateral triangle, and we take P on the exterior angle bisector at vertex A such
that CP ⊥ AC, we have (in absolute value) 2x = y = z, so that a

x = b
y + c

z , yet P

certainly does not lie on the circumcircle of triangle ABC.
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Problem 358. Given a line segment AB, and a point C on this segment, find
the locus of the points of intersection of a variable circle passing through A, B with
a line joining point C to the intersection of the tangents at A, B to this circle.

Figure t358

Solution. In figure t358, P is the intersection of the tangents to one of the
circles referred to, and M, M ′ are the intersections of line PC with the circle. We
need the locus of M (or M ′) as the circle varies.

A diagram built around two tangents to the same point suggests consideration
of poles and polars. Here, P is the pole of line AB, and if we draw the tangents to
the circle at M, M ′, then their intersection D is the pole of MM ′. Since P is on
the polar of point D, 204 shows that D must lie on AB. Then, by the definition of
the polar, C, D divide AB harmonically. Thus D does not depend on the circle,
but only on the position of C on AB.

Now the length of tangent MD is
√
DA ·DB, which likewise does not depend

on the particular circle drawn. Therefore M, M ′ lie on a circle with this radius
centered at D.

Conversely, any point on this circle is a possible position of M (or M ′). Indeed,
we let D be the harmonic conjugate of point C with respect to A, B, draw the
circle centered at D with radius

√
DA ·DB, and pick a point M on this circle.

By 132 (converse), we can draw is a circle through A, B, M , which will be
tangent to DM , then draw DM ′. We must show that MM ′ is collinear with the
intersection P of the tangents to this new circle from A and B. Again, we use
polars. Line AB is the polar of P , and D is on AB. Therefore, by 204, P is on the
polar of D, which is line MM ′. This concludes the proof.

Note. The converse statement may be difficult to formulate. The proof given
here is not difficult: it is just the argument that led to the original conclusion, but
in reverse.
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A special case occurs when C is the midpoint of segment AB. In that case,
point D recedes to infinity, and M, M ′ are diametrically opposite on the circle
where it intersects the perpendicular bisector of AB.

Problem 359. On the extension of a fixed diameter of a circle O, we take a
variable point M , from which we draw a tangent to the circle. Find the locus of
the point P on this tangent such that PM = MO (92).

Figure t359

Solution. In figure t359, T is the point of contact of one of the tangents from
variable point M to the circle. If P is the point described in the problem statement,
we drop perpendicular PQ to OM . Then triangles MOT, MPQ are congruent (44,
24), so PQ = OT . That is, the distance from P to line AB is constant and is equal
to the radius of circle O, so P lies on one of the two tangents to the given circle
which are parallel to OM .

Does every point on such a tangent belong to the locus required? After all,
positions of point M are limited to those outside circle O. How does this constraint
affect the locus of point P?

If we limit the discussion to a single tangent from M , and let M vary along
ray OB, we find that the positions of P are limited to a line segment which can be
described as half the side of a square tangent to circle O. If M varies along ray OA
(the ‘other side’ of the given circle), P describes the rest of the side of this square.
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But there is another point P ′ on MT such that MP ′ = MT , and there is
another tangent MU from M to circle O. That is, for any position of M , there are
actually four points fitting the description of P . These four points trace out a full
locus of two tangents to circle O, both parallel to line AB.

Notes. Students can finish the proof that every point of the set described
actually belongs to the locus.

This is not a difficult problem, especially if students draw the locus with dy-
namic software first, so that they know what they need to prove. A dynamic sketch
will also make it clear why the fact that positions of M inside the circle lack tangents
to the circle does not result in ‘holes’ or ‘spaces’ in the locus.

Problem 360. From a point M in the plane of a rectangle we drop perpen-
diculars to the sides, the first one intersecting two opposite sides at P, Q, and the
second intersecting the other two sides at R, S.

1o. For any M , show that the intersection H of PR and QS is on a fixed line,
and the intersection K of PS and QR is on another fixed line.

2o. Show that the bisector of angle ĤMK is parallel to a side of the rectangle.

3o. Find point M , knowing points H and K.

4o. This last problem has two solutions M, M ′. Show that the circle with
diameter MM ′ is orthogonal to the circumscribed circle of the rectangle.

5o. Find the locus of points M such that PR is perpendicular to QS.

Figure t360a

Solution. (1◦.) We will show that these fixed lines are the diagonals of the
given rectangle. Suppose the rectangle is ABCD (fig. t360a), O the intersection
of its diagonals, and H the intersection of lines BD, PR. We apply Menelaus’
Theorem (192) to triangle ABD with transversal PR:

HD

HB
· RB
RA
· PA
PD

= 1.
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Now suppose QS intersects BD at some point H ′. We will show that H and H ′

in fact coincide, by applying Menelaus’ Theorem to triangle BCD with transversal
QS:

H ′B

H ′D
· SD
SC
· QC
QB

= 1, or equivalently,
H ′D

H ′B
· SC
SD
· QB
QC

= 1.

But clearly RB : RA = SC : SD and PA : PD = QB : QC (these ratios
are equal term-by-term), so it follows that HD : HB = H ′D : H ′B. All these
relationships hold both in magnitude and sign, so points H and H ′ must coincide,
and PR and QS intersect on line BC.

Similarly, we can prove that K, the intersection of PS and QR is on line AD.

Figure t360b

(2◦.) In fact, this bisector is just MS (or MP , depending on the position of
point M). We can prove this by using results about a complete quadrilateral,
applied to the quadrilateral formed by lines RQ, QS, PS, PR (fig. t360b). In
this quadrilateral, diagonal HK is divided harmonically by diagonals PQ, RS
(202). Therefore lines MQ, MK, MS, MH form a harmonic pencil (201). Then,
since MQ ⊥ MS, lines MQ, MS bisect the angle between lines MH, MK (201,
corollary 2).

Note. The argument holds, with slight adjustments, for other positions of M
than those show in figure 360b. Note that this figure does not show the points of
harmonic division along diagonal HK. But by construction (for example) P, K,
and S are collinear, so RS is a diagonal of complete quadrilateral PKQH.

(3◦.) We apply Menelaus’ Theorem (192) to find the ratios AP : PD and
AR : RB. These ratios will locate points P and R, and therefore determine point
M . First we apply the theorem to triangle ABD and transversal PR:

HD

HB
· RB
RA
· PA
PD

= 1.
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Applying the theorem to triangle ABC and transversal QR, we find:

KA

KC
· QC
QB
· RB
RA

= 1.

Multiplying these two equations together, and noting that QB
QC = PA

PD (these

ratios are equal term-by-term), we find:

HD

HB
· KA
KC

·
(
RB

RA

)2

= 1.

And dividing the first of the same two equations by the second, we find:

HD

HB
· KC
KA

·
(
PA

PD

)2

= 1.

It follows that PA
PD = ±

√
HB·KA
HD·KC , RB

RA = ±
√

HB·KC
HD·KA . The signs must be chosen

so that the product PA
PD ·

RB
RA has the same sign as the ratio HB : HD.

The values of these two ratios (almost) determine the position of point M , but
see 4◦ for further explanation. Point M will exist whenever HB

HD and KA
KC have the

same sign (so that the expressions under the radical signs are not negative).
(4◦.) The problem statement gives a hint: there are two positions of P and of

R corresponding to each position of H and K. And, in fact (fig. t360c), there are
two possible points P and P ′ dividing AB in the ratio found in 3◦. Likewise, there
are two points R, R′, and these two sets of points determine points M, M ′. We
let O be the center of rectangle ABCD. Let ω be the midpoint of segment MM ′,
and let O1, O2 and ω1, ω2 be the projections of O, ω on AB and AD. We make
the following notes, leaving the easy proofs for the reader:

• Note 1: ω1R = −ω1R
′.

• Note 2: ω2P = −ω2P
′.

• Note 3: O1B
2 +O2D

2 = OC2.
• Note 4: ω1R

2 + ω2P
2 = ωM2.

• Note 5: O1ω
2
1 +O2ω

2
2 = Oω2.

The result of 189 tells us that O1B
2 = O1R ·O1R

′ = (O1ω1 + ω1R) · (O1ω1 +
ω1R

′) = (O1ω1 + ω1R) · (O1ω1 − ω1R) = O1ω
2
1 − ω1R

2. In the same way, we have
O2D

2 = O2P ·O2P
′ = O2ω

2
2 − ω2P

2.
Adding, we find O1B

2 + O2D
2 = O1ω

2
1 − ω1R

2 + O2ω
2
2 − ω2P

2. Using notes
3-5, we can derive from this the relation OC2 + ωM2 = Oω2, in which OC and
ωM are the radii of the circles in question, while Oω is the distance between their
centers. This last relation shows that the two circles are orthogonal.

Notes. Students can be asked to verify the relationships in notes 1-5 above.
They can also prove the following general statement:

Lemma: Two circles are orthogonal if and only if the sum of the squares of
their radii is equal to the square of the distance between their centers.

(5◦.) Suppose (fig.360d) that PR ⊥ QS. Since AM, PR are diagonals of
rectangle APMR, ∠RPM = ∠AMP . Since CM, QS are diagonals of rectangle

QCSM , we have Q̂MC = M̂QS = ĤQP , and this last angle is complementary

to R̂PM (they are the acute angles of right triangle HQP ). Therefore angles
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Figure t360c

Figure t360d

ÂMP, Q̂MC are complementary, so AM ⊥ MC, and M lies on the circle with
diameter AC.

Conversely, if M is on this circle, then AM ⊥MC, and following our reasoning
backwards, we find that PR ⊥ QS.

Notes. This part of the problem is difficult. One difficulty is the need to ‘think
out of the box’. Students must realize that point M is outside the given rectangle,
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and that R (in the case of figure t360d) divides the sides of the rectangle externally
in the ratio required by the construction in 3◦.

In problems where one must find a locus, software can often help, because the
required locus can be traced. But in this case, it is difficult to find even one point
on the locus without significant insight.

Problem 361. From vertices B and C of triangle ABC we draw two lines
BB′, CC ′ (where B′ is on side AC and C ′ is on side AB), such that BB′ = CC ′.

Show that the two angles ĈBB′, B̂′BA into which BB′ divides angle B̂ cannot

both be less than or both be greater than the corresponding angles B̂CC ′, Ĉ ′CA

into which CC ′ divides angle C. (that is, we cannot at the same time have ĈBB′ >

B̂CC ′ and B̂′BA > Ĉ ′CA).
(Form parallelogram BB′CF , in which B, C are two opposite vertices, and,

drawing C ′F , compare the angles it determines at C ′ to those it determines at F .)
A triangle which has two equal angle bisectors is isosceles.

Solution. Suppose ĈBB′ > B̂CC ′ (figure t361). Let us compare triangles
C ′BC and BCB′. They have a common side BC, their sides BB′, CC ′ are equal,
and these two pairs of equal sides include angles which are unequal in the order
indicated in the first sentence of this paragraph. Therefore (28), CB′ > BC ′.

Figure t361
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Let us draw line BF through B parallel to AC, and line CF through C parallel
to AB. Then BB′CF is a parallelogram, so CB′ = FB. Since we know that
CB′ > BC ′, it follows that FB > BC ′, so in triangle BC ′F , we have

(1) B̂C ′F > B̂FC ′.

Now CC ′ = BB′ by hypothesis, and BB′ = FC by construction (of the paral-
lelogram), so triangle CC ′F is isosceles, and

(2) F̂C ′C = Ĉ ′FC.

Adding (1) and (2), we find that B̂C ′C > B̂FC, And since B̂FC = B̂B′C, we

have B̂C ′C > B̂B′C. Now if two angles are unequal, their supplements are unequal

in the opposite order, so ÂC ′C < B̂B′A.

Thus we have ÂBB′ = 180◦ − Â − B̂B′A < 180◦ − Â − ÂC ′C = ÂCC ′; that

is, the condition that ĈBB′ > B̂CC ′ implies the condition that ÂBB′ < ÂCC ′,
which is equivalent to the first assertion of the problem statement.

If we exchange the roles of points B and C, the same reasoning will show us

that if B̂CC ′ > ĈBB′, then ÂCC ′ < ÂBB′.
We can now show that a triangle with two equal angle bisectors must be

isosceles. Suppose BB′ and CC ′ are these two equal angle bisectors. Then if

ÂBC > ÂCB, we could divide by two to get ĈBB′ > B̂CC ′. But because we

have angle bisectors, we could just as well write ÂBB′ > ÂCC ′. We have just
shown that these two statements cannot both be true, so it cannot be true that

ÂBC > ÂCB.
Analogous reasoning shows that we cannot have ÂBC < ÂCB, so these two

angles must be equal, and the triangle must be isosceles.

Note. This is a classically difficult problem. Here it is solved by considering
inequalities, one of a number of places where consideration of inequalities leads to
the conclusion that certain objects are equal (in this case, two sides of a triangle).

Problem 361b. In any triangle, the greater side corresponds to the smaller
angle bisector (take the difference of the squares of the bisectors given by the
formula of 129, and factor out the difference of the corresponding sides).

Solution. If ta and tb are the lengths of the angle bisectors of angles A and B
of triangle ABC (with sides of length a, b, and c), the formula of 129 gives us:

t2a = bc− a2bc

(b+ c)2
,

t2b = ac− b2ac

(a+ c)2
.

Then t2a − t2b = c(b− a) + abc
(

b
(a+c)2 −

a
(b+c)2

)
. If b > a, then clearly b

(a+c)2 >
a

(b+c)2 , so ta > tb.
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Note. Students can fill in the gap in this proof indicated by the term ‘clearly’:
it involves simple algebra of inequalities.

They can also explain why the statement in the problem implies that a triangle
with two equal angle bisectors must be isosceles.

Problem 362. Of all the triangles inscribed in a given triangle, which has the
minimum perimeter?

Solution. We will consider triangle DEF to be inscribed in triangle ABC if
points D, E, F lie respectively on sides BC, AC, AB of the triangle, or on their
extensions.

Figure t362a

Let us first fix point D on line BC, and find the triangle of least perimeter
which is inscribed in ABC, with one vertex at point D. We construct points
D1, D2 (figure t362a), the reflections of D in lines AB, AC respectively. The
perimeter of any triangle DE′F ′ which is inscribed in ABC will be equal to the
broken path D1E

′F ′D2 (compare the solution to exercise 40). The triangle DEF
of least perimeter will occur when the broken path is a line D1EFD2. Thus we can
construct this triangle by reflecting D to get D1 and D2, then drawing line D1D2

to locate points E and F .
The more general problem will be solved if we can locate point D such that

D1D2 is as short as possible. We note first that, from symmetry in lines AB,AC,

we have D̂1AB = B̂AD and ÊAD2 = D̂AC, so D̂1AD2 = 2B̂AC. That is, the

measure of angle D̂1AD2 does not depend on the position of point D.
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Figure t362b

Now point A is on line AB, so AD1 = AD. And A is also on line AC, so
AD = AD2. Because the angle at A in isosceles triangle AD1D2 does not vary, the
length of D1D2 depends only on the length of AD1 = AD = AD2, and is smallest
when this length is shortest, which is when D is the foot of the altitude from A to
BC.

The problem is solved, but we can characterize the required triangle of minimal
perimeter more precisely: it is the triangle formed by the feet of the three altitudes
of ABC. We have already seen that one vertex of the triangle of minimal perimeter
is a foot of an altitude of triangle ABC. That is, if D is not the foot of an altitude,
then DEF is not the minimal triangle sought. The same reasoning applies to
vertices E and F : if they are not the feet of the altitudes of triangle ABC, then
the inscribed triangle which includes them as vertices is not minimal. Thus the
required triangle is indeed the one formed by the feet of the altitudes of the original
triangle.

Problem 362b. In a quadrilateral ABCD, inscribe a quadrilateral MNPQ
with minimum perimeter. Show that the problem does not have a proper solution
(that is, one which is a true quadrilateral) unless the given quadrilateral is cyclic.

But if ABCD is cyclic, there exist infinitely many quadrilaterals MNPQ with
the same perimeter, which is smaller than, or equal to, the perimeter of any other
quadrilateral inscribed in ABCD. This perimeter is the fourth proportional for the
radius of the circle ABCD and the two diagonals AC, BD.
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What additional condition must ABCD satisfy in order that the quadrilaterals
MNPQ found this way will also be cyclic? For this case, find the locus of the centers
of their circumscribed circles.

Note. We break the problem statement into several parts:
1◦: If there exists a quadrilateral of minimal perimeter inscribed in a given

quadrilateral, then the given quadrilateral must be cyclic.
2◦: Construct, in a given cyclic quadrilateral, an inscribed quadrilateral of

minimal perimeter.
3◦: Show that for a given cyclic quadrilateral, there are infinitely many in-

scribed quadrilaterals of minimal perimeter.
4◦: The perimeter of the minimal inscribed quadrilateral is the fourth propor-

tional for the radius of the circle ABCD and the two diagonals AC, BD.
5◦: For minimal inscribed quadrilateral MNPQ itself to be cyclic, it is neces-

sary and sufficient that the diagonals of ABCD be perpendicular.
6◦: In this case, find the locus of centers of the circles circumscribing MNPQ.

Solution. (1◦.) Suppose quadrilateral MNPQ, inscribed in ABCD, has a
perimeter smaller than that of any other inscribed quadrilateral (figure t362bi).

Then (exercise 40) we must have ÂMQ = B̂MN : if point M did not have this
property, then QM +MN would not be minimal, and so the perimeter of MNPQ
would not be minimal. Similarly, the angles marked 2̂, 3̂ and 4̂ must be equal.

Figure t362bi

Then we have:
Â+ 1̂ + 4̂ = 180◦,

Ĉ + 2̂ + 3̂ = 180◦,

B̂ + 1̂ + 2̂ = 180◦,

D̂ + 3̂ + 4̂ = 180◦.

Adding, we have:

Â+ Ĉ + 1̂ + 2̂ + 3̂ + 4̂ = 360◦ = B̂ + D̂ + 1̂ + 2̂ + 3̂ + 4̂,
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or Â+ Ĉ = B̂ + D̂. It follows (80) that ABCD is cyclic.
(2◦, 3◦). We will use a proof based on geometric transformations. Figure

364bii shows the original quadrilateral ABCD reflected four times: once in each
of its sides. That is, we reflect first in line AB to get quadrilateral ABC ′D′, then
in line BC ′ to get quadrilateral BA′D′′C ′, then in line C ′D′′ to get quadrilateral
C ′D′′A′′B′, and finally in line A′′D′′ to get quadrilateral D′′C ′′B′′A′′. Clearly these
four new quadrilaterals are congruent to the original one. By 103, we could also
have gotten BA′D′′C ′ from ABCD by rotating about point B through an angle

equal to twice ĈBA. Likewise, we could have gotten D′′C ′′B′′A′′ from BA′D′′C ′

by rotating about point D′′ through an angle equal to twice ÂDC.

Figure t362bii

Suppose MNPQ is a solution to our problem; that is, suppose it is a quadri-
lateral of minimal perimeter inscribed in ABCD. Then, by the results of 1◦, it
forms equal angles with the sides of ABCD. Let us look at the successive im-
ages of its vertices in the four reflections we consider above. Point N reflects into
N ′, which is on segment BC ′. Furthermore, Q, M, and N ′ are collinear, because

ÂMQ = B̂MN = B̂MN ′. Likewise, P , reflected first in AB, then in BC ′, goes to
P ′, a point on C ′D′′ which is collinear with Q, M, and N ′. Finally, reflecting Q in
AB, BC ′, C ′D′′, we obtain Q′, and Q, M, N ′, P ′ and Q′ are all collinear.

Now we use the assumption that ABCD is cyclic. If this is the case, then

ÂBC + ÂDC = 180◦, so a composition of rotations through twice these two angles
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is a translation (102, 103). So quadrilateral A′′B′′C ′′D′′ is obtained from ABCD
by this translation. It follows that the sides of D′′C ′′B′′A′′ are parallel to the
corresponding sides of ABCD, and oriented in the same direction.

Thus, having chosen Q arbitrarily on segment AD, we can translate it by the
distance and in the direction of AA′′ to obtain Q′. Then M is the intersection of
QQ′ with AB, and N ′, P ′, determined likewise as intersections, can be reflected
back to find N and P .

This completes the construction. We see that there are infinitely many minimal
quadrilaterals, and that they all have the same perimeter, equal to the length of
AA′′.

Notes. For some positions of Q, and for some choices of cyclic quadrilateral
ABCD, the construction of QQ′ does not yield a corresponding minimal quadri-
lateral: the reflections of N ′ or P ′ may land outside segments BC or CD. But it
is not difficult to see that there are still infinitely many positions of Q which yield
a solution.

Students can think about how the proof fails if ABCD is not to be cyclic. In
that case, the composition of the four line reflections (or two rotations) will not be
a translation.

Note that this solution can be seen as a generalization of the solution to exercise
362.

(4◦.) This computation is a difficult one. Let R be the circumradius of ABCD.
The product of the diagonals required in the final result suggests an application of
Ptolemy’s theorem:

(1) AC ·BD = AB · CD +AD ·BC.

Figure t362biii

So we need to show that R · (MN +NP +PQ+QM) = AB ·CD+AD ·BC.
We do this through a rather artificial construction. We erect perpendiculars to
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the sides of ABCD at points M, N, P, Q, and label the intersections of these
perpendiculars as A′, B′, C ′, D′, as in figure t362biii. Note that, for example,

MB′ bisects N̂MQ, QD′ bisects P̂QM , and so on.
We first show that A, A′, C ′, C are collinear. Indeed, point A′, lying on the

bisector MA′ of N̂MQ, is equidistant from lines MN, MQ. Also, A′ lies on QA′,
and so is equidistant from PQ and MQ. Therefore A′ is equidistant from MN and
PQ, and so lies on the bisector of the angle formed by those two lines. Let S be
the intersection of lines MN, PQ. Then we have just shown that A′ lies on the

bisector of Q̂SM . In the same way, we can show that C ′ is on this bisector. And

point C is also on the bisector of P̂SN , since D̂PQ = ĈPN and D̂PQ = ŜPC,

so ĈPN = ŜPC. Likewise we can show that A is on the bisector of ŜQM , and

therefore on the bisector of P̂SN
The argument of the preceding paragraph shows thatA, A′, C ′, C are collinear.

In the same way, we can show that B, D′, B′, D are collinear.

Next we note that quadrilateralMB′NB is cyclic, since B̂′MB = B̂′NB = 90◦.
Applying Ptolemy’s theorem to this cyclic quadrilateral, we find:

(2). BM ·B′N +B′M ·BN = MN ·BB′

Let point E be diametrically opposite D on circle ABCD, and let R be the
radius of this circle (fig. 362biii). Then triangles BB′N, EDC are similar. Indeed,

they are both right triangles: D̂CE = 90◦ (since it is inscribed in a semicircle),

and D̂EC = D̂BC (they both intercept arc DC on circle ABCD). Thus we
have BB′ : B′N = ED : CD = 2R : CD. Analogously, from similar triangles
BB′M, EDA, we find BB′ : B′M = 2R : DA. That is, the ratios BB′ : B′N :
B′M, 2R : CD : DA are equal, and we can write, for some constant k, BB′ =
2R · k, B′N = CD · k, , B′M = DA · k, and rewrite equation (2) as:

BM · k · CD + k ·DA ·BN = MN · k · 2R,
or

BM · CD +DA ·BN = MN · 2R.
In the same way, we find that

CN ·DA+ CP ·AB = NP · 2R;

PD ·AB +DQ ·BC = PQ · 2R;

AQ ·BC +AM · CD = QM · 2R.
These four (hard-earned) relationships involve pieces of the line segments we

are interested in, so we add them:

2R · (MN +NP + PQ+QM) = AB · (CP + PD) +BC · (AQ+QD)+

+CD · (AM +MB) +DA · (BN +NC) =

= AB · CD +BC ·AD + CD ·AB +DA ·BC,
or

R · (MN +NP + PQ+QM) = AB · CD +AD ·BC,
and equation (1) shows that this is equivalent to the assertion of the problem.
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Notes. In the course of this discussion, we have uncovered some interesting
facts. For example, we find that opposite sides of quadrilateral MNPQ intersect
(at point S) on a diagonal of the original quadrilateral ABCD. In fact, this gives
another construction of the ‘minimal quadrilateral’: Choose a point S on one of
the diagonals of the original quadrilateral, and draw two rays (SM, SQ) which
are symmetric in this diagonal. The intersection of these rays with the sides of the
original quadrilateral are the vertices of a minimal inscribed quadrilateral.

(5◦). We will show that MNPQ is cyclic if and only if AC ⊥ BD. Indeed, a

necessary and sufficient condition that MNPQ be cyclic is that N̂PQ+ Q̂MN =
180◦. A little algebra will show that this condition is equivalent (in figure t362biii)

to B̂MN + ĈPN = 90◦. But from cyclic quadrilaterals BMB′N, CPC ′N we have

B̂MN = B̂B′N = T̂B′C ′, ĈPN = ĈC ′N = B̂′C ′T . Looking at triangle B′C ′T ,

we see that this condition is in turn equivalent to saying that B̂′TC ′ = 90◦, or
AC ⊥ BD.

Figure t362biv

(6◦). We base our solution on the result of exercise 193, which shows that if the
sides of a variable polygon retain their direction, and all but one vertex slide along
given lines, then the remaining vertex also slides along a line. We apply this result
to quadrilateral KNLO (fig. t362biv), where K, L are the respective midpoints
of MN, NP and O is the center of the circle circumscribing MNPQ. Note that
for any position of QQ′ (that is, for any minimal inscribed quadrilateral), point O
must lie on the perpendicular to MN through K and also on the perpendicular to
NP through L.

The construction of MNPQ shows us that its sides always retain their direc-
tions. Indeed, by this construction MN ′ (for example) is always parallel to AA′′ (in
figure t362bii), and so MN , its reflection in AB, must also retain its direction. For
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the same reason, NL retains its direction. And since KO, LO are perpendicular
to these two segments, these two sides of KNLO also retain their direction.

We now show that N, K, L slide along fixed lines. Point N certainly slides
along line BC. Point K also slides along a fixed line. Indeed, if MN and M ′N ′

(not shown) are two corresponding sides of possible minimal quadrilaterals, then
MN ‖ M ′N ′, and triangles MNB, M ′N ′B are homothetic. This the midpoints
K, K ′ of these segments lie along the median of any one of these triangles, so K
slides along this median. Similarly, L slides along another line.

The result of exercise 193 then shows that point O slides along a fixed line.

Problem 363. Show that the point obtained in Exercise 105, if it is inside
the triangle, is such that the sum of its distances to the three vertices is as small
as possible (Exercise 269). Evaluate this sum. (Its square is half the sum of the

squares of the three sides, plus 2
√

3 times the area.)
What happens when the point is outside the triangle?

(This circumstance occurs when one of the angles, for instance Â, is greater
than 120◦. Ptolemy’s theorem gives the ratio of the sum AB +AC to the segment

AI intercepted by the circumscribed circle on the bisector of angle Â, a ratio which
is less than one. Applying the theorem of 238 to quadrilateral AMBI, it will be
seen that the sum MA+MB +MC is minimal when point M coincides with A.)

Note. We separate this problem into several statements:
1◦. If it is inside the triangle, the point obtained in Exercise 105 is such that

the sum of its distances to the three vertices is as small as possible
2◦. The square of the minimal value of this sum is half the sum of the squares

of the three sides, plus 2
√

3 times the area of the triangle.
3◦. The point obtained in Exercise 105 lies outside the triangle when one angle

of the triangle is greater than 120◦. In this case the point which minimizes the sum
of the distances to the vertices of the triangle is the vertex of its obtuse angle.

Solution. (1◦.) Suppose (fig. t363a) that point O is constructed as in exer-
cise 105. That is, A′, B′, C ′ are the vertices of equilateral triangles constructed
externally on the sides of a given triangle ABC, and O is the intersection of
AA′, BB′, CC ′ (whose concurrence is proven in exercise 105).

Suppose M is any other point on the plane. We will show that OA+OB+OC <
MA+MB+MC. Indeed, AA′ ≤MA+MA′ (26), with equality if and only ifM lies
on segment AA′. The result of exercise 269 give us MA′ ≤MB+MC, with equality

if and only if M lies on arc BOC. It follows that AA′ ≤ MA + MB + MC, with

equality if and only if M lies both on arc BOC and segment AA′; that is, when M
coincides with O. And, also from exercise 105, we know that AA′ = OA+OB+OC.
Thus OA + OB + OC ≤ MA + MB + MC, with equality only when M and O
coincide.

(2◦). To evaluate this minimal sum, we reflect point A′ in line BC to get point
A′′, and let D be the intersection of A′A′′ with BC. Then AD is a median in
triangle AA′A′′, and also in triangle ABC. We apply 128 to both of these:

(1) AA′2 +AA′′2 = 2AD2 + 2A′D2;
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Figure t363a

(2) AB2 +AC2 = 2AD2 + 2CD2 = 2AD2 +
1

2
BC2.

In equilateral triangle A′BC we have altitude A′D =
√
3
2 BC, so 2A′D2 =

3
2BC

2, and we can write equation (1) as

(3) AA′2 +AA′′2 = 2AD2 +
3

2
BC2

.
Now we can write equation (2) as 2AD2 = AB2 + AC2 − 1

2BC
2. Using this

last result, we can write equation (3) as

(4) AA′2 +AA′′2 = AB2 +AC2 +BC2

Let H be the foot of the perpendicular from A to A′A′′. Then the result of
128b gives us AA′2 − AA′′2 = 2A′A′′ ·DH = 2

√
3BC ·DH = 4

√
3|ABC|, where

|ABC| denotes the area of triangle ABC (since DH is equal to the altitude to BC
in triangle ABC). Adding this last equation to (4), and dividing by 2, we find that

AA′2 = 1
2 (AB2 +BC2 +AC2) + 2

√
3|ABC|, the required result.

(3◦). (Proof due to Behzad Mehrdad.) Suppose point O lies outside the triangle

(fig. 363b). In figure t363b ĈAB > ĈOB = 120◦. We draw the circumcircle

of ABC, and also point I where angle bisector AI of B̂AC intersects the circle.
Note that BI = CI. We will show that the minimal value of MA + MB + MC
(where M is any point on the plane) occurs when M coincides with A; that is, that
AB +AC ≤MA+MB +MC.
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Figure t363b

Now ĈAB is cut into two parts by AM , and without loss of generality, we

assume that the larger part is ĈAM ≥ B̂AM (an analogous argument holds if the

larger part is B̂AM). Since ĈAB > 120◦, we must have ĈAM ≥ 60◦, which means
that in triangle CAM , side AC is not opposite the largest angle, and so cannot be
the largest side (28). That is, either (i) AC ≤MC or (i) AC ≤MA.

In case (i), the triangle inequality (26) applied to triangle ABM , gives us AB ≤
MA+MB. Adding these two results, we have AB+AC ≤MA+MB+MC. In case

(ii), we note that ĈAB, an obtuse angle, is the largest angle in triangle ABC, so
AB < BC ≤MC+MB (this last from applying the triangle inequality to MBC).
And AC ≤ MA by assumption. Adding, we have AB + AC ≤ MA+MB +MC,
with equality only when A and M coincide.

Note. Figure t363b shows only one possible position of point M . For other
positions, the points B, M, I, C may form a quadrilateral in a different order.
Nonetheless, the argument given above remains valid.

Students can show that O lies outside the triangle if and only if one of its angles
is greater than 120◦. One argument might come from noting that BB′ and CC ′

meet at a 120◦ angle no matter what the angles of the original triangle are. If, say,
the triangle’s interior angle at A is greater than 120◦, then point A must lie inside
the circle through B, O, C, so that O lies outside the triangle.
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Problem 364. More generally, find a point such that the sum of its distances
to the three vertices of a triangle, multiplied by given positive numbers `, m, n, is
minimal. We assume first that the three given numbers can represent the sides of
a triangle.

(Let this triangle be T , and let its angles be α, β, γ. At A, using sides

AB, AC respectively, we construct two angles B̂AC ′, ĈAB′ equal to α. Likewise,

at B, using sides BC, BA we construct angles ĈBA′, ÂBC ′ equal to β, and at

C, using sides CA, CB, we construct ÂCB′, B̂CA′ equal to γ. All of these angles
are exterior to the triangle. Lines AA′, BB′, CC ′ intersect at a point O, which is
the required point if it is inside the triangle. If it is not, and also in the case in
which the three given numbers are not proportional to the sides of a triangle, the
minimum is achieved at one of the vertices of triangle ABC.

In the first case, where the minimum is not at a vertex, the square of the
minimum can be expressed in terms of the sum

`2(b2 + c2 − a2) +m2(c2 + a2 − b2) + n2(a2 + b2 − c2)

and the product of the areas of triangles T and ABC.

Solution. We separate this problem into several statements:
1◦. The construction described gives a single point (the lines mentioned are

concurrent).
2◦. If this point lies inside the triangle, it yields the required minimum.
3◦. The square of the minimum is equal to

1

2

[
`2(b2 + c2 − a2) +m2(c2 + a2 − b2) + n2(a2 + b2 − c2)

]
plus eight times the product of the areas of triangles T and ABC.

4◦. If this point is not inside the triangle, or if the three given numbers are
not proportional to the sides of a triangle, the minimum is achieved at one of the
vertices of triangle ABC.

Proof of (1◦): Figure t364a shows triangle T and the construction described in
the problem statement. Let O be the intersection of circles BA′C and CAB′. We
will first show that point O lies on circle ABC ′ as well. Indeed, since α, β, γ are

the angles of triangle T , we have α+β+γ = 180◦. Thus ÂB′C = β, and from cyclic

quadrilateral AOCB′, ÂOC = 180◦−β. In the same way, from cyclic quadrilateral

A′BOC, we have ĈOB = 180◦ − α. Then ÂOC + ĈOB = 360◦ − α − β, and

ÂOB = 360◦ − (ÂOC + ĈOB) = α + β = 180◦ − γ = 180◦ − ÂC ′B. This means
that quadrilateral AOBC ′ is cyclic, so O lies on the circle through A, B, C ′.

Next we show that A, O, A′ are collinear. Indeed, we saw above that ÂOC =

180◦−β. From cyclic quadrilateral A′BCO, we have ĈBA′ = ĈOA′ = β, so angles

ÂOC, ĈOA′ are supplementary, and points A, O, A′ are collinear.
In the same way (and using the fact that AB′CO, A′BOC, BC ′AO are all

cyclic quadrilaterals), we can show that B, O, B′ and C, O, C ′ are collinear. This
proves that lines AA′, BB′, CC ′ are concurrent at O.

(2◦). Let M be any point on the plane (fig. t364b). We apply Ptolemy’s
theorem and its inequality generalization (237 and 237b, with special regard to
the last paragraph of 237b), to the quadrilateral formed by M, A′, B, and C:

MA′ ·BC ≤MB ·A′C +MC ·A′B,
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Figure t364b

with equality when M lies on minor arc BC of circle A′BC. But by construction,
the three triangles around ABC are similar to triangle T . In particular, triangles
T, A′BC are similar, and we have:
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(1) BC : CA′ : A′B = ` : m : n,

so the previous inequality can be written as

(2) ` ·MA′ ≤ m ·MB + n ·MC.

By the triangle inequality (26), we have AA′ ≤ MA + MA′, with equality if
and only if M lies on segment AA′. Multiplying this inequality by `, and combining
it with inequality (2), we find ` ·AA′ ≤ ` ·MA+` ·MA′ ≤ ` ·MA+m ·MB+n ·MC,
with equality if and only if M lies on the intersection of circle A′BC with segment
AA′; that is, with point O.

Note. The argument here generalizes that of exercise 363.
An easy special case occurs when M and A′ coincide. In that case, A′A = MA,

and the required inequality is easy to see.
We have shown that ` · AA′ is a lower bound for the sum we are trying to

minimize. But if we follow the same logic using BB′ or CC ′, we will get m · BB′
or n · CC ′ as a lower bound. Which one is actually the minimum?

In fact, all three (` ·AA′, m ·BB′, n ·CC ′) are equal. This follows from pairs of
similar triangles. For example, AA′ : BB′ = m : ` because triangles ACA′, BCB′

(in figure t364a) are similar: ÂCA′ = ÂCB + γ = B̂CB′, and ĈA′A, ĈBB′

intercept the same arc on the circle through A′, B, C.
This argument generalizes the result of exercise 105, where it was proven that

AA′ = BB′ (in figure t105). In both cases, the proof can be given in terms of
congruent (or similar) triangles, or in terms of transformations (rotations and dila-
tions).

3◦. We now give a computation of the minimal value, which is equal to ` ·AA′.
We must express the length of AA′ in terms of the lengths a, b, c of the given
triangle and `, m, n. We let A′′ be the reflection in line BC of point A′. Let AA′′

intersect BC at D (fig. t364c), and draw AA′′ and AD.
From the Pythagorean theorem, applied to triangle A′BD we have:

(1) A′D2 = A′B2 −BD2.

In triangle AA′A′′, segment AD is a median. Hence we have (128):

(2) A′A2 +A′′A2 = 2AD2 + 2A′D2.

From Stewart’s theorem (127) applied to triangle ABC and line AD we have:

(3) AD2 =
BD

BC
·AC2 +

DC

BC
·AB2 −BD ·DC.

Noting that DC = BC −BD, we can rewrite this last product:

(4) BD ·DC = BD · (BC −BD) = BD ·BC −BD2

We now use (1), (3) and (4) to rewrite (2):
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A′A2+A′′A2 = 2

(
BD

BC
·AC2 +

DC

BC
·AB2 −BD ·BC +BD2

)
+2
(
A′B2 −BD2

)

= 2
BD

BC
·AC2 + 2

DC

BC
·AB2 + 2BC2

(
A′B2

BC2
− BD2

BC2
− BD

BC
+
BD2

BC2

)

(5) = 2
BD

BC
·AC2 + 2

DC

BC
·AB2 + 2BC2

(
A′B2

BC2
− BD

BC

)
.

We now rewrite this last equation in terms of the sides of triangle T . First we
note that A′D is an altitude in triangle A′BC. Hence we have (126):

(6) BD =
A′B2 +BC2 −A′C2

2BC
; DC =

A′C2 +BC2 −A′B2

2BC
.

Noting that triangles T, A′BC are similar, we can replace sides of the latter
with proportional sides of the former in the expressions in (6), to get:

BD

BC
=
n2 + `2 −m2

2`2
;
DC

BC
=
`2 +m2 − n2

2`2
;
A′B

BC
=
n

`
,

where the constant of proportionality (not shown) or its square has canceled out in
each fraction.

If we substitute these values into (5) and multiply by `2, we have:
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`2(A′A2+A′′A2) = (n2+`2−m2)AC2+(`2+m2−n2)AB2+(2n2−(n2+`2−m2)BC2

= (n2 + `2 −m2)AC2 + (`2 +m2 − n2)AB2 + (n2 +m2 − `2)BC2

(Note that the factors of 2 in the denominators have canceled out.)
We will get close to the expression given in the problem statement if we express

this last relationship in terms of the sides of the original triangle. We have AB =
c, BC = a, CA = b, and the last equation becomes:

`2(A′A2 +A′′A2) =

`2(AC2 +AB2 −BC2) +m2(AB2 +BC2 −AC2) + n2(AC2 +BC2 −AB2)

(7) = `2(b2 + c2 − a2) +m2(c2 + a2 − b2) + n2(b2 + a2 − c2).

Letting H be the foot of the perpendicular from A to A′A′′, we apply the result
of 128b to triangle AA′A′′:

(8). A′A2 −A′′A2 = 2A′A′′ ·DH = 4A′D ·DH.

Since we need to involve the area of ABC, we take this opportunity to rewrite
this last product in terms of areas of triangles. We have (using absolute value for

area) 2|ABC| = DH ·BC; 2|A′BC| = A′D ·BC, so DH = 2|ABC|
BC ; A′D = 2|A′BC|

BC ,
and

A′A2 −A′′A2 = 4A′D ·DH =
16

BC2
· |ABC| · |A′BC|.

Since triangles A′BC, T are similar, we have (257) |A′BC| : |T | = BC2 : `2,
and this last relationship can be rewritten as:

(9). `2(A′A2 −A′′A2) = 16 · |ABC| · |T |

Now adding (7) and (9), and dividing by 2, and recalling that the desired
minimum is given by ` ·AA′, we get the required result:

`2·AA′2 =
1

2

[
(`2(b2 + c2 − a2) +m2(c2 + a2 − b2) + n2(a2 + b2 − c2)

]
+8·|ABC|·|T |.

Note. As is often the case when we use metric relationships in a triangle,
several of the arguments above can be simplified using trigonometric, rather than
purely synthetic methods.

4◦. Suppose O lies outside triangle ABC, say on the extension of AA′ past
A (fig. t364d). We draw circle ABC, and locate point I on this circle such that
BI : IC = n : m (116). The theorem of 116 assures us that there are two such

points, and we choose the one which does not lie on arc BAC.
We also find B′′ on IB and C ′′ on IC such that IB′′ = n, IC ′′ = m.

Then B′′C ′′ ‖ BC. Denoting the length of B′′C ′′ as `′, and noting that trian-
gles IBC, IB′′C ′′ are similar, we have:
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(10) BC : CI : BI = `′ : m : n

Now since O is outside triangle ABC, BB′ must lie outside the triangle, which

implies that the sum B̂AC + α > 180◦. But quadrilateral ACIB is cyclic, so

B̂AC + B̂IC = 180◦. Therefore B̂IC < α. Therefore in triangles T, B′′IC ′′ we
have (28)

(11). `′ < `

We next apply Ptolemy’s theorem (237) to quadrilateral ABIC: AB · IC +
AC · BI = BC · AI. If we replace the segments common to this equation and to
(10) with their proportional quantities `, m, n, and cancel out the constant of
proportionality, we get

(12) m ·AB + n ·AC = `′ ·AI.
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Now let M be any point in the plane, other than A. Then quadrilateral BMCI
may or may not be cyclic, but in either case (237, 237a) we have MI · BC ≤
MB · IC + MC · IB. Again, using (10) to replace segments with proportional
quantities, we have `′ ·MI ≤ m ·MB + n ·MC, with equality holding only if M

lies on arc BAC. Now by (11), we have `′ ·MA ≤ ` ·MA, and adding the last two
inequalities we obtain:

(13) `′ ·MI + `′ ·MA ≤ ` ·MA+m ·MB + n ·MC.

Equality holds if M is on arc BAC and MA = 0. The last condition is stronger
than the first, so equality holds only when M coincides with A.

From the triangle inequality (26), we know that IA ≤MI+MA, with equality
when M is on segment IA. Together with (13), this implies:

(14) `′ · IA ≤ ` ·MA+m ·MB + n ·MC,

with equality only if M coincides with A.
Finally, combining (12) and (14), we find that

m ·AB + n ·AC ≤ ` ·MA+m ·MB + n ·MC,

with equality if and only if M and A coincide. That is, the expression ` ·MA+m ·
MB + n ·MC is minimal when M coincides with A.

Finally, we consider the (relatively easy) case when segments of length `, m, n
do not form a triangle. Suppose, for instance, that ` is the largest of these segments.
Then we have ` > m + n (otherwise the three segments would form a triangle),
and for any point M different from A, we have ` · MA + m · MB + n · MC ≥
(m+n)·MA+m·MB+n·MC = m·(MA+MB)+n·(MA+MC) ≥ m·AB+n·AC.
(26) Again, the given expression is smallest when M coincides with A.

Problem 365. We divide each side of a triangle into segments proportional to
the squares of the adjacent sides, then join each division point to the corresponding
vertex. Show that:

1o. The three lines obtained in this way are concurrent;
2o. That this is precisely the point that would be obtained in Exercise 197,

taking the point O to be the center of mass of the triangle;
3o. That this point is the center of mass of the triangle PQR formed by its

projections on the sides of the original triangle.

Solution. (1◦). This statement can be proven by applying Ceva’s theorem
(198). Suppose (fig. t365) BD : DC = c2 : b2; CE : EA = a2 : c2; AF : FB =
b2 : a2. The product of these three ratios is 1, so Ceva’s theorem shows that lines
AD, BE, CF are concurrent. Let O′ be their point of intersection.

(2◦). We first compute the ratio O′P : O′Q : O′R (where P, Q, R are the
points mentioned in 3◦), then compare this with the corresponding ratios for O.
This will tell us about the relationship between the two points.

In fact, we will show that O′P : O′Q : O′R = a : b : c (an interesting result in
its own right), by looking at areas. Using absolute value to denote area, we have
|ABD| : |ABO′| = AD : AO′ = |ADC| : |AO′C| (each pair of triangles has equal
altitudes from B or C, so the ratio of their areas is the ratio of the corresponding
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Figure t365

bases). We can write this proportion as |ABD| : |ADC| = |ABO′| : |AO′C|. But
|ABD| : |ADC| = BD : DC = c2 : b2, since these triangles have equal altitudes
from A.

Hence |ABO′| : |AO′C| = c2 : b2 as well, or O′R · c : O′Q · b = c2 : b2. It follows
that O′Q : O′R = b : c. In the same way, we can show that O′P : O′Q = a : b, or

(1) O′P : O′Q : O′R = a : b : c.

.
Now we make a similar, but easier, computation for O, which is the centroid

of triangle ABC. In fact, in exercise 295 (letting p = q = r = 1 in that argument)
it is shown that triangles OAB, OBC, OCA are equal in area. So, for example,
|AOB| : |BOC| = c · OS : a · OT = 1 : 1 (where OS, OT, OU are the distances
from O to AB, BC, AC). Hence OS : OT = 1

c : 1
a . Similarly, OT : OU = 1

a : 1
b .

That is, OS : OT : OU = 1
c : 1

a : 1
b .

It now follows from the second lemma in the solution to exercise 197 that lines
AO′, BO′, CO′ are symmetric to AO, BO, CO in the corresponding angle bisec-
tors of ABC. This implies that O′ is the point obtained from O by the construction
of exercise 197.

(3◦). Quadrilateral ARO′Q has two opposite angles equal to 90◦, so it is cyclic.

Therefore angles B̂AC, R̂O′Q are supplementary, and it follows from 256 that
|RO′Q| : |ABC| = (O′Q ·O′R) : bc. Similarly, we can show that |RO′P | : |ABC| =
(O′R · O′P ) : ac and |PO′Q| : |ABC| = (O′P · O′Q) : ab. From these proportions,
and from (1), it follows that |RO′Q| = |RO′P | = |PO′Q|. For example, we have
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|RO′Q|
|ABC| : |RO′P |

|ABC| = |RO′Q|
|RO′P | = O′Q·O′R

bc : O′R·O′P
ac = O′Q

b : O′P
a = 1. The result

of exercise 295 then shows that O′ is the center of mass (the intersection of the
medians) of triangle PQR.

Problem 366. In a given triangle, inscribe a triangle such that the sum of the
squares of its sides is minimal. (Assuming that this minimum exists, show that it
can only be the triangle PQR of the preceding exercise.)

Conclude that the point O′ (in the preceding exercise) is the one such that
the sum of the squares of its distances to the three sides is the smallest possible
(Exercises 137, 140).

More generally, in a given triangle, inscribe a triangle such that the squares
of its sides, multiplied by given numbers, yield the smallest possible sum.

Solution. We divide the problem into three parts, and offer two complete
solutions.

(1◦). Triangle PQR of exercise 365 is the inscribed triangle such that the sum
of the squares of its sides is minimal.

(2◦). The centroid of that triangle (point O′ in exercise 365) is the point such
that the sum of the squares of its distances to the three sides is minimal.

(3◦). Construction: In a given triangle, inscribe a triangle such that the squares
of its sides, multiplied by given numbers, yield the smallest possible sum.

Solution I: As suggested in the problem statement, we assume that a triangle
JKL exists, inscribed in a given triangle ABC, such that the sum s = JK2 +
KL2 + JL2 is minimal.

Lemma 1: If such a triangle exists, then its medians are perpendicular to the
corresponding sides of ABC.

Proof: We first use 128 to relate the sum of the squares of the sides to the
lengths of the medians. Suppose (fig. t366a) JJ1 is a median of JKL. Then
we have JL2 + JK2 = 1

2KL
2 + 2JJ2

1 , so that s = 3
2KL

2 + 2JJ2
1 . Now for fixed

points K, L, we can minimize this sum by minimizing JJ1; that is, by choosing
J so that JJ1 ⊥ BC. Since we can do this for any two vertices of JKL, s is not
minimal unless all three medians are perpendicular to the sides of ABC on which
the corresponding vertex is located. This proves our lemma.

Proof of (1◦). Now let JKL be the inscribed triangle such that the sums of
the squares of its sides is minimal (so that its medians are perpendicular to the
sides of ABC), and let G be its centroid. We will use arguments similar to those of
exercise 365, investigating the distances from G to the sides of ABC, to show that
G coincides with point O′ in that exercise. It then follows that JKL is the same
triangle as PQR.

The result of exercise 295 shows that (using absolute value for area)

(1) |GKL| = |GLJ | = |GJK|.
As in exercise 365, we note that quadrilateral ALGK is cyclic (two opposite angles

are right angles), so angles B̂AC, L̂GK are supplementary. Then, from 256,
|GKL| : |ABC| = (GK ·GL) : (AB · AC). Likewise, |GLJ | : |ABC| = (GL ·GJ) :
(BC ·BA) and |GJK| : |ABC| = (GJ ·GK) : (CA·CB). But from (1) it now follows
that (GK ·GL) : (AB ·AC) = (GL ·GJ) : (BC ·BA) = (GJ ·GK) : (CA ·CB). A
bit of algebra shows that this is equivalent to GJ : GK : GL = a : b : c.
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This last relationship implies that G coincides with point O′ in exercise 365.
Indeed, construction 10 of 157 show that there are at most four points in the plane
which satisfyGJ : GK : GL = a : b : c, and construction 9 of the same section shows

that there is only one such point which is inside all three angles Â, B̂, Ĉ. This in
turn implies that triangle JKL, which is formed by the feet of the perpendiculars
from G to the sides of ABC, is the same as triangle PQR in exercise 365. This
concludes the proof of the first assertion in the problem.

(2◦). We now show that G is the point which minimizes the sum of the squares
of the distances to the sides of ABC. Let M be any point in the plane (fig. t366b),
and let J ′, K ′, L′ be the feet of the perpendiculars from M to BC, AC, AB
respectively. Suppose G′ is the centroid of triangle J ′K ′L′. The result of exercise
140 gives us

(2) MJ ′2 +MK ′2 +ML′2 = G′J ′2 +G′K ′2 +G′L′2 + 3MG′2

.
We express this relationship using the sides of triangle J ′K ′L′. The result of 56
tells us that G′J ′, G′K ′, G′L′ are each 2

3 the corresponding medians, and the result

of exercise 137 tells us that the sum of the squares of the medians is 3
4 the sum of

the squares of triangle J ′K ′L′. Together, these results give:



56

Figure t366b

(3) G′J ′2 +G′K ′2 +G′L′2 =
1

3
(J ′K ′2 +K ′L′2 + L′J ′2).

From (2) and (3), we get MJ ′2+MK ′2+ML′2 = 1
3 (J ′K ′2+K ′L′2+L′J ′2)+3MG′2.

This last relationship gives us everything we need. Indeed, we can minimize
J ′K ′2 +K ′L′2 + L′J ′2 by placing M at the point O′ in exercise 365 (as proved in
its solution), and at the same time MG = MO′ = 0, which is also a minimum.

(3◦). First we let `, m, n be three positive numbers, postponing the discussion
for three numbers with arbitrary signs. We will determine the triangle J ′K ′L′ for
which s = ` ·J ′K ′2 +m ·K ′L′2 +n ·L′J ′2 is minimal by analogy with the argument
in part 1◦ of the present exercise.

We choose point J1 such that K ′J1 : J1L
′ = m : n (fig. t366c). By analogy

with 1◦, we will show that if J ′K ′L′ minimizes s, then J1J
′ ⊥ BC. Indeed, we

have K ′J1 = m
m+nK

′L′; J1L
′ = n

m+nK
′L′ and we have, by 127:

m

m+ n
K ′L′ · J ′L′2 +

n

m+ n
K ′L′ · J ′K ′2 = K ′L′ · J1J ′2 +

mn

(m+ n)2
K ′L′3,

or, dividing by K ′L′ and multiplying by m+ n:

(4) m · J ′L′2 + n · J ′K ′2 = (m+ n) · J1J ′2 +
mn

m+ n
K ′L′2;
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(5) s =

(
`+

mn

m+ n

)
·K ′L′2 + (m+ n) · J1J ′2.

If J1J
′ were not perpendicular to BC, we could make the value of s smaller by

leaving K ′, L′ in place and moving J1 to coincide with the foot of the perpendicular
from J ′ to line BC. Thus, for s to be minimal, the line dividing segment K ′L′

(internally) in the ratio m : n must be perpendicular to BC. In the same way,
we can show that the line K ′K1 which divides L′J ′ in the ratio n : ` (internally)
must be perpendicular to AC, and the line L′L1 which divides J ′K ′ in the ratio
` : m (internally) must be perpendicular to AB. If we choose these positions

for J1, K1, L1, then we have J1K
′

J1L′ · K1L
′

K1L′ · L1J
′

L1K′ = −1, and 198 assures us that

J ′J1, K
′K1, L

′L1 are concurrent at some point O′.
We now relate the ratios ` : m, m : n, n : ` (into which we have divided

the sides of J ′K ′L′) to the ratios of |J ′K ′O′|, |K ′O′L′|, |L′O′J ′|. For example,
triangles O′L′J ′, O′J ′K ′ have a common side O′J ′, so the ratio of their areas is
the ratio of their altitudes from L′,K ′. But that ratio is just J1L

′ : K ′J1 = n : m.
(We can prove this as in the argument in the solution for exercise 295, by drawing
similar right triangles which include these sides and also the altitudes in question.)
That is, we have |O′L′J ′| : |O′J ′K ′| = J1L

′ : K ′J1 = n : m = 1
m : 1

n . Similarly, we
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have |O′L′K ′| : |O′K ′J ′| = 1
` : 1

n ; |O′J ′L′| : |O′L′K ′| = 1
m : 1

` . We can write this
result as:

` · |O′K ′L′| = m · |O′L′J ′| = n · |O′J ′K ′|.
On the other hand, we see that (as before) quadrilateral O′L′AK ′ is cyclic, so

L̂′O′K ′, L̂′AK ′ are supplementary, and so (256) |OK ′L′| : |ABC| = O′L′ ·O′K ′ :
AB · AC. Similarly, |O′L′J ′| : |ABC| = O′L′ · O′J ′ : BA · BC, and |O′J ′K ′| :
|ABC| = O′K ′ ·O′J ′ : CA · CB. It follows that:

` · O
′L

AC
· O
′K ′

AB
= m · O

′L′

BA
· O
′J ′

BC
= n · O

′J ′

BC
· O
′K ′

AC
,

where we have divided each ratio by |ABC|. This can be written as:

O′J ′

` ·BC
=

O′K ′

m ·AC
=

O′L′

n ·AB
.

That is, the distances from O′ to the sides of triangle ABC are in proportion
to the products ` ·BC, m ·AC, n ·AB. As in the argument in the last paragraph of
(1◦) above, this determines the position of point O′, and therefore the positions of
J ′, K ′, L′ on the sides of triangle ABC, so that inscribed triangle J ′K ′L′ minimizes
the product of `, m, n and the squares of the lengths of its sides.

Note 1. We briefly indicate what happens when `, m, and n are not all posi-
tive. It turns out useful to consider the following cases:

(1) m+ n > 0, n+ ` > 0, and `+m > 0;
(2) m+ n < 0, n+ ` < 0, and `+m < 0;
(3) of the sums m+ n, n+ `, `+m, at least one is positive and at least one

is negative, but none is zero;
(4) of the sums m+ n, n+ `, `+m, at least one is zero.

We will make use of directed line segments, and also signed areas (see the
solutions to exercise 301 and 324). We assume that the required triangle is J ′K ′L′

(fig. t366c).
1◦. As before, we find points J1, K1, L1 which divide the sides of J ′K ′L′

in the ratios `, m, n, taking into account the signs of these numbers. (That is,
some of the points we take divide the corresponding side externally in the required
ratio.) Then, in magnitude and sign, we have K ′J1 : J1L

′ = m : n, L′K1 : K1J
′ =

n : `, J ′L1 : L1K
′ = ` : m. We can then derive equation (5) above just as before.

Now equation (5) represents s in terms of side K ′L′ of triangle J ′K ′L′ and segment
J ′J1. Analogous derivations, using other sides of J ′K ′L′ in place of K ′L′, will give
analogous expressions for s. That is:

s =

(
`+

mn

m+ n

)
·K ′L′2 + (m+ n) · J1J ′2

=

(
m+

n`

n+ `

)
· L′J ′2 + (n+ `) ·K1K

′2

(6) =

(
n+

`m

`+m

)
· J ′K ′2 + (`+m) · L1L

′2.

Since the sums `+m, m+n, n+` are all positive, the argument remains valid,
as long as we apply the correct signs to the various segments and areas involved.
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2◦. If the sums `+m, m+ n, n+ ` are all negative, then the argument above
shows that the expression s takes on a maximal value at the point O′ we have
constructed. Indeed, equation (6) shows that, for example, if we fix K ′, L′, a
smaller length for J ′J1 results in a larger value for s.

3◦. In this case, s has neither a maximum nor a minimum, for any triangle
J ′K ′L′. Indeed, suppose, for example, m+n > 0, n+ ` < 0. Then an examination
of equation (6) shows that if we fix K ′, L′, and move J ′ away from the foot of
the perpendicular from J1 (along line BC), then s keeps increasing. But if we fix
J ′, L′, and move K1 (along line AC), then s keeps decreasing.

4◦. Suppose for example m + n = 0. We will show again that s can take on
neither a maximum nor a minimum for any triangle J ′K ′L′. Let H be the foot of
the altitude from J ′ to K ′L′ in triangle J ′K ′L′. Then we have s = ` ·K ′L′2 +m ·
(J ′L′2−J ′K ′2). But J ′L′2−J ′K ′2 = J ′H2+HL′2−(J ′H2+K ′H2) = HL′2−K ′H2.
Now HL′ = K ′L′−K ′H (both in magnitude and sign), so HL′2 = K ′L′2− 2K ′H ·
K ′L′ + K ′H2, and we can write s = ` ·K ′L′2 + m · (K ′L′2 − 2K ′H ·K ′L′). This
expression shows that if we move point H (by moving point J ′ along line BC), we
can arrange for s to take on any value at all.

Note 2. For the cases in which the sums indicated in the previous note all have
the same sign, our reasoning has been based on the assumption that there exists
a triangle J ′K ′L′ which minimizes (or maximizes) the expression s. But even if
we make the assumption that s cannot take arbitrarily small values as we vary
triangle J ′K ′L′, we still cannot be sure that there exists a triangle which actually
minimizes s. We can still imagine a case in which, for example, the value of s
remains larger than some fixed number, but can be made as close as we like to that
number, without ever achieving a minimal value.

But in fact there is no such case. Our second solution, which is in some ways
less natural than our first, does not require the assumption of the existence of a
minimal triangle J ′K ′L′. We limit the discussion to the case where `, m, n are all
positive.

Solution II. We start with the following algebraic identity, which is not at all
obvious, but is easily verified:

(7) (a2+b2+c2)·(x2+y2+z2) = (ax+by+cz)2+(bz−cy)2+(cx−az)2+(ay−bx)2.

This equation holds for any six real numbers. For our solution, we think of a, b, c
as the (fixed) sides of our given triangle, and x, y, z as the (variable) distances
from a point O′ on the plane to its three sides. Then (see the solution to exercise
301) we have ax + by + cz = 2S, where S is the area of the given triangle. (Note
that in the most general case, we are using signed areas, as described in exercise
301).

Alternate proof of (1◦): As in our first proof, let J ′K ′L′ be any triangle in-
scribed in the given triangle ABC, (fig. 366d ) and let J2, K2, L2 be the feet of
the perpendiculars from its centroid O′ to the sides of ABC. As in the derivation
of equation (3) above, we can write:

(8) s = J ′K ′2 +K ′L′2 + L′J ′2 = 3(O′J ′2 +O′K ′2 +O′L′2).
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Figure t366d

We use the Pythagorean theorem to relate the segments on the right to O′J2,
O′K2, O

′L2. We have O′J ′2 = O′J2
2 + J ′J2

2 , O
′K ′2 = O′K2

2 + K ′K2
2 , O

′L′2 =
O′L2

2 + L′L2
2, so that

s = 3(O′J2 +O′K2 +O′L2) + 3(J ′J2
2 +K ′K2

2 + L′L2
2),

and s is minimal when each sum on the right is minimal. The second sum is minimal
when the pairs of points J2, J

′; K2, K
′; L2, L

′ coincide, and this situation also
minimizes the first sum. This happens when O′ is the point we found in exercise
365, and triangle J ′K ′L′ coincides with triangle PQR in that exercise.

Alternate proof of (2◦): We can write equation (7) in the form:

(x2 + y2 + z2) =
4S2

a2 + b2 + c2
+

(bz − cy)2 + (cx− az)2 + (ay − bx)2

a2 + b2 + c2
.

Now the expression on the right is clearly minimal when each of the expressions
in parentheses is zero; that is, when x : y : z = a : b : c. Translating this to the
geometric situation, it means that the sum of the squares of the distances from a
point to the sides of a triangle is minimal when these distances are proportional to
the sides of the triangle. As argued earlier, this means that this point must coincide
with point O′ of exercise 365, and the minimal triangle with triangle PQR. As in
part 1◦ of our first solution, this means that J ′ = J2, K

′ = K2, and L′ = L2. hence
the second sum is also minimized in this case.

Alternate proof of (3◦): Let s = ` ·J ′K ′2 +m ·K ′L′2 +n ·L′J ′2, where `, m, n
are the three given positive numbers. We will use the following generalization of
identity (7):

(`a2 +mb2 + nc2) · (x
2

`
+
y2

m
+
z2

n
) =
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(9) = (ax+ by + cz)2 +
`(mbz − ncy)2 +m(ncx− `az)2 + n(`ay −mbx)2

`mn
.

This identity can be derived from (7) by replacing a, b, c, x, y, z with a
√
`, b
√
m, c
√
n,

x√
`
, y√

m
, z√

n
respectively. Again, we can think of a, b, c as the lengths of the sides

of our given triangle, and x, y, z as the distances from a (variable) point to its
three sides.

As in 2◦ above, we note that ax+ by+ cz is twice the area of the given triangle

ABC, and so does not really depend on x, y, z. Hence the expression x2

` + y2

m + z2

n
is minimal when the second expression on the right of (9) is zero; that is, when

(10) x : y : z = `a : mb : nc.

As in our first proof, we can find a unique point P inside triangle ABC such
that equation (10) is satisfied for the distances x, y, z from P to the sides of
ABC. We will show that the triangle we seek is the one formed by the feet of the
perpendiculars PJ3, PK3, PL3 to the sides of ABC.

Figure t366e

Indeed, suppose J4, K4, L4 are the intersections of these perpendiculars with
sides K3L3, L3J3, J3K3 of J3K3L3 (fig. t366e). As in the previous proofs, cyclic
quadrilateral AL3PK3 and 256 give us |PK3L3| : |ABC| = (PK3 · PL3) : (AB ·
AC) = yz : bc. Similarly, |PL3J3| : |ABC| = zx : ca and |PJ3K3| : |ABC| = xy :
ab. Thus |PK3L3| : |PL3J3| : |PJ3K3| = a

x : b
y : c

z = 1
` : 1

m : 1
n (since J3K3L3

satisfies (10)). Now it is not hard to see that |PJ4K3| : |PL3J4| = K3J4 : J4L3.
(For example, we can draw perpendiculars to line J3J4 from K3, L3 and examine
similar triangles to show that the altitudes to common side PJ4 of these triangles
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have the ratio indicated.) Hence K3J4 : J4L3 = m : n. Likewise, L3K4 : K4J3 =
n : ` and J3L4 : L4K3 = ` : m.

So far, we have shown that if we choose point P to satisfy (10), and construct
a new triangle whose vertices are the feet of its perpendiculars to the sides of
ABC, then these perpendiculars divide the sides of the new triangle in the ratios
m : n, n : `, ` : m. We must show that the value of s = `·J ′K ′2+m·K ′L′2+n·L′J ′2
is minimal for this triangle.

To this end, we take any triangle JKL at all inscribed in ABC (fig. t366f),
and divide its sides at J0, K0, L0 in the ratios m : n, n : `, ` : m. By direct
computation we have (in magnitude and sign) J0K

J0L
· K0L
K0J
· L0J
L0K

= −1, so that (198)
lines JJ0, KK0, LL0 are concurrent at some point O0. Also by direct computation,
we have

(11)
JK0

K0L
=
J0K

J0L
· L0J

L0K
.

Now we apply Menelaus’ theorem (192) to triangle KJJ0 with transversal LL0, to
get O0J

O0J0
· LJ0

LK ·
L0K
L0J

= 1, which we can write as

JO0

O0J0
=

JL0

L0K
· LK
LJ0

=
JL0

L0K
· LJ0 + J0K

LJ0
=

JL0

L0K
·
(

1 +
J0K

LJ0

)
=

JL0

L0K
+
JL0

L0K
· J0K
LJ0

=
JL0

L0K
+
J0K

J0L
· L0J

L0K
.

Combining this equation with (11), we have:

(12)
JO0

O0J0
=

JL0

L0K
+
JK0

K0L
=

`

m
+
`

n
=
`(m+ n)

mn

(See Lemma 2, at the end of this solution, for another way to arrive at equation
(12)). Thus we have:

(12a) O0J0 =
mn

`(m+ n)
· JO0;

(12b) JJ0 = JO0 +O0J0 = JO0 ·
(

1 +
mn

`(m+ n)

)
= JO0 ·

(
mn+ n`+ `m

`(m+ n)

)
As in our first solution, we now apply Stewart’s theorem (127) to triangle JKL

and segment JJ0. This time we get:

(13) (m+ n) · J0J2 = m · JL2 + n · JK2 − mn

m+ n
·KL2.

And applying Stewart’s theorem to triangle O0KL and segment OJ0, we find:

(14) (m+ n) ·O0J
2
0 = m ·O0L

2 + n ·O0K
2 − mn

m+ n
·KL2.

We substitute the values found from (12a) and (12b) into (13) and (14) to get:

(15)
(mn+ n`+ `m)2

`2(m+ n)
·O0J

2 = m · JL2 + n · JK2 − mn

m+ n
·KL2;
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(16)
m2n2

`2(m+ n)
·O0J

2 = m ·O0L
2 + n ·O0K

2 − mn

m+ n
·KL2.

We multiply equation (16) by mn+n`+`m
mn , then subtract equation (15) from the

result, to get (after algebraic simplification):

(17) ` ·KL2 +m ·LJ2 + n · JK2 = (mn+ n`+ `m) ·
(
O0J

2

`
+
O0K

2

m
+
O0L

2

n

)
.

Note that either side of (17) is in fact the value of s (the quantity we are
required to minimize), and that if we let ` = m = n = 1, then equation (17)
becomes equation (8). In this sense, (17) generalizes (8).

Equation (17) is very close to what we need. Indeed, if we let X, Y, Z be
the feet of the perpendiculars from O0 to BC, CA, AB respectively, we have
O0J

2 = O0X
2 + XJ2, O0K

2 = O0Y
2 + Y K2, O0L

2 = O0Z
2 + ZL2. Rewriting

(17) using these values, we have:

Figure t366f

s = ` ·KL2 + n · LJ2 + n · JK2 =

= (mn+ n`+ `m) ·
[(

O0X
2

`
+
O0Y

2

m
+
O0Z

2

n

)
+

(
XJ2

`
+
Y K2

m
+
ZL2

n

)]
.

An examination of this last equation gives us the result: the value of s is minimal

when point O0 is chosen to satisfy the condition of (10). Indeed, we have shown
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that in that case J, K, L will coincide with X, Y, Z, so
(

O0X
2

` + O0Y
2

m + O0Z
2

n

)
is minimal, and XJ = Y K = ZL = 0.

Note. The argument that led to equation (12) actually contains a proof of a
statement interesting in its own right. Sometimes called Van Aubel’s Theorem, we
state it below, with an alternative proof, as a lemma.

Lemma 2: (Van Aubel’s Theorem). If segments AL, BM, CN are con-
current at point J (with points L, M, N on the sides of triangle ABC, as in figure
t366g, then

AJ

JL
=
AN

NB
+
AM

MC
.

Figure t366g

Proof of Lemma 2: We draw BX, CY , both parallel to AL (fig. t366g).
We first relate LJ to BX, CY . From similar triangles JLC, XBC we have JL :
XB = LC : BC. In the same way, from triangles JLB, Y CB, we have JL : Y C =
BL : BC. Adding, we have JL : XB + JL : Y C = (BL+ LC) : BC = 1, or

(17)
1

JL
=

1

XB
+

1

Y C
.

Multiplying this by AJ we find:

(18)
AJ

JL
=

AJ

XB
+
AJ

Y C
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.
We now relate these ratios to those in the problem statement. From similar

triangle ANJ, BNX we have AJ
XB = AN

NB . From similar triangle AMJ, CMY we

have AJ
Y C = AM

MC . Substituting these values into (18) gives us our result.

Note. The reasoning leading to equation (17) is similar to the argument in the
solution of Exercise 129. In fact, if we draw XY , we reproduce the diagram of that
exercise: a trapezoid and its two diagonals. Equation (17) gives the relationship
between the bases of a trapezoid and (half) the line through its diagonals, parallel
to the bases.

Problem 367. In a given circle, inscribe a triangle such that the sum of the
squares of its sides, multiplied by three given numbers, is as large as possible.

Solution I. For this solution, we assume that there exists a triangle ABC
inscribed in the given circle, such that s = ` ·BC2 +m · CA2 + n ·AB2 is as large
as possible. We also assume, for now, that `, m, n are positive. If necessary, we
re-label the vertices of triangle ABC so that

(1) ` ≤ m ≤ n.
We choose point D on segment BC so that BD : DC = m : n, and apply

Stewart’s theorem (as we did in the derivation of equation (4) in Exercise 366), to
get

m ·AC2 + n ·AB2 = (m+ n) ·AD2 +
mn

m+ n
·BC2.

so that

(2) s =

(
`+

mn

m+ n

)
·BC2 + (m+ n) ·AD2.

Now if we fix B and C, then the position of D is also fixed, and the value of
s given in (2) depends only on A, and occurs when AD is as large as possible. By
64, this will be when AD is a diameter. Hence we see that if ABC is the triangle
which maximizes s, then the diameter through A divides BC internally in the ratio
m : n. In the same way, we can show that the diameter through B divides AC in
the ratio n : `, and the diameter through C divides AB in the ratio ` : m.

Suppose (fig. t367a) that these three diameters are AD, BE, CF . Next we
apply Lemma 2 from Exercise 366 to triangle ABC and these three diameters, to
get:

(3)
AO

OD
=
AF

FB
+
AE

EC
=

`

m
+
`

n
=
`(m+ n)

mn
.

Hence if R is the radius of the given circle, we have:

(4) AD = AO +OD =
mn+ `m+ `n

`(m+ n)
·AO =

mn+ `m+ `n

`(m+ n)
·R.

Note that equation (3) or equation (4) determine the position of point D along the
diameter through A, independently of points B or C. Thus we have the following
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Figure t367a

construction. We choose a point A arbitrarily, and locate D along diameter AA′ as
defined by equation (3) or (4). We must then draw chord BD through D so that
BD : DC = m : n. This task can be completed by dilating the given circle by the
ratio −m : n (around point D as center), and finding the intersection of the original
circle with its image. Either can be a position of B, and point C is located at the
intersection of BD and the original circle. (This argument is analogous to the one
in the last paragraph of the solution to exercise 165. Here the two given circles in
that exercise coincide.)

When does this construction work? It is necessary and sufficient that (a) point
D, defined by equations (3) or (4) lie inside the given circle, and (b) that there be
a chord through D which that point divides in the ratio m : n. Condition (a) is
equivalent (64) to `

m + `
n > 1 (so that OD < OA′ = R), or to

(5)
1

`
<

1

m
+

1

n
.

To explore when condition (b) holds, we note that (64) A is the furthest point
from D on the given circle, and A′ is the closest. Thus condition (b) is equivalent

to the condition that A′D
AD < m

n < AD
DA′ , or 2R−AD

AD < m
n < AD

2R−AD .

We replace AD with its equivalent as given in equation (4), to get

(6)
−mn+ `m+ `n

mn+ `m+ `n
<
m

n
<

mn+ `m+ `n

−mn+ `m+ `n
.

However, some algebra will show that this is not really a second condition. Indeed,
if we take the first inequality above, clear denominators and cancel terms, we get
n2` < m2n + mn2 + `m2, or `(n2 − m2) < mn(m + n), or `(n − m) < mn, or
`n < `m+mn, or 1

m < 1
n + 1

` . Similarly, the second inequality leads to 1
n <

1
m + 1

` .
Both of these are simple consequences of equation (1). That is, if we choose positive
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numbers ` < m < n, then these two conditions are automatically satisfied, and the
only necessary and sufficient condition for the triangle to exist is (5).

Note. We can interpret this condition geometrically. The numbers `, m, n
must be chosen so that 1

` ,
1
m ,

1
n can be the lengths of the sides of a triangle. In

other words, the altitudes of some triangle must be proportional to `, m, n.
This first solution has the same failing as the first solution we gave to exercise

366: we are assuming the existence of a triangle which maximizes s. (See the note
to that solution.) Our second solution does not have this failing.

Solution II. As in the first solution, we assume that

(7) 0 < ` ≤ m ≤ n.

Figure t367b

Suppose ABC is any triangle at all inscribed in the given circle (fig. t367b). We
find point D which divides BC in the ratio m : n. As in the first solution, the value
of s can be expressed as in equation (2) above. We draw diameter MN through D,
and assume that it is labeled so that MD > DN . We now express s in terms of MD
and AD. We have (131) BD ·DC = MD · (2R−MD). But BD = m

m+n ·BC and

DC = n
m+n ·BC, so BD ·DC = mn

(m+n)2 ·BC
2, and BC2 = (m+n)2

mn ·MD ·(2R−MD).

We substitute this into (2) to obtain:

s =

(
`(m+ n)2

mn
+m+ n

)
·MD · (2R−MD) + (m+ n) ·AD2

=

(
`(m+ n)2

mn
+m+ n

)
·2R·MD− `(m+ n)2

mn
·MD2−(m+n)·MD2+(m+n)·AD2.

But, by direct computation, `(m+n)2

mn +m+ n = (m+n)(`m+mn+n`)
mn , so we have

s =
m+ n

mn
·
(
2(mn+ n`+ `m)R ·MD − `(m+ n) ·MD2

)
+(m+n)(AD2−MD2).
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The first term in this express depends only on the position of D, while the
second also depends on the position of A. We can eliminate this second dependence.
Indeed, M is the most distant point on the circle from D, so AD2−MD2 is negative
except if A and M coincide. Hence, for any position of D (which determines a
position of M), the value of s cannot be maximal unless A and M coincide. That
is, a necessary condition for s to be maximal is that A coincide with M .

But this condition is not sufficient. We must also maximize the value of

m+ n

mn
·
(
2(mn+ n`+ `m)R ·MD − `(m+ n) ·MD2

)
.

We can study this expression using techniques from algebra. First note that the
value of MD that maximizes the expression is not determined by the fraction m+n

mn :
this fraction will only affect the maximal value of the function. So we can ignore
this part of the expression.

Letting x = MD, we can write the expression as a quadratic function of this
variable:

(8) y = −`(m+ n) · x2 + 2(mn+ n`+ `m)R · x,
(where R, the radius of the given circle, is constant). This function has the form
y = Ax2 +Bx, where A < 0, and such a function has its maximum where

(9) MD = x =
−B
2A

=
(mn+ n`+ `m)R

`(m+ n)
.

A look at equation (4) shows that this expression determines the same position for
D as in our first solution.

But even this condition may not quite be sufficient: we must know that point
D is inside the given circle; that is, that

(10)
(mn+ n`+ `m)R

`(m+ n)
< 2R,

This condition implies that mn + n` + `m < 2`m + 2`n, or mn < `m + `n, which
gives us the condition that 1

` <
1
m + 1

n , which is the same condition we were led to
in the first solution.

We must also be sure that there exists a point D such that BD : DC = m : n.
It is not hard to see (64) that this condition is equivalent to DN : MD < m : n <
MD : DN . Substituting the value of MD given by (8), we arrive at the inequalities
in (6), and the discussion in the first solution about the existence of a maximal
value for s now applies.

Note. If point D, as found above, lies on or outside the given circle, then the
largest value of s occurs when triangle ABC then degenerates into two copies of
the diameter of the given circle.

In the discussion above we have assumed that `, m, n are all positive. However,
the situation when at least one of them is not is resolved by the discussion as well.

Indeed, suppose two of the coefficients, say m and n, are negative, and let
A′ be the point diametrically opposite A (as in figure t367a). Then we have s =
`·BC2+m·AC2+n·AB2 = `·BC2+m(4R2−A′C2)+n(4R2−A′B2) = `·BC2−m·
A′C2−n·A′B2+4(m+n)R2. The term 4(m+n)R2 is constant, and we are led to the
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problem of finding triangle A′BC which maximizes s = `·BC2−m·A′C2−n·A′B2,
whose coefficients are all positive. This problem is resolved by the discussion above.

If the number of negative values among the coefficients `, m, n is odd, we can
seek the maximum of the function s′ = −s = −` · BC2 −m · AC2 − n · AB2, in
which the number of negative coefficients is even. We have solved this problem in
the discussions above, and its solution will give us a minimum value for s.

Problem 368. A necessary and sufficient condition for the existence of a so-
lution to Exercise 127 (a point whose distances to the three vertices of a triangle
ABC are proportional to three given numbers m, n, p) is that there exist a triangle
with sides m ·BC, n · CA, p ·AB.

Solution. First we show that the indicated condition is necessary. Suppose
there exists a point D such that AD : BD : CD = m : n : p, for given numbers
m, n, p. We invert these three points in a circle around D, with any radius r. If
the image of points A, B, C are A′, B′, C ′ respectively, then these three image

points certainly form a triangle. We have (218) A′B′ = AB · r2

AD·BD , B
′C ′ =

BC · r2

BD·CD , A
′C ′ = AC · r2

AD·CD . So A′B′

B′C′ = AB·r2
AD·BD ·

BD·CD
r2·BC = AB·CD

AD·BC , with
analogous results for the ratios B′C ′ : C ′A′ and C ′A′ : A′B′. Direct computation of
these ratios will show that A′B′ : B′C ′ : C ′A′ = (CD ·AB) : (AD ·BC) : (BD ·CA),
and since AD : BD : CD = m : n : p, we can write A′B′ : B′C ′ : C ′A′ = (p ·AB) :
(m·BC) : (n·CA). These numbers are the sides of triangle A′B′C ′, so the indicated
condition is necessary for the existence of point D.

To show that the given condition is also sufficient, we suppose that there exists
a triangle T with sides p ·AB, m ·BC, n ·CA. The result of exercise 270b assures us
that there is an inversion with some center D (and some power of inversion whose
value will not concern us) which takes points A, B, C onto points A′, B′, C ′

which form a triangle congruent to T . It is not hard to show that point D satisfies
the requirements of the problem. Indeed, we have, as in the previous paragraph,
A′B′ : B′C ′ : C ′A′ = (CD · AB) : (AD · BC) : (BD · CA). But we’ve assumed
that A′B′ : B′C ′ : C ′A′ = (p · AB) : (m · BC) : (n · CA). These two continued
proportions imply that AD : BD : CD = m : n : p, so D is the point we seek, and
the given condition is sufficient as well as necessary.

Problem 369. We join the vertices of a triangle ABC to points D, E, F on
the opposite sides of the triangle so that the segments AD, BE, CF are equal.
Through an interior point O of the triangle we draw segments OD′, OE′, OF ′,
parallel to these, with D′, E′, F ′ on the corresponding sides. Show that the sum
of these segments is constant, no matter what point is chosen for O.

Solution. Let the distances from O to BC, CA, AB be x, y, z respectively.
By the result of exercise 301, we have x

h + y
k + z

` = 1, where h, k, ` are the
altitudes from A, B, C respectively in triangle ABC. In figure t369, right triangles
AA1D, OO1D

′ are clearly similar, so we have OD′ : AD = OO1 : AA1 = x : h. In
the same way, we can show that OE′ : BE = y : k and OF ′ : CF = z : `. Thus we

have OD′

AD + OE′

BE + OF ′

CF = 1. But AD = BE = CF , so multiplying by their common
value gives OD′ +OE′ +OF ′ = AD, a constant value.

Note. This exercise generalizes the result of exercise 42.



70

Figure t369

Problem 370. When three lines are concurrent, there always exist numbers
such that the distance from an arbitrary point in the plane to one of them is equal
to the sum or the difference of its distances to the other two, multiplied by these
numbers. Formulate the result in a manner entirely independent of the position of
the point by an appropriate convention for the signs of the segments.

Conversely, the sum or the difference of the distances from an arbitrary point
M in the plane to two fixed lines, multiplied by given numbers, is proportional to
the distance from M to a certain fixed line, passing through the intersection of the
first two.

Solution. We first treat a simple case, assuming a specific position for the
‘arbitrary point’, then consider how to generalize for any position of the point in
the plane.

In this problem, and the next, we will be using signed areas, so we will not use
absolute value to denote area. Instead, we will use the notation Area(ABC), for
example, to denote the (signed) area of triangle ABC.

Figure t370 shows lines a, b, c and point M . The distances from M to a, b, c
respectively are x, y, and z. We draw line c′ through M parallel to c. We have
Area(OAB) = 1

2 · AB · z = 1
2z · AM + 1

2z ·MB = Area(OAM) + Area(OMB) =
1
2x · OA + 1

2y · OB. It follows (algebraically) that z = OA
AB · x + OB

AB · y. Now if
we move the position of M the shape of triangle OAB does not change: the new
triangle remains similar to the original. It follows that the coefficients OA

AB ,
OB
AB in

this expression for z do not depend on the position of M . This proves the original
assertion.
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Figure t370

But we have made significant assumptions about the position of M . For some
positions, we will have Area(OAB) = Area(OAM)−Area(OMB) and so forth. A
more general assertion, following the argument above, is that z = ±OA

AB ·x±
OB
AB · y.

(The original assertion allows for these coefficients to be positive or negative for
different positions of M .)

To formulate the result still more generally, we will consider the area of any
triangle as either positive or negative depending on the orientation of its perimeter
(as in the solution to problem 324). We will also need some further conventions
about signs. We want to say, for example, that the area of triangle MPQ (whose
base PQ lines on line a) is always 1

2PQ·x (where x is the length of the perpendicular
from M to a). For this, we must give x a sign as well. We will call x ‘positive’ if,
for an observer at point M , the positive direction of line a is from right to left. We
will call x ‘negative’ in the opposite situation. We make analogous conventions for
the distances y and z from M to lines b and c respectively.

Using these conventions, we have both in absolute value and in sign, we have
area(OAB) = 1

2AB · z = 1
2 (AM +MB) · z = 1

2AM · z+ 1
2MB · z = area(OAM) +

area(OMB) = 1
2OA · x

1
2OB · y. For different positions of M in the plane, the

ratio AB : OA : OB retains its magnitude and sign. So in general, we have
z = OA

ABx−
OB
AB y, and the coefficients of x and y are constant.
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Conversely, suppose the (signed) distances to two (oriented) lines a and b from
a variable point M are x and y respectively, and consider the expression mx+ ny,
for (positive or negative) constants m, n. If O is again the intersection of a and
b, we can lay off segments OA, OB along lines a, b so that OA : (−OB) = m : n
(in magnitude and sign). We then draw a line c through O parallel to AB and let
z be the (signed) distance from M to c. We have, by our first (direct) statement,

z = OA
AB · x −

OB
AB · y = OB·(−m)

AB·n · x − OB
AB · y, or

(−AB
OB · n

)
z = mx + ny, and the

distance z from M to the fixed line c (which passes through the intersection of a, b)
is indeed proportional to mx+ ny.

Note. Dynamic geometry software can be useful in exploring this sort of prob-
lem. Students can move M about the plane and observe that triangle OAB retains
its shape. They can also observe that sometimes areas must be added, and some-
times subtracted, and that in between, the areas vanish. The truth of the various
assertions using conventions about signed areas and segments can thus be conve-
niently examined.

Problem 371. Find the locus of points such that the sum of their distances
to n given lines, taken with appropriate signs and multiplied by given numbers, is
constant; in other words, the locus of points such that the areas of the triangles
with a vertex at the point, and with n given segments as bases, have a constant
algebraic sum. (The preceding exercise provides a solution of the problem for n
lines, provided that we know how to solve it for n − 1 lines.) Deduce that the
midpoints of the three diagonals of a complete quadrilateral are collinear.

Solution. We use the conventions for directed line segments given in the solu-
tion to exercise 370. Let a1, a2, . . . an be the n lines, each with a positive direction
indicated along it. Let x1, x2, . . . xn be the distances to these lines from some
point X, considered positive or negative as described in the previous solution. Let
k1, k2, . . . , kn be the given (positive or negative) numbers.

We solve the problem first for n = 2. Suppose the two given lines intersect,
and we seek the locus of points X such that

(1) k1x1 + k2x2 = k0,

where k0 is some constant. From the converse proposition in exercise 370, we know
that there exists a line c such that k1x1 + k2x2 = kcxc, where xc is the distance
from X to line c and kc is some constant. So in this case, equation (1) can be
written as kcxc = k0, or xc = k0

kc
, which is another constant. That is, the distance

from X to line c is constant, and the locus of X is a line parallel to c.
Now suppose the two given lines are parallel, and oriented in the same direction.

If X is a point satisfying (1), and xp is the (perpendicular) distance between the
two lines, then we can write x2 = x1 + xp for any position of X (in magnitude and
sign). Substituting in (1), we can rewrite that equation as (k1 + k2)x1 = k0− k2xp;

that is, x1 =
k0−k2xp

k1+k2
, which is again constant (as long as k1 + k2 6= 0). Again, the

locus of X (if there are any such points at all) is a line, parallel to the two given
lines. If k1 +k2 = 0 there are no such points, unless k0−k2xp = 0 as well, in which
case X can be any point on the plane.

Finally, we suppose the two given lines are parallel, and oriented in opposite
directions. This case reduces to the previous, if we reverse the orientation of one of
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the lines (say a2) and at the same time reverse the sign of the associated constant
(k2). The sign of x2 then reverses as well, and the conclusions above remain valid.
This concludes the analysis for the case n = 2.

We now proceed by induction. We assume that the locus of X for any n − 1
lines is another line, and investigate the case for n lines. That is, we seek the locus
of points X such that

(2) k1x1 + k2x2 + · · ·+ kn−1xn−1 + knxn = k0.

We can assume that no ki is zero. (If some ki = 0, then line ai contributes no
constraint to the position of X.) Of any set of more than two non-zero numbers,
we can certainly choose two whose sum is not zero. So we can assume that the lines
have been numbered so that kn−1 + kn 6= 0.

We next apply the statement for n = 2: there exists a line c such that the
distance xc from any point to c is proportional to kn−1xn−1 + knxn. This allows
us to replace the two lines an−1, an with the single line c and reduce the number
of lines to n− 1. That is, condition (2) is equivalent to

(2a) k1x1 + k2x2 + · · ·+ +kn−2xn−2 + kcxc = k0,

for some constant kc. By our induction hypothesis, the locus satisfying this condi-
tion is a line.

As noted in the problem statement, we can interpret this result geometrically, in
terms of (signed) areas of triangles. As in the previous exercise, we use Area(ABC)
to denote the area of triangle ABC, rather than absolute value.

Suppose we have line segments A1B1, A2B2, . . . AnBn, and suppose k0 is some
constant. If we set ki = AiBi

2r for some constant r, then equation (2) can be written
as

A1B1

2r
x1 +

A2B2

2r
x2 + · · ·+ AnBn

2r
xn = k0,

or

1

2
A1B1x1 +

1

2
A2B2x2 + · · ·+ 1

2
AnBnxn = k0r,

or

(3) Area(A1B1X) +Area(A2B2X) + · · ·+Area(AnBnX) = k0r.

Finally, we use this result to prove that the midpoints of the three diagonals of a
complete quadrilateral are collinear. Let the complete quadrilateral be ABCDEF ,
and let L, M, N be the midpoints of its diagonals (fig. t371). We have, in
magnitude and sign, Area(ACL)+Area(BCL) = 0; Area(ADL)+Area(BDL) =
0 (note the orientation of these triangles). It follows that

(4) Area(ACL) +Area(BCL) +Area(ADL) +Area(BDL) = 0.

Likewise, we haveArea(ACM)+Area(ADM) = 0; Area(BCM)+Area(BDM) =
0, so
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Figure t371

(5) Area(ACM) +Area(BCM) +Area(ADM) +Area(BDM) = 0.

That is, both L and M belong to the locus of points X such that Area(ACX)+
Area(BCX)+Area(ADX)+Area(BDX) = 0. We prove the assertion by showing
that point N belongs to this locus as well.

This takes a bit more work than (4) and (5) did. We have Area(AEN) +
Area(AFN) = 0; Area(BEN)+Area(BFN) = 0; Area(CEN)+Area(CFN) =
0; Area(DEN) + Area(DFN) = 0. We add the first two of these equations, and
subtract from them the second two, to get:

{Area(AEN)−Area(DEN)}+ {Area(AFN)−Area(CFN)}

(6) + {Area(BEN)−Area(CEN)}+ {Area(BFN)−Area(DFN)} = 0.

Now we note that, for example, Area(AFN) − Area(CFN) = Area(AFN) +
Area(FCN) = Area(ACN), with similar substitutions possible for other terms in
(6), which then becomes:

Area(ACN) +Area(BCN) +Area(ADN) +Area(BDN) = 0.

Equations (4), (5), (7) show that L, M, N all belong to the locus of points X
such that



75

(7) Area(ACX) +Area(BCX) +Area(ADX) +Area(BDX) = 0.

Since this locus is a line, the assertion is proved.

Note. A subtle point completing this argument is to show that equation (7)
does not hold for every point on the plane. (If it did, we could not assert the
collinearity of L, M, N .) In fact, we can easily show that it does not hold for
point A or point C. For these points, some of the ‘triangles’ in equation (7) degen-
erate into segments, so their area is 0, and we have Area(BCA) + Area(BDA) =
Area(ADC) + Area(BDC) = 0. It is not hard to see that these conditions im-
ply that quadrilateral ADBC is a parallelogram, and we cannot even make the
assertion in the problem statement. Hence (7) in fact does determine a line.

Problem 371b. The three circles whose diameters are the diagonals of a com-
plete quadrilateral have the same radical axis. This axis passes through the inter-
section of the altitudes of each of the four triangles formed by three sides of the
quadrilateral.

Solution. Suppose (fig. t371b) that AB, CD, EF are the diagonals of com-
plete quadrilateral ABCDEF . Triangle BCF is formed by three of the sides of
the quadrilateral, and we let H be the intersection of its altitudes BK, CL, FM .
Quadrilateral BCKL is cyclic (two opposite angles are right angles), so points
B, K, C, L lie on the same circle (not shown) and (131):

(1) HB ·HK = HL ·HC.

Now AK ⊥ BK, so K lies on the circle with diameter AB. Similarly L lies on
the circle with diameter CD. We can read equation (1) as saying that H has the
same power with respect to both these circles. Analogously, we have (from cyclic
quadrilateral BKFM):

(2) HB ·HK = HM ·HF.

Again, HM ⊥ EM , so M lies on the circle with diameter EF , and (2) says that H
has the same power with respect to this circle as it has with respect to the circle
on diameter AB. Thus H has the same power with respect to all three circles on
the diameters of the three diagonals of ABCDEF , and lies on the radical axis of
any pair of these circles.

In just the same way, we can show that the orthocenters of triangles BDE,
ACE, ADF have the same powers with respect to these three circles. So each of
the four orthocenters lie on the intersection of the radical axes of pairs of these
circles. Since these orthocenters don’t coincide, this must mean that the radical
axes of pairs of these three circles are all the same line (and the orthocenters all lie
along this line).

Note. The simplicity of this argument belies the complex nature of the result,
which combines in an unexpected ways the definitions of orthocenter and radical
axis. If the circles intersect, we get the equally unexpected result that they all pass
through the same pair of points.
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Figure t371b

Problem 372. The opposite sides of a complete quadrilateral, and its diago-
nals, form a set of three angles such that the polars of any point O in the plane
relative to these three angles are concurrent. (Transform by reciprocal polars, and
take O as the center of the directing circle.)

These same lines intercept three segments on an arbitrary transversal such
that the segment which divides two of them harmonically also divides the third
harmonically.

Three segments with this property are said to be in involution.

Solution. Let PQRS be four vertices of the given quadrilateral. (For clarity,
figure t372a shows only part of the complete quadrilateral.) Let opposite sides
PQ, RS intersect at K. Let line m be the polar of point O with respect to angle

P̂KS (203); that is, m contains the harmonic conjugate of point O with respect

to the segment cut off by angle P̂KS along any line through O.
We take the polar of each point in figure t372a, with respect to an arbitrary

circle (not shown) centered at O. The result is given in figure t372b. The complete
quadrilateral determined by PQRS is transformed into another complete quadri-
lateral, determined by lines p, q, r, s. Point K is transformed into line k. By
205, any line through point K is transformed into a point on k. In particular, lines
PQ, RS, OK, m are transformed into points along k, which we denote (unconven-
tionally, but with a certain clarity) as (pq), (rs), (ok) and M . However, since line
OK passes through the center of the directing circle, its pole (ok) lies at infinity
along line k (204).
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Figure t372a

Figure t372b

By definition of the polar with respect to an angle, lines PK, m, SK, OK
form a harmonic pencil. Thus points (pq), M, (rs), (ok) form a harmonic range
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along line k. Since the harmonic conjugate of a point at infinity, with respect to a
given segment, is the midpoint of the segment, point M is equidistant from (pq) and
(rs). That is, M is the midpoint of one of the diagonals of complete quadrilateral
pqrs.

We can repeat this argument for the angle determined by PS and QR (the
other two opposite sides of quadrilateral PQRS). Under the transformation by
reciprocal polars, these lines correspond to points (ps), (qr), two more vertices of
the transformed complete quadrilateral, and by an analogous argument, the polar
of O with respect to the angle determined by PS, QR is transformed into the
midpoint of another diagonal of pqrs.

A third iteration of this argument will show that the polar of O with respect to
the angle determined by diagonals PR, QS of the original complete quadrilateral
is transformed into the midpoint of the third diagonal of pqrs. But these three
midpoints are collinear (194, or exercise 371). Therefore the polars of these three
lines, which are the polars of O with respect to the angles described in the problem,
are concurrent (at the pole of the line containing the midpoints of the diagonals of
pqrs). This proves the first assertion of the problem.

Figure t372c

To prove the second assertion of the problem, suppose line t intersects the
opposite sides and the diagonals of complete quadrilateral PQRS (fig. t372c).
Suppose the segments these lines determine along T are AA′, BB′, CC ′. Then, by
the result of exercise 219b, there exists a segment UV which divides both AA′ and
BB′ harmonically. The definition of the polar of a point with respect to an angle
(203) tells us that the polar of point U with respect to the pair of lines PQ, RS
passes through point V , and the same thing is true for the polar of point U with
respect to lines PS, QR. It follows from the first assertion of this problem that the
polar of U with respect to the third pair PR, QS of lines also passes through V .
Therefore segment UV divides segment CC ′ harmonically.
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Notes. The solution to problem 219b shows that points U and V exist if and
only if the circles on diameters AA′, BB′ do not intersect. This is a condition on
the position of line t.

Problem 373. The Simson line (Exercise 72) which joins the feet of the per-
pendiculars from a point P on the circumscribed circle of a triangle to the three
sides, divides the segment joining P with the intersection H of the altitudes of the
triangle into equal parts. (Prove, using Exercise 70, that the points symmetric to
P relative to the three sides, are on a line passing through H.)

Deduce from this, and from exercise 106 that the points of concurrence of the
altitudes of four triangles formed by four lines, taken three at a time, are collinear.

Solution. There are three assertions here:

(1) The points symmetric to P in the triangle’s three sides are collinear;
(2) The Simson line bisects PH;
(3) The four orthocenters determined by four intersecting lines are concurrent.

Solutions. (1◦) If the given triangle (fig. t373a) is ABC, let X, Y, Z be the
feet of the perpendiculars from P to its three sides. By the result of exercise 72,
these three points are collinear. Let H be the orthocenter of the triangle, and let
Q be the reflection of P in line BC. We will first show that Q is on a line through
H parallel to XY .

Figure t373a

To show this, let H ′ be the reflection of point H in BC. By the result of
exercise 70, H ′ lies on the circumcircle of ABC. Let XY intersect HH ′ at K and
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PH at L. We will use angles to show that HQ ‖ XY . First note that since H, Q
are symmetric respectively to H ′, P in line BC, that

(1) P̂H ′K = Q̂HK,

and also that P̂H ′K = P̂CA (they both intercept arc PBA), so P̂H ′K supplements

P̂CY . But we can tell more about P̂CY . Points X, Y lie on the circle with

diameter PC (because P̂XC, P̂Y C are right angles). Thus P̂CY = P̂XY , and

P̂H ′K supplements P̂XY = X̂KH (this last equality because PQ ‖ AH ′). By (1),

this means that Q̂HK supplements X̂KH, which shows that QH ‖ XY .
In just the same way, we can show that the reflections of P in AB, AC also lie

on a line through H parallel to XY . Since there is only one such line, these three
points are collinear.

Note. For some positions of P , details of this argument must be changed.
Some angles which are here said to be equal become supplementary if P is closer
to C than to B. However, the argument still holds in these cases.

(2◦). It is now easy to show that L is the midpoint of PH. In triangle PQH,
X is the midpoint of side PQ, and XL is parallel to side QH. It follows from 114
that L is the midpoint of PH.

(3◦) Suppose a, b, c, d are any four lines which intersect in pairs. From exercise
106, we know that if we draw the circumcircles of triangles abc, abd, acd, bcd (where
abc denotes the triangle formed by lines a, b, c, etc.), these four circles all pass
through some point P .

Since P is on the circumcircle of triangle abc, the feet of the perpendiculars
from P to a, b, c all lie along some line k. Since P is also on the circumcircle of
triangle bcd, the foot of the perpendicular from P to d is also on line k, which is
the Simson line for P relative to all four triangles.

It follows, from the first part of this exercise, the four orthocenters in question
all lie on a line parallel to k, and twice as far from P as k is.

Problem 374. We fix points A, B, P, P ′ on a circle S, and let C be a variable
point on the same circle. Show that the intersection M of the Simson lines for P
and P ′, with respect to the triangle ABC, describes a circle S′.

Find the locus of the center of S′ when A, B remain fixed, and P, P ′ move
along S so that the distance PP ′ remains constant.

Also find the locus of the point M when the points A, B, C are fixed, and
P, P ′ are variable and diametrically opposite.

Solution. We first prove an initial lemma, then treat the three assertions of
the exercise separately.

Lemma 1. If two points are chosen on the circumcircle of a triangle, the acute
angle between their Simson lines is equal to half the minor arc between the two
points.

Proof: In figure t374a, we have chosen two points on the circumcircle of triangle
ABC. We have point P and the feet K, L of its perpendiculars to AC, AB
respectively. We also have point P ′ and the feet K ′, L′ of its perpendiculars to
AC,AB. Simson lines KL, K ′L′ of points P, P ′ intersect at T . We will prove
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Figure t373b

the lemma by dividing acute angle K̂TK ′ into two smaller angles, each of which is
equal to an angle inscribed in the circumcircle.

We create the two smaller angles by drawing TU ⊥ AC. Note that since
PK ⊥ AC, P ′K ′ ⊥ AC, we have TU ‖ PK ‖ P ′K ′.

We first look at ÛTK, which is equal to L̂KP (since TU ‖ PK). Now quadri-

lateral PKAL is cyclic, having right angles at K and L, so P̂KL = P̂AL = 1
2 PB.

Thus ÛTK = 1
2 PB.

Similarly, using parallel lines TU, P ′K ′ and cyclic quadrilateral P ′L′K ′C (in

which P ′C is a diameter of the circumcircle), we have K̂ ′TU = T̂K ′P ′ = L̂′CP ′ =

1
2 BP

′.

Adding these two angles, we find that K̂TK ′ = K̂TU + ÛTK ′ = 1
2 (PB + BP ′

) = 1
2 PP

′. This concludes the proof.

Solutions. (1◦). This situation is now easy to deal with. If P, P ′ are two
points on the circumcircle of triangle ABC (fig. t374b), then the angle between
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Figure t374a

their Simson lines depends only on arc PP ′, and not on the position of point C
along the circle. Points Z, Z ′ (the feet of the perpendiculars from P, P ′ to AB)

also do not depend on point C. So angle ẐMZ ′ is constant, and M (the intersection
of the Simson lines) describe an arc of a circle.

In figure 374b, the angle at M is acute, but is still constant as C moves. For
other positions of C, the angle at M will be the supplement of the angle shown,
and M will describe a full circle S′. Note that S′ passes through Z, Z ′, which are
the feet of the perpendiculars from P, P ′ to AB.

(2◦). Now suppose (fig. t374c) that the distance PP ′ is fixed. We have a fixed
circle (S), two fixed points (A, B), two variable points (P, C), and point P ′ whose
position depends on P (and S). However, it turns out that the locus of centers of
S′ does not depend on C, but only on the length PP ′.

Let O, O′ be the centers of circles S, S′ respectively, and let C ′ be the midpoint
of segment AB. We will show that the length C ′O′ is constant, and is equal to the
distance of PP ′ from O. The argument requires some auxiliary construction.

Let K be the midpoint of ZZ ′. Then PZ ‖ O′K ‖ P ′Z ′, so (113) the inter-
section I of PP ′ and O′K is the midpoint of PP ′ We will show that OIO′C ′ is a
parallelogram. We know that C ′O ⊥ AB, and IO′ ⊥ AB as well, so C ′O ‖ O′I.

We now will show, by means of a rather complicated argument that C ′O = O′I.

We know, from lemma 1, that ẐMZ ′ = 1
2 PP

′, so ẐMZ ′ = 1
2 P̂OP

′. But, in circle
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S′, ẐMZ ′ is an inscribed angle, and ẐO′Z ′ is a central angle intercepting the

same arc, so ẐO′Z ′ = 2(ẐMZ ′) = P̂OP ′. This means that isosceles triangles
POP ′, ZO′Z ′ are similar, and (since corresponding altitudes are in the same ratio
as corresponding sides) O′K : OI = ZZ ′ : PP ′.

On the other hand, suppose N is the foot of the perpendicular from O to O′I,
and Q is the foot of the perpendicular from P to P ′Z ′. Then PP ′ ⊥ OI and

PQ ‖ ZZ ′, so PQ ⊥ IN . Thus angles P̂ ′PQ, ÔIN have pairs of sides which
are perpendicular, so (43) these angles are either equal or supplementary. An
examination of their senses of rotation will show that in fact they are always equal.
Thus right triangle QPP ′, NIO are similar, and IN : OI = ZZ ′ : PP ′.

Comparing the proportions at the end of the last two paragraphs, we conclude
that O′K = IN . Subtracting segment IK from each of these, we find that O′I =
KN = C ′O.

We have now shown that two sides of quadrilateral O′IOC ′ are both equal and
parallel, so (46, converse 2◦) this figure is a parallelogram, and its other pair of
sides is equal. That is, C ′O′ = OI. Now the length of OI does not depend on the
position of point P , but only on the radius of circle S (which is constant) and the
length PP ′ (which is also constant). Hence O′ always lies on a the circle centered
at C ′ with radius equal to OI. (Recall that C ′ does not depend on C, P , or P ′.)

We can show that any point O′ on this circle is part of the required locus by
following the proof in reverse. We draw O′I ⊥ AB, locating point I as the fourth
vertex of parallelogram O′C ′OI. Then we can rotate segment IO about I by 90◦

to get a line which will intersect circle S at points P, P ′. Then O′ is the center of



84

Figure t374c

the circle along which the intersection of the Simson lines corresponding to P, P ′

will lie.
(3◦). We will show that this locus is none other than the nine-point circle

(exercise 101) of the original triangle ABC. We will draw freely on the results of
exercises 101 and 373.

Let O, H be the circumcenter and orthocenter of triangle ABC, and let K, L
be the midpoints respectively of segments HP, HP ′ (fig. t374d). By the result of
exercise 373, K and L are on the Simson lines of points P, P ′ (which are shown in
blue in figure t374d).

We examine segment KL. Since it joins the midpoints of two sides of triangle
HPP ′, it is half the length of PP ′ (55), which is the length of the diameter of
the nine-point circle (exercise 101). Since O is on line PP ′ (and is the midpoint of
segment PP ′), segment KL passes through the midpoint O1 of HO (114). (Note
that O1 stays fixed as P, P ′ move around the circle.) Hence (exercise 101) KL is
always a diameter of the nine-point circle of triangle ABC. And since (from lemma

1) L̂MK = 90◦, point M lies on this nine-point circle.
We now investigate the converse: We are given a point M on the nine-point

circle of triangle ABC (fig. t374f), and we must find points P, P ′ diametrically
opposite, and such that the Simson lines of these two points intersect at M .
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Lemma 2. Let P be a point on the circumcircle of triangle ABC (fig. t374e),
let T be the foot of the perpendicular from P to side BC, and let P1 be the
intersection of PT with the circumcircle. If p is the Simson line of point P , then
AP1 ‖ p.

Proof of Lemma 2. Note that T is, by definition, on the Simson line p
of point P . If the intersection of p and AB is point Y , then PY ⊥ AB, again
by the definition of the Simson line p. Hence quadrilateral PY TB is cyclic, and

Ŷ TP = ÂBP . But ÂBP = 1
2 AP= ÂP1B. So ÂP1P = Ŷ TP , and AP1 ‖ p. This

proves the result of the lemma.

Proof of Converse Statement. We first move from the nine-point circle
to the circumcircle (fig. t374f). We know that these two circles are homothetic
with center H (the orthocenter of ABC). Thus if we extend HM to intersect the
circumcircle at M ′ we have HM = MM ′.

Let us suppose P, P ′ are the required points. Then, from exercise 373, HP is
bisected by p (the Simson line of P ) at their intersection K. Since KM joins the
midpoints of two sides of triangle HPM ′, we have PM ′ ‖ p. That is, we seek a

point P for which this is true. Let ÂM ′P = α. We will locate P from the known
segment HM ′ by computing α.

Let P1 be the intersection of perpendicular PT from P to BC. By lemma

2, AP1 ‖ p. Hence M̂PM ′ = α as well. If PT and M ′A intersect at U , then

T̂UM ′ = ÛPM ′ + ÛM ′P = 2α.
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We next draw B′M ′ ‖ BC through M ′, and note that B′M ′ ⊥ PP1. If the
intersection of these lines is V , then triangle UVM ′ is a right triangle, so 2α =

V̂ UM ′ = 90◦ − ÂM ′B′. This allows us to compute α.
Thus we have the following construction: we extend HM to M ′ on the cir-

cumcircle (so that HM = HM ′), and draw B′M ′ ‖ BC. We then construct a line

making an angle equal to 1
2 (90◦ − ÂM ′B′) with AM ′. The intersection of this line

with the circumcircle will give us point P . U Indeed, for this position of P we can
drop a perpendicular to BC and locate the corresponding points T, U, V, P1 and
also line AP1. The angle relationships we’ve derived assure us that PM ′ ‖ AP1,
and lemma 2 guarantees that both these lines are parallel to p, the Simson line for
point P . In triangle HPM ′, we know (from exercise 373) that line p passes through
K, the midpoint of HP , so (113) it must pass through M , which is the midpoint
of HM ′. The result of lemma 1 tells us that the Simson line for P ′ (diametrically
opposite P ) also passes through M .

The proof of the converse statement is due to Behzad Mehrdad.

Problem 375. Find the locus of the midpoints of a triangle inscribed in a
fixed circle, whose altitudes pass through a fixed point.

Solution. Let O be the center of the given circle, and let H be the fixed
orthocenter of the variable inscribed triangle ABC. The centroid G of the triangle
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Figure t374f

is on segment OH, and OG : GH = 1 : 2. (see exercise 158). It follows that any
triangle ABC such as described has the fixed point G as its centroid.

Figure t375
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Now medians AA1, BB1, CC1 pass through point G, and AG : GA1 = BG :
GB1 = CG : GC1 = 2 : 1 (56), so points A1, B1, C1 lie on a circle homothetic to
circle O with the center of homothecy at G and ratio of homothecy − 1

2 . Note that
this circle is the nine-point circle (exercise 101) of triangle ABC.

Conversely, it is not hard to see that any point on the nine-point circle can
serve as the midpoint of a side of a triangle such as required. We can simply follow
the construction of the solution ‘backwards’. That is, suppose we are given points
O, G, H, circle O, and circle G, centered at G and homothetic to O with ratio − 1

2 .
If we choose any point B1 on circle G, we can draw B1G, and take its intersection
with circle O as vertex B of the required triangle. Then we can draw OB1. A
perpendicular to OB1 will intersect circle O at two points which can be taken as
vertices A, C.

Problem 376. We transform the nine-point circle (Exercise 101) of a triangle
by an inversion whose pole is the midpoint of a side, and with a power equal to
the power of the pole relative to the inscribed circle or, equivalently (Exercise 90b),
relative to the escribed circle corresponding to that side. Show that the line which
is the transform of the circle is precisely the common tangent of these two circles,
other than the sides of the triangle. It follows that the nine-point circle is tangent
to the inscribed circle and to the escribed circles.

Lemma 1. The tangent to the nine-point circle of a triangle at a midpoint of
a side is parallel to the tangent to the circumcircle at the opposite vertex.

Figure t376a

Proof. In figure t376a, O is the circumcenter of triangle ABC, H is its ortho-
center, N its nine-point center, and Oc is the midpoint of segment HC. Point Mc

is the midpoint of AB, and Hc is the foot of the altitude from C. (Note that Oc,
Mc and Hc are all on the nine-point circle.) In exercise 101 we showed that N is
the midpoint of OH. Thus OcN connects the midpoints of two sides of triangle
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HOC, and is parallel to OC. But since M̂cHcOc is a right angle, segment McOc is a
diameter of the nine-point circle. Since McOc ‖ OC, it follows that the tangents to
the two circles at Mc and C, which are perpendicular to these radii, are themselves
parallel.

Note. The conclusion also follows from the more general observation that the
nine-point circle is homothetic to the circumcircle, with factor − 1

2 and the centroid
as the center of homothecy.

Lemma 2. Let Mc be the midpoint of side AB of triangle ABC. The tangent

to the nine-point circle of a triangle at Mc forms an angle equal to angle Â with
side BC.

Proof. In figure t376a, we need to show that Q̂TC = B̂AC. This is not hard,
if we examine arcs along circle O. Since PQ ‖ CX (lemma 1), we know that

QC=PC, and we have B̂AC = 1
2 BC= 1

2 (BP + PC) = 1
2 BP + QC= Q̂TC.

Note. Analogously, but using subtraction of arcs instead of addition, we can

show that line PQ makes an angle equal to B̂ with side AC. (This angle is not
shown in figure t376a.)

Solution (to exercise t376). In figure t376b, the original triangle is ABC,
its incenter is I, its excenter opposite vertex C is Ic. Point Mc is the midpoints of
side AB, F and Fc are the points of contact of circles I and Ic with side AB, and
M is the intersection of the common internal tangents of circles I, Ic. Finally, Hc

is the foot of the altitude from C to side AB.

Figure t376b

The result of exercise 90a tells us that McF = McFc. Since the power of a
point with respect to a circle is the square of its tangent to the circle, this means
that the powers of Mc with respect to circles I, Ic are equal, as asserted in the
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problem statement. We invert around Mc by this power, and examine the images
of various elements under this inversion.

First we note that by 221, 1◦, circles I, Ic are their own images under this
inversion.

Next we prove that point Hc inverts into point M , using a complicated but
interesting argument. We know that BI, BIc are the internal and external angle
bisectors of triangle ABC at vertex B, so these lines divide segment CM harmon-
ically (115, Remark, or 201, corollary 2). In our diagram, we already have the
parallel projection of the harmonic range (CIMIc) onto line BA (in a direction
perpendicular to BC): it is the four points (HcFMFc). By 121 (or otherwise),
these points also form a harmonic range, so FFc divides MHc harmonically. Then,
from 189, we have McF

2 = McF
2
c = McM ·McHc, and this equation says that point

Hc inverts (by definition) onto point M under the inversion we are considering.
Next we look at the image of the nine-point circle of triangle ABC. The pole

of inversion is Mc, which is on this circle, so the image is a line (220). And point
Hc is on the nine-point circle, so its image, which is M , is on the line. In fact, by
220 (corollary), the image of the nine-point circle is a line through M parallel to
its tangent at Mc.

This line is labeled PQ in figure t376b, and we will show that in fact it is the
other common internal tangent (the one that is not side AB) to circles I, Ic. By
lemma 2, and the fact that PQ is parallel to the tangent to the nine-point circle

at Mc, we have P̂QC = B̂AC. It follows that in fact PQ is the reflection in IIc of

AB. Indeed, IIc bisects ÂCB, so ÂCM = M̂CQ, and triangles MAC, MQC are
congruent by AAS.

So the nine-point circle inverts into the common tangent to circles I and Ic. We
have already noted that circles I and Ic are their own images under our inversion.
It follows that the image of the nine-point circle is tangent to the images of I and
Ic, and therefore the nine-point circle is itself tangent to I and Ic (219, corollary).

In the same way, we can show that the nine-point circle is tangent to the other
two escribed circles of triangle ABC.

Notes. This fascinating result is sometimes called Feuerbach’s Theorem. It
can in fact be proven without using inversion. See, for example, Altshiller-Court,
College Geometry, New York: Barnes and Noble, 1952; repr. Dover Publications,
2007.

Problem 377. If R and r (respectively) are the radii of the circumscribed and
inscribed circles in a triangle, and if d is the distance between their centers, show
that d2 = R2 − 2Rr (Use Exercise 103 and 126).2

Conversely, if the radii of two circles and the distance between their centers
satisfy this relation, we can inscribe infinitely many triangles in one circle that are
also circumscribed about the other.

Obtain analogous results replacing the inscribed circle by an escribed circle.

Solution. We first derive the result d2 = R2 − 2Rr. Let O and I be the
circumcenter and incenter respectively of triangle ABC (fig. t377). We need to
relate R to r, so it is reasonable to draw at least one perpendicular bisector and
one angle bisector. Taking our cue from the result of exercise 103, we let M be

2For another solution to this problem, see Exercise 411.
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the midpoint of BC, and let K be the intersection of the perpendicular bisector of

side BC with the bisector of angle Â. By exercise 103, K lies on the circumcircle
of ABC.

Figure t377
m

In triangle OIK, we have OI = d, OK = R. We need to relate R2 and d2,
which suggests that we apply the result labeled 1◦ in 126 to this triangle. Letting
L be the foot of the perpendicular from I to line OK, we find that d2 = OI2 =
OK2 + IK2 − 2OK ·KL = R2 + IK2 − 2R · LK.

We need to replace IK and LK with expressions involving R and r. From
exercise 103, we know IK = BK, and we can work with BK if we draw triangle
BKN , where N is the point on the circumcircle diametrically opposite K. Then
BKN is a right triangle, and from 123 we have IK2 = BK2 = NK · MK =
2R ·MK. It follows that d2 = R2 − 2R · (LK −MK) = R2 − 2R · LM . But LM
is just r, so we can write d2 = R2 − 2Rr. This gives us the first result.

(To see that LM = r, we can draw inradius IT ⊥ BC, and note that ILMT
is a rectangle.)

We now look at the converse. Suppose we are given circles O and I, satisfying
the condition d2 = R2 − 2Rr. We will first show that this condition implies that
circle I lies inside circle O. Indeed, d2 is certainly not less than than 0, so R2 ≥ 2Rr,
and since R > 0, this implies that R ≥ 2r. Then (R − r)2 = R2 − 2Rr + r2 >
R2 − 2Rr = d2. That is, d < R− r. This inequality tells us that circle I lies inside
circle O.

Now we can construct figure t377, knowing the positions of the two circles
with their centers. We take any point A on circle O and draw line AI. Let K be
its second point of intersection with circle O. We construct tangent BC to circle
I, perpendicular to OK and passing between points I and K. (There is another
tangent to circle I perpendicular to OK, which we ignore.)

Let M be the intersection of this tangent with OK, and let L be the foot
of the perpendicular from I to OK. From triangle OIK and 126 we have d2 =
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R2 + IK2 − 2R ·KL. But the given condition is that d2 = R2 − 2Rr. From these
two equations we find IK2 = 2R(KL− r) = 2R · (KL−LM) = 2R ·KM = KB2.
(We have used the fact that LM = IT = r and that 2R ·KM = KN ·KM = KB2,
which we derive just as we did in the proof of the direct statement.) It follows that
IK = KB.

We turn our attention to triangle ABC. Circle O is of course its circumcircle.

We now show that circle I is its incenter. In circle O, BK=KC, so line AK is
an angle bisector in triangle ABC. From exercise 103, the incenter of ABC is the
point on AK whose distance from K is equal to KB. But we have shown that
KB = IK, so this incenter is I. And since the given circle I is tangent to BC, this
circle is in fact the incircle of ABC. So any point A on circle O can be the vertex
of a triangle inscribed in O and circumscribed about I.

Finally, we note that if we replace circle I with escribed circle Ia (with radius
ra), analogous reasoning will show that OI2a = R2 + 2Rra.

Note. A related result, giving conditions for the existence of a quadrilateral
circumscribed about one circle and inscribed in another, is given in exercise 282.

Problem 378. In any triangle ABC:

1o. The line joining the projection of B onto the bisector of Ĉ with the projec-

tion of C onto the bisector of B̂ is precisely the chord joining the points of contact
E, F (fig. 94, Exercise 90b) of the inscribed circle with sides AC, AB;

2o. The line joining the projection of B to the bisector of Ĉ with the projection
of C onto the bisector of the exterior angle at B is the chord of contact E3F3 of

the escribed circle for angle Ĉ with these same sides;
3o. The line joining the projection of B onto the bisector of the exterior angle

at C with the projection of C onto the bisector of the exterior angle at B is the

chord of contact E1F1 of the escribed circle for angle Â with these same sides;
4o. The projections of A onto the bisectors of the interior and exterior angles

at B and C are on the same line parallel to BC, and their consecutive distances
are equal to p− c, p− a, p− b;

5o. The six points obtained by projecting each of the vertices A, B, C onto
the exterior angle bisectors at the other two vertices belong to the same circle
(this reduces to Exercise 102). This circle is orthogonal to the escribed circles.
Its center is the same as the center of the inscribed circle of A′B′C ′, the triangle
whose vertices are the midpoints of the sides of ABC. Its radius is equal to the
hypotenuse of the right triangle whose legs are the radius of the inscribed circle
and the semiperimeter of triangle A′B′C ′. There are three analogous circles, each
of which passes through two projections onto exterior angle bisectors, and four
projections onto interior angle bisectors.

Solutions. The first three parts of this exercise are closely related. In each
case, collinearity can be proven by examining angles. We show that a pair of sides,
one from each angle, are collinear, by showing that the angles are either equal or
supplementary. Also in each case, we identify cyclic quadrilaterals which contribute
to the solution. Each of the quadrilaterals can be shown to be cyclic by identifying
certain right angles. Right angles, in turn, can be identified because certain lines
are given to be perpendicular, or because interior and exterior angles bisectors at
the same vertex are perpendicular, or because a radius is perpendicular to a chord
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at the point of contact. Another element the various cases have in common is the
identification of an isosceles triangle, formed by two tangents to a circle from the
same point.

Figure t378a

The strategy is to identify angles that will give us the required collinearity,
then relate the measures of these angles to the angles of the original triangle. We

denote the angles of the original triangle simply as Â, B̂, Ĉ.
At each step of the proof, it is important to observe which points we know to

be collinear and which we must prove collinear. Otherwise, an error in logic can
easily creep into the argument.

(1◦). Let P be the foot of the perpendicular from B to the (internal) angle
bisector through C (fig. t378a), let Q be the foot of the perpendicular from C to the
internal angle bisector through B, and let I be the incenter of triangle ABC. We

will show that angles ÂFE, ĈFQ are equal. Indeed, quadrilateral IFQC is cyclic,

because ÎFC, ĈQI are right angles. Then ĈFQ = ĈIQ, which is an exterior angle

for triangle BIC, so ĈFQ = ĈIQ = 1
2 (B̂ + Ĉ).

On the other hand, ÂFE is a base angle of isosceles triangle AEF , so ÂFE =
1
2 (180◦ − Â) = 1

2 (B̂ + Ĉ).

Thus ĈFQ = ÂFE, and (by exercise 4) E, F, Q are collinear.
We can show the collinearity of E, F, P similarly, using cyclic quadrilateral

IEPB and isosceles triangle AEF . Thus E, F, P, Q are collinear.
(2◦). Let P3 be the foot of the perpendicular from B to the internal angle

bisector through C (fig. t378b), let Q3 be the foot of the perpendicular from C to
the external angle bisector through B, and let Ic be the excenter of triangle ABC
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Figure t378b

opposite vertex C. We will show that angles ĈF3Q3, ĈF3E3 are equal. Indeed,

quadrilateral IcF3CQ3 is cyclic, because ÎcF3C, ÎcQ3C are right angles. Then

ĈF3Q3 = ĈIcQ3 = ĈIcB. Now in triangle BIcC, ĈIcB = 180◦− 1
2 Ĉ − ĈBIc, and

ĈBIc = B̂ + 1
2 (180◦ − B̂), and a quick calculation shows that ĈIcB = 90◦ − 1

2 B̂ −
1
2 Ĉ = 1

2 Â.

On the other hand, in isosceles triangle AF3E3, exterior angle Â = ÂF3E3 +

ÂE3F3 = 2ÂF3E3, so ĈF3E3 = ÂF3E3 = 1
2 Â = ĈF3Q3. Thus points E3, F3, Q3

are collinear.
We can show the collinearity of E3, F3, P3 similarly. From cyclic quadrilateral

BE3P3Ic, we find that B̂E3P3 = 180◦−ĈIcB = 180◦−ĈIcQ3, and we have already

seen that this last angle is 1
2 Â. So B̂E3P3 = 180◦ − 1

2 Â.

On the other hand, B̂E3F3 = 180◦ − ÂE3F3, and we have already seen that

this last angle is equal to 1
2 Â. Thus B̂E3F3 = B̂E3P3, and points E3, P3, F3 are

collinear.
(3◦). Let P1 be the foot of the perpendicular from B to the external angle

bisector through C (fig. t378c), let Q1 be the foot of the perpendicular from C to
the external angle bisector through B, and let Ia be the excenter of triangle ABC

opposite vertex A. We will show that angles ĈF1Q1, ĈF1E1 are equal. Indeed,

quadrilateral IaF1CQ1 is cyclic, because ÎaF1C, ÎaQ1C are right angles. Then

ĈF1Q1 = ĈIaQ1 = ĈIaB. Now in triangle BIaC, ĈIaB = 180◦ − 1
2 (180◦ − B̂)−

1
2 (180◦ − Ĉ) = 1

2 B̂ + 1
2 Ĉ.
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Figure t378c

On the other hand, in isosceles triangle AF1E1, ÂF1E1 = ÂE1F1 = 1
2 (180◦ −

Â) = 1
2 (B̂ + Ĉ) = ĈF1Q1. Hence points E1, F1, Q1 are collinear.

We can show the collinearity of E1, F1, P1 similarly,, using cyclic quadrilateral

BE1IaP1. We find that B̂E1P1 = B̂IaP1 = ĈIaB, and we have already seen that

this last angle is 1
2 (B̂ + Ĉ). So B̂E1P1 = 1

2 (B̂ + Ĉ).

We have seen that B̂E1F1 has the same measure. Thus B̂E1F1 = B̂E1P1, and
points E1, P1, F1 are collinear.

(4◦.) Note that p here denotes the semiperimeter of triangle ABC. As usual,
we let AB = c, AC = b, BC = a. Let P4, P5 be the feet of the perpendiculars from
A onto the interior and exterior angle bisectors at vertex B, and let Q4, Q5 be the
corresponding points for the bisectors at vertex C. Let Mb, Mc be the midpoints
of AC, AB respectively.

The central observation of this solution is that quadrilateralsAP4BP5, AQ4CQ5

are both rectangles (by construction, and because interior and exterior angle bisec-
tors at the same vertex are perpendicular).

We first prove that P4, P5, Q4, Q5 are collinear. Indeed, in rectangle AP4BP5,
diagonals AB, P4P5 bisect each other. So line P4P5 passes through the midpoint

of side AB. And (from isosceles triangle BMcP5) ĈBP5 = P̂5BA = B̂P5P4, so
BC ‖ P4P5, and P4P5 lies along the line connecting the midpoints of sides AB, AC
of triangle ABC. In just the same way, we can show that Q4, Q5 lies along the
same line, which is the ‘parallel’ referred to in the problem statement.

We now proceed to the metric results, considering P4Q5 first. We have P4Q5 =
P4Mc + McMb + MbQ5. But McMb = 1

2BC, and P4Mc = AMc = 1
2AB, and
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Figure t378d

MbQ5 = AMb = 1
2AC. Thus P4Q5 = 1

2 (a + b + c) = p (in the notation of the
exercise).

Then P4Q4 = P4Q5 − Q4Q5 = P4Q5 − AC (from rectangle AQ4CQ5), and
this last expression is equal to p − b. In the same way, P5Q5 = P4Q5 − P4P5 =
P4Q5 −AB = p− c.

Finally, Q4P5 = P4Q5 − P4Q4 − P5Q5 = p − (p − b) − (p − c) = b + c − p =
b
2 + c

2 −
a
2 = p− a.

Note. After the rectangles are identified, the solution is made simple by look-
ing at P4Q5 before considering the lengths of the required segments.

(5◦) We break this exercise into the following statements:
a. The projections of the three vertices onto the three angle bisectors are con-

cyclic;
b. Their circle is orthogonal to the escribed circles;
c. Their circle is concentric with the incircle of A′B′C ′;
d. The radius of this circle is as described in the exercise;
e. There are three analogous circles.
Figure t378e shows the six feet of the perpendiculars referred to (Pa, Qa, etc.)

and the three excenters (Ia, Ib, Ic) of triangle ABC.
(5a) An interior angle bisector is perpendicular to an exterior angle bisector at

the same vertex of a triangle. It follows that AIa, BIb, CIc are the altitudes of
triangle IaIbIc, and statement of the problem reduces to the statement of exercise
102.

We will call this circle S.
(5b). We will prove that circles Ia, S are orthogonal by showing that the power

of point Ia with respect to S is equal to the square of the radius of circle Ia (135).
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Figure t378e

Since we need a radius of circle Ia, we draw IaD ⊥ BC, with D on BC. Now
IaQa · IaQb is the power of Ia with respect to circle S. We will show that power is
equal to IaD

2, by relating both quantities to distances between the excenters and
the vertices of the triangle.

To do this, we look first at IaD, and find similar triangles involved the ‘target’
segments: triangles IaDB, IaAIb. To prove that they are similar, we note that they
are right triangles, and that we can find one more pair of equal angles. Indeed,

ÎaBD is half of an exterior angle at B of the original triangle, so it is equal to
1
2 (Â + Ĉ). For the same reason, ÎbAC = 1

2 (B̂ + Ĉ) and ÎbCA = 1
2 (Â + B̂). So

ÂIbC = 180◦ − 1
2 (Â+ B̂ + Ĉ)− 1

2 B̂ = 90◦ − 1
2 B̂ = 1

2 (Â+ Ĉ).
Thus triangles IaDB, IaAIb are similar, and IaD : IaB = IaA : IaIb. That

is, IaD = IaA·IaB
IaIb

. This expresses the radius of an escribed circle in terms of the
distances between vertices and excenters, so it accomplishes half our goal.
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We now examine the product IaQa · IaQb, by applying 123 to right triangles
IaIbA and IaIbB. We find that IaA

2 = IaIb · IaQa and IaB
2 = IaIb · IaQb. So

IaQa · IaQb = IaA
2·IaB2

IaI2
b

, which is the square of the expression we obtained for IaD.

Thus circles Ia, S are orthogonal by 135.
(5c). In figure t378f, A′, B′, C ′ are the midpoints of the sides of triangle ABC.

We will show that the incenter of A′B′C ′ lies on a certain diameter of circle S, then
that there are other diameters that this incenter lies on. This will show that the
incenter of A′B′C ′ is also the center of S. The diameter of circle S that we need
is the one which bisects chord PbQc. We will show that it lies along the bisector of

angle B̂′A′C ′.

Figure t378f

Let M be the midpoint of PbQc, and EF the diameter of S through M . Then
EF ⊥ PbQc. And since PbB ⊥ PbQc, QcC ⊥ PbQc by construction, segment MA′

must pass through the midpoint of BC, which is A′ (113).

Now IaA ‖ EF (they are both perpendicular to PbQc), so (43) angles ÎaAC,

M̂A′C ′ are equal. Since B̂AC = B̂′A′C ′, this means that EF bisects B̂′A′C ′, and
the incenter of A′B′C ′ lies on this diameter of S.

We can repeat this argument for chord QaQb and the diameter of S which
bisects it, so the the incenter of A′B′C ′ lies at the intersection of two diagonals of
S; that is, at its center. This completes the proof.

Note. Knowing IaA ‖ EF , the easiest way to see that EF bisects Â′B′C ′ is to
recall that A′B′C ′ is homothetic to ABC, with center of homothecy at the centroid
of ABC and coefficient − 1

2 .
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(5d). We let O be the center of circle S, and we draw segment PaQa (fig.
t378g). We have shown, in 4◦, that this segment passes through B′ and C ′. We
draw ON ⊥ PaQa and radius OPa of circle S. We can get the length of OPa

from right triangle ONPa. Indeed, we saw in 4◦, that PaQa = p (where p is the
semiperimeter of ABC), so PaN = p

2 . This is exactly the semiperimeter of A′B′C ′.
And ON is the distance from the incenter of A′B′C ′ (from 5◦c) to a side of that
triangle, so it is equal to the inradius of A′B′C ′. These observations complete the
proof.

Figure t378g

(5e). The existence of circle S was given us by the result of exercise 102. We
could apply this result because the interior angle bisectors of triangle ABC are the
altitudes of triangle IaIbIc.

If, as a vertex of this triangle, we replace one of the excenters with the incenter,
we still get a triangle whose sides lie on (interior or exterior) angle bisectors of ABC,
and whose altitudes are the remaining angle bisectors. Thus the result of exercise
102 still applies, and we get three analogous circles.

For example, if we consider triangle IIbIc (fig. t378h), the feet of its altitudes
are (again) points A, B, C. If we drop perpendiculars from these points onto the
sides of IIbIc, we get the six points of exercise 102, which therefore lie on the same
circle.

Problem 379. Each escribed circle of triangle ABC is tangent to the exten-
sions of two of its sides. We draw the lines through pairs of these points of contact.
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Figure t378h

Show that these three lines form a triangle whose vertices are on the altitudes of
the original triangle, and the intersection of these altitudes is the center of the
circumscribed circle for the new triangle.

Solution. In figure t379, the triangle constructed in the exercise is A′B′C ′,
and the points of contact of the escribed circles are as labeled. Segment AK is
the altitude from A in triangle ABC, and H is its orthocenter. We will show that
lines B1B2, C1C2 intersect line AK at the same point, by showing that the point
of intersection of each line with the altitude divides segment AK (externally) in
the same ratio. As usual, we let p denotes the semiperimeter of triangle ABC, and
a, b, c the lengths of its sides. Our chief tool will be Menelaus’ theorem (192).

First suppose that line B1B2 intersects AK at a point A′. We will show that
the ratio AA′ : A′K is equal to a : (b+ c). To do this, we apply Menelaus’ Theorem
to triangle ABK with transversal B2B1A

′:

(1)
B1A

B1B
· B2B

B2K
· A
′K

A′A
= 1,

which gives us information about the ratio we seek. We need to express the other
four segments in (1) in terms of a, b, and c. The results of exercise 90b give us
BB2 = BB1 = p; AB1 = p − c. To compute B2K, we write B2K = B2B −KB.
Then B2B = p = a+b+c

2 , and the second theorem of 126 allows us to express KB

as required: KB = a2+c2−b2
2a . Hence B2K = a+b+c

2 − a2+c2−b2
2a = ab+ac+b2−c2

2a =
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(b+c)(a+b−c)
2a . A quick computation shows that a+b−c

2 = p − c, so we can write

B2K = (b+c)(p−c)
a .

We substitute all these values into (1):

p− c
p
· pa

(b+ c)(p− c)
· KA

′

A′A
= 1,

to find that A′A
KA′ = a

b+c .
We can now perform this same computation, using triangle ACK and transver-

sal C2C1. We find that this line intersects AK at a point dividing AK externally
into just the same ratio. But in fact this is expected: the expression we obtained
for this ratio is symmetric in b and c, so interchanging the roles of these two sides
(i.e. computing with C1C2 in place of B1B2) should not change the result of the
computation.

Thus the intersection of B1B2 and C1C2 lies on AK, the altitude from A in
triangle ABC, and must be the point we have labeled A′. In the same way, we can
show that points B′, C ′ lie on the other two altitudes of the triangle.

The second assertion of the exercise is easier to prove. Let H be the orthocenter
of ABC, and let L be the foot of the altitude to AC. (Note that the first assertion
of this exercise implies that B′L ⊥ AC.) Then we can show that H is equidistant
from vertices A′, B′ by showing that triangle HA′B′ is isosceles. Indeed, from
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right triangle A′C2K, ĤA′B′ = K̂A′C2 = 90◦ − Â′C2K. From isosceles triangle

CC1C2, we find that Â′C2K = Ĉ1C2C = Ĉ2C1C, and from right triangle B′LC1,

we have Ĉ2C1C = B̂′C1L = 90◦ − Ĉ1B′L = 90◦ − Â′B′H. This implies that

ĤA′B′ = 90◦ − (90◦ − Â′B′H) = Â′B′H, so triangle A′B′H is isosceles, and H is
equidistant from vertices A′, B′ of triangle A′B′C ′.

In the same way, we can show that H is equidistant from vertices B′, C ′, so
that H is the circumcenter of triangle A′B′C ′.

Problem 380. Suppose we know (a) the pointO corresponding to itself (150b)
in two similar figures F, F ′ with the same orientation, and (b) a triangle T similar
to the triangle formed by this point with two other corresponding points. Suppose
we also know the point O′ corresponding to itself (150b) in similar figures F ′, F ′′

with the same orientation, and a triangle T ′ similar to the triangle formed by this
point with two other corresponding points. Construct the point O1 corresponding
to itself (150b) in the similar figures F, F ′′, and a triangle T1 similar to the triangle
formed by this point with two other corresponding points.

(Place triangles T, T ′ so that they have a common side ωα′, and denote by
α, α′′ the vertices opposite this side in the two triangles. Then T1 is the triangle
ωαα′′. Take the inverses A, A′, A′′ of α, α′, α′′ with respect to the pole ω: then
triangle O1OO

′ must be similar to A1A
′′A.)

Solution. We construct triangle T1 first. Let A be any point of figure F . If
we construct triangle OAA′ similar to triangle T , we obtain the point A′ of figure
F ′ which corresponds to point A of figure F . And if we construct triangle O′A′A′′

similar to triangle T ′, we will obtain the point A′′ of figure F ′′ which corresponds
to point A of figure F .

Figure t380

Next we construct triangle OA′K, similar to triangle O′A′A′′ and having the

same sense of rotation. Now ÂOA′ is the angle between figures F and F ′ (50), while
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Â′OK, which is equal by construction to Â′O′A′′, is the angle between figures F ′

and F ′′. Hence ÂOK is the angle between figures F and F ′′.
We next show that OA

OK is the ratio of similitude of figures F, F ′′. This ratio is

the product of the ratios of similitude for F, F ′ and F ′, F ′′. We know that OA
OA′ is

the ratio of similitude of figures F and F ′, while O′A′

O′A′′ is the ratio of similitude of

figures F ′ and F ′′. But we can write OA
OK = OA

OA′ · OA′

OK = OA
OA′ · O′A′

O′A′′ , which means

that OA
OK is the ratio of similitude of F, F ′′.

So triangle AOK contains the angle between figures F and F ′′, and also two
sides in the ratio of these figures. Thus it is similar to the triangle formed by the
required point O′′ and a pair of corresponding points from those figures. This solves
the first part of the exercise.

To find the actual point O′′, we can ‘apply’ the shape of triangle OAK to two
corresponding points of F and F ′′. That is, we construct triangle O′′AA′′ similar

to triangle OAK (with the same orientation). Since ÂO′′A′′ is the angle between
figures F and F ′′, and the ratio O′′A′′ : O′′A is their ratio of similarity, and since
A, A′′ are corresponding points, it follows that O′′ is the point of figure F which
coincides with its corresponding point in F ′′.

Our construction implies that the problem has, in general, a single solution.

Notes. The construction requires small adjustments in some special cases. If
points O, A, K turn out to be collinear, and A and K are distinct, then figures
F, F ′′ are homothetic. To find point O′′, we merely divide segment AA′′ in the
ratio O′′A : O′′A′′ = OA : OK (both in magnitude and sign).

If points A and K coincide, then the corresponding segments of F and F ′′ are
equal, parallel, and have the same orientation. Figures F and F ′′ can be obtained
from one another by a translation whose magnitide and direction is give by segment
AA′′, and there is no point O′′.

Finally, if points A, A′′ coincide, then the two figures F, F ′′ coincide com-
pletely, and we can choose any point in the plane for O′′.

Problem 381. Construct a polygon knowing the vertices of the triangles whose
bases are its various sides, and similar to given triangles.

(The preceding exercise allows a reduction of one in the number of sides of the
required polygon. One can continue until there are only two vertices to determine.)

When is the problem impossible or under-determined?

Solution. Suppose the required polygon is A1A2 · · ·An−1An, (fig. t381) and
suppose the given vertices are V1, V2, . . . , Vn−1, Vn, so that A1V1A2 is similar to
the given triangle T1, A2V2A3 is similar to triangle T2, and so on.

We reduce this problem to exercise 380, starting at the ‘end’ of the given
polygon. We think of Vn−1 as the fixed point of two figures Fn−1, Fn which are
similar and similarly oriented. We think of An−1 and An as corresponding points in
Fn−1, Fn. In the same way, we think of Vn as the fixed point of two figures Fn, F1

which are similar and similarly oriented, and of An and A1 as corresponding points
in Fn, F1.

Using the result of exercise 380, we can construct V ′n−1, the fixed point of
figures Fn−1, F1, as well as a triangle T ′n−1 similar to the triangle formed by V ′n−1
and two corresponding points in figures Fn−1, Fn. This reduces the problem to
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that of finding polygon A1A2 · · ·An−1, given the points V1, V2, . . . , Vn−2, V
′
n−1

and triangles T1, T2, . . . Tn−2, T
′
n−1.

If we repeat this process of reducing the number of vertices in the polgyon
we seek, we eventually come to the following problem: construct segment A1A2,
given two points V1, V

′
2 which are vertices of triangles V1A1A2, V

′
2A2A1, similar

respectively to the given triangles T1, T
′
2. We can now think of V1 as the point

corresponding to itself in two similar figures F1, F2, which include A1, A2 as
corresponding points. Likewise, we can think of V ′2 as the point corresponding to
itself in two similar figures F1, F3, which include A2, A1 as corresponding points.

Now we again apply exercise 380, to construct A1 as the point corresponding to
itself in figures F1, F3, using points V1, V

′
2 and triangles T1, T

′
2 as in that exercise.

After locating point A1, we can find point A2 as the third vertex of triangle V1A1A2,
similar to triangle T1. Then we can construct points A3, A4 . . . An analogously.

The construction is valid so long as we do not encounter one of the conditions
described in exercise 380 as preventing that construction.

Note. A more advanced discussion would rest on the notion of a transforma-
tion (a ’scaling rotation’) which is a composition of a rotation and a dilation with
the same center. Here, these centers are Vi, we are composing scaling rotations
with centers at the points Vi, and we seek a fixed point of this composition.

In composing these scaling rotations, it may happen (as noted in the solution
to problem 380) that two of them result in a translation, which has no fixed point.
This may not cause a problem, since further composition can yield a scaling rotation
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after all. There is no solution if the sum of the angles through which we are rotating
(the sum of the angles at the vertices Vi) is 0 or an integer multiple of 360◦.

Problem 382. Let ABC be a triangle, and let O, a, b, c be four arbitrary
points. Construct (a) a triangle BCA′ similar to triangle bcO and with the same
orientation (B, C being the points corresponding to b, c); (b) a triangle CAB′

similar to caO with base CA, and (c) a triangle ABC ′ similar to abO with base
AB. Show that triangle A′B′C ′ is similar to, but with opposite orientation from,
the triangle whose vertices are the inverses of the points a, b, c with pole O.

Solution. In light of exercises 380-381, we introduce three figures Fa, Fb, Fc,
each pair of which is similar and similarly oriented. Figure Fa includes point A;
figure Fb includes point B as the point corresponding to A in Fa, and figure Fc

includes point C as the point corresponding to B in Fb. We think of point A′ as
the fixed point of the similarity between figures Fb, Fc and B′ as the fixed point of
the similarity between figures Fc, Fa. We can then show that C ′ is the fixed point
of the similarity between figures Fa, Fb.

We first examine the angles between the three figures. The angle between

figures Fb and Fc is equal to B̂A′C = b̂Oc, and has the same orientation. Likewise,

the angle between figures Fc and Fa will be ĈB′A = ĉOa. It follows that the angle

between figures Fc and Fa is equal to âOb = ÂC ′B.
Next we examine the ratios of corresponding sides in the three figures. This

ratio, for figures Fb, Fc is A′B : A′C = Ob : Oc. For figures Fc, Fa it is B′C :
B′A = Oc : Oa. It follows that the ratio of corresponding sides for figures Fa and
Fb is equal to Oa : Ob = C ′A : C ′B. Therefore C ′ is the fixed point of the similarity
taking Fa onto Fb.

Let a′, b′, c′ be the points inverse to A, B, C respectively, with respect to some
circle centered at O. We are now in a position to prove that triangles A′B′C ′, a′b′c′

are similar but oppositely oriented. We do this by showing that they have equal
but oppositely oriented angles. We introduce an auxiliary point A′′, corresponding
to A′ in figure Fa.

Triangle C ′A′′A′ is similar to triangle C ′AB, and has the same orientation,

so that Ĉ ′A′A′′ = Ĉ ′BA = Ôba (both in magnitude and orientation). In the
same way, triangles B′A′A′′, B′CA are similar, with the same orientation, so that

B̂′A′A′′ = B̂′CA = Ôca.
It follows that B̂′A′C ′ = B̂′A′A′′ + Â′′A′C ′ = Ôca + âbO = ĉ′a′O + Ôa′b′ =

ĉ′a′b′, where a′, b′, c′ are the points inverse to a, b, c respectively in a circle
centered at O (217).

Thus we have, both in magnitude and sense of rotation, B̂′A′C ′ = ĉ′a′b′. A
similar argument gives the same result for the other two angles of triangle A′B′C ′.
Triangles A′B′C ′, a′b′c′ are similar, but with opposite senses of rotation.

Problem 383. On two given segments as chords, construct circular arcs sub-

tending the same arbitrary angle V̂ . Show that, as V̂ varies, the radical axis of
the two circles turns around a fixed point. (This point can be considered to be
determined by the fact that the triangles with this vertex and with the two given
segments as bases are equivalent, and they have the same angle at the common
vertex.)
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Figure t382

Solution. Suppose (fig. t383) the given segments are AB and CD, and P is
the intersection of the lines they belong to. We assume, for now, that the angles
we construct on AB and CD have the same orientation.

Following the hint in the problem statement, we will prove the following lemma:

Lemma. There exists exactly one point O with the following properties:

• (a) triangles OAB, OCD have the same area;

• (b) angles ÂOB, ĈOD have the same orientation;

• (c) angles ÂOB, ĈOD are equal.

We prove this lemma by constructing the point in question.
For condition (a) to be true, the distances from O to lines AB, CD must be in

the ratio CD : AB (note the reversal of the order AB, CD). By 157, the locus of
these points consists of two lines, both passing through P . It is not hard to see, from

figure t383, that for any point X on one of these lines, angles ÂXB, ĈXD have

the same orientation, while for any point Y on the other line, angles ÂXB, ĈXD
have the opposite orientation. Thus point O satisfies conditions (a) and (b) if and
only if it lines on line PX.

The set of points satisfying condition (c), in addition to (a) and (b), is a bit
more difficult to describe. We will show that condition (c) requires point O to be on
a second line, which is the locus of points such that OM2−ON2 is constant, where
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M, N are the midpoints of segments AB, CD respectively. (See 128b, corollary.)
We do this by examining relationships within triangles AOB, COD.

Figure t383

Let E be the foot of the perpendicular frm A to OB, and let F be the f of the
perpendiculars from C to OD. From 126 we have:

(1) AB2 = OA2 +OB2 ± 2OB ·OE,

(2) CD2 = OC2 +OD2 ± 2OD ·OF.

Because ÂOB = ĈOD, the ambiguous signs on the right are either both positive
or both negative. And in fact we will show that these rightmost products in the
equations above are equal. Indeed, from the equality of the same two angles we
know that right triangles OAE, OCF are similar, so that

(3)
OA

OE
=
OC

OF
.

Now we use condition (a). Because triangles AOB, COD have the same area,

and ÂOB = ĈOD, we have (256):

(4) OA ·OB = OC ·OD.
We now divide equation (4) by equation (3), to get

(5) OB ·OE = OD ·OF.
This equation shows that the rightmost products in equations (1) and (2) are

equal, and we have already noted that the signs are the same. This observation,
together with the fact that we want to look at the difference of squares of certain
segments, suggests that we subtract these first two equations. Doing so, we have:

(6) AB2 − CD2 = OA2 +OB2 −OC2 −OD2.
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We now use the result of 128 to write

OA2 +OB2 = 2OM2 +
1

2
AB2,

OC2 +OD2 = 2ON2 +
1

2
CD2.

Substituting these values into (6), we find:

(7) OM2 −ON2 =
1

4

(
AB2 − CD2

)
.

By the result of 128b, the locus of points satisfying (7) is some line UU ′, and
point O must lie on this line. This argument shows that there is exactly one point
O satisfying conditions (a), (b), and (c).

Note. For condition (c) to hold, it is necessary, but not sufficient, that point
O be on line UU ′. This is because we used condition (a) to define line UU ′. It
would have been more straightforward simply to find the locus of points satisfying
condition (c) independent of the other conditions, but this problem is in general
not an elementary one.

We now turn to the solution of the exercise itself. Most of the work has already
been done, in proving our lemma. Suppose arcs AV1B, CV2D are the loci of points
at which segments AB, CD both subtend angle V . Let B′, D′ be the second
points of intersection of these arcs with lines OB, OD respectively (where O is the

point located in our lemma). We have ÂOB = ÂB′B± ÔAB′, with the ambiguous
sign depending on whether O lies inside or outside circle AV1B. Analogously,

ĈOD = ĈD′D ± ÔCD′. Since ÂB′B = ĈD′D = V and ÂOB = ĈOD by

construction, it follows that ÔAB′ = ÔCD′, and therefore triangles OAB′, OCD′

are similar. Thus we have

(8) OA : OB′ = OC : OD′.

Dividing equation (4) by equation (8), we find that OB · OB′ = OD · OD′, so O
has the same power with respect to circles AV1B and CV2D. Thus O is always on
the radical axis of these two circles. Since the position of O does not depend on
the particular angle V (or equivalently, on the particular circles AV1B, CV2D, this
proves the required statement.

Notes. We have assumed that angles ÂOB, ĈOD have the same orientation

as well as being equal, and that the same is true for angles ÂV1B, ĈV2D. If these
angles have opposite orientations, the same argument holds, but with the roles of
points C and D reversed. Point O will be located at the intersection of line UU ′

with line PY (rather than PX).

Problem 384. A quadrilateral ABCD (a kite or rhomboid) is such that the
adjacent sides AD, AB are equal, and the other two sides are equal as well. Show
that this quadrilateral is circumscribed about two circles. Find the locus of the
centers of these circles if the quadrilateral is articulated, one of its sides remaining
fixed.
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Solution. Suppose the interior angle bisector at B in triangle ABC intersects
AC at point O. Then (115) AB : BC = AO : OC. But from the problem
statement, this is also the ratio AD : DC, which means that O is on the interior
angle bisector at D of triangle ADC as well. It follows that O is equidistant
from lines AB, BC, AD, DC, and so is the center of a circle tangent to lines
AB, BC, CD, DA.

Figure t384

Similarly, the bisector of the exterior angle at B in triangle ABC intersects AC
(extended) at point O′ such that AO′ : O′C = AB : BC = AD : DC, so O′ is on
the exterior angle bisector at D of triangle ADC, and so is the center of another
circle tangent to lines AB, BC, CD, DA.

Now suppose segment AB remains fixed as the quadrilateral is articulated.
Then point C describes a circle centered at B with radius BC. But the ratio
AO : OC = AB : BC remains fixed, as does point A, so O describes a circle
homothetic to the one described by C, with center of homothecy at A and ratio
AB : (AB+BC) (142). Similarly, O′ describes a circle homothetic to that described
by C, with center of homothecy at A and ratio (AB −BC) : AB.

Problem 385. More generally, if a quadrilateral ABCD has an inscribed cir-
cle, and is articulated while the side AB remains fixed, then it has an inscribed circle
in all its positions (Exercise 87). Find the locus of the center O of the inscribed
circle.

(To make the situation definite, assume the inscribed circle is inside the poly-
gon, and lay off lengths AE = AD (in the direction of AB) and BF = BC (in
the direction of BA), both on side AB. Using Exercise 87, reduce the question to
Exercise 257.)



110

Show that the ratio of the distances from O to two opposite vertices remains
constant.

Solution. Quadrilateral ABCD is circumscribed about a circle (fig. t385) if
and only if AD+BC = AC +BD. As the quadrilateral is articulated, the lengths
of its sides do not change, so this relationship either continues to hold or never
holds. That is, the articulated quadrilateral always has an inscribed circle, if the
original quadrilateral does, or never has an inscribed circle, if the original does not.

Figure t385

Next we find the locus of point O, the incenter, as the quadrilateral is ar-
ticulated. To find this locus, we find E on line AB so that AE is in the same
direction as AB and AE = AD. Similarly, we find F on line AB so that BF is
in the same direction as BA and BF = BC. Note that E and F could both be
inside segment AB, or one or both of them may lie outside AB. But in any case,
AE +BF = AD +BC > AB, so segments AE and BF must overlap.

We will reduce the situation to that of exercise 257 by showing that segments
AB, EF subtend supplementary angles at O.

We know that O is the intersection of the angle bisectors of ABCD, so triangles
ODA, OEA are symmetric with respect to line AO and are therefore congruent.
Hence OD = OE. Similarly, triangles OCB, OFB are symmetric with respect to
line BO, so OC = OF .

We next note that CD = EF . Indeed, AB + CD = AD + BC, so CD =
AD + BC − AB = AE + BF − AB = EF (since AE and BF overlap). It follows

that triangles OCD, OFE are congruent (24, case 3), so ĈOD = ÊOF . But
adding up the six angles in triangles AOB, COD we have:

ÂOB +
1

2
(Â+ B̂) + ĈOD +

1

2
(Ĉ + D̂)
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= ÂOB + +ĈOD +
1

2
(Â+ B̂ + Ĉ + D̂)

= ÂOB + ĈOD + 180◦ = 360◦.

So ÂOB + ĈOD = 180◦, and

(1) ÂOB + ÊOF = 180◦

as well. Therefore if O is a position of the incenter of ABCD, it lies on the locus of
points at which AB, EF subtend supplementary angles. By the result of exercise
257, this locus is a circle whose center lies on line AB.

Conversely, any point on this locus is the incenter of some position of quadri-
lateral ABCD. Indeed, let point O satisfy condition (1), where E and F are con-
structed as above from some original position of articulated quadrilateral ABCD.
We can construct an articulated version of this quadrilateral such that O is its incen-
ter, by finding triangles AOD, BOC congruent respectively to AOE, BOF . Then

ÂOD+ B̂OC = ÂOE + B̂OF = ÂOB + ÊOF = 180◦. Therefore ÂOB + ĈOD =
360◦ − (ÂOD + B̂OC = 180◦, so ĈOD = ÊOF .

We know that O is the intersection of the angle bisectors at A and B of quadri-
lateral ABCD. So if ABCD is circumscribed, then O must be its incenter. We
now show that ABCD is in fact circumscribed.

Now OC = OF and OD = OE by construction, so triangles COD,FOE are
congrent (24, case 2), and CD = EF . Thus AD+BC = AE+BF = AB+EF =
AB + CD, so that quadrilateral ABCD is indeed circumscribed, and the locus
of its incenter O coincides with the locus of points at which AB, EF subtend
supplementary angles.

Finally, we show that the ratio OA : OC is constant. Let S be the circle which
is the locus of O. It is not obvious, but was shown in the solution to exercise 257,
that when the endpoints of AB are inverted in S, their images are the endpoints
of EF . In this case, A inverts onto F and B onto E. The result of exercise 242
tells us that the ratio of the distances of any point on circle S to two inverse points
is constant. So, for example, the ratio OA : OF is constant, and since OF = OC,
the ratio OA : OC is also constant. In the same way we can show that OB : OD
is also constant.

Notes. This generalization of exercise 384 is far from obvious, but it can be
broken down into smaller sections which are not so hard, once the subgoal of each
section is given. It is a bit of a challenge to construct a working model of the
articulated quadrilateral ABCD using dynamic geometry software.

Problem 386. Given four fixed points A, B, C, D on a circle, take an arbi-
trary point P in the plane, and denote by Q the second intersection point of the
circles PAB and PCD. Find the locus of Q as P moves on a line or on a circle.
Find the locus of points P such that Q coincides with P .

Solution. We observe first that lines AB, PQ,CD are the radical axes respec-
tively of circles PAB, CAB, of circles PAB, PCD, and of circles ACD, PCD.
Hence these three lines pass through the radical center O of these three circles
(139). Since O is the intersection of lines AB, CD, it remains fixed as point P
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Figure t386

moves about the plane. This means that the product OP ·OQ remains fixed: it is
equal to the products OA · OB and OC · OD, so its value is the power of O with
respect to the original circle. This implies that P and Q are images of each other
in an inversion about pole O with power equal to the power of O with respect to
circle ABCD. This observation essentially solves the problem.

For instance, if point P describes a line not passing through O, then point Q
describes a circle through O, and conversely (220, 221). If P describes a circle not
passing through O, then Q describes a circle which is the inversion of that circle.
If P describes a line or circle through O, Q likewise describes a line through O.
Points P and Q coincide if and only if P lies on the circle of inversion.

Notes. The fact that point O remains fixed as points P varies is surprising
in itself. Students might be shown this phenomenon with a dynamic sketch, and
asked to explain it.

Problem 387. We join the vertices of a square ABCD with an arbitrary point
P in the plane. Let A′, B′, C ′, D′ be the second points of intersection of these
four lines with the circle circumscribed about ABCD. Show that A′B′ × C ′D′ =
A′D′ ×B′C ′.

Conversely, let A′B′C ′D′ be a cyclic quadrilateral such that A′B′ × C ′D′ =
A′D′ ×B′C ′.

Find a point P such that the lines PA′, PB′, PC ′, PD′ intersect the cir-
cumscribed circle in the vertices of a square.



113

Figure t387

Solution. In figure t367, we have (131) PA · PA′ = PB · PB′ = PC · PC ′ =
PD ·PD′ = p, where p is the power of point P with respect to circle ABCD. That
is, A′, B,′ , C ′, D′ are the images of A, B, C, D under an inversion about pole P
with power p. By 218, then, we have:

(1) A′B′ =
p ·BA
PA · PB

,

with analogous expressions for B′C ′, C ′D′, D′A′. By direct computation, taking
into account that AB = BC = CD = DA, we have A′B′ · C ′D′ = A′D′ · B′C ′ =

p2cȦB2

PA·PB·PC·PD .
We next consider the converse statement. Suppose cyclic quadrilateralA′B′C ′D′

is such that A′B′ ·C ′D′ = A′D′ ·B′C ′. (We assume that A′B′C ′D′ is convex; that
is, not self-intersecting.) Let us suppose that we know where point P (as described
in the problem statement) lies. We consider the inversion around P as pole, with
a power p equal to the power of P with respect to circle A′B′C ′D′. That is, we
assume that this inversion takes A′, B′, C ′, D′ into A, B, C, D respectively, and
these last points lie on circle A′B′C ′D′. Note that this circle is its own image under
this inversion.

Let us consider line S, the perpendicular bisector of AB. It is also the perpen-
dicular bisector of CD (since we are assuming that ABCD is a square), and we
invert it, around pole P with power p. Line S is perpendicular to line AB, but also
to any circle through A and B. Indeed, any such circle has its center on line S,
so a tangent to S at their point of intersection will be perpendicular to the radius
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at that point; that is, perpendicular to S. The image of S will thus be a circle S′

which is orthogonal to any circle through A′ and B′ (219), and in particular will
be orthogonal to line A′B′. Likewise, S′ will be orthogonal to every circle through
C ′ and D′, in particular to line C ′D′. It follows that lines A′B′, C ′D′ pass through
the center E′ of S′; that is, E′ is the intersection of lines A′B′, C ′D′. Finally, line
S is certainly orthogonal to circle ABCD, so the images of these two objects are
also orthogonal That is, circle S′ is orthogonal to circle A′B′C ′D′.

But does such a circle S′ exist? Well, we have chosen quadrilateral A′B′C ′D′

to be convex, so point E′, the intersection of A′B′ and C ′D′, lies outside the
quadrilateral. Therefore S′ is just the circle centered at E′ with radius equal to the
length of the tangent from E′ to circle A′B′C ′D′. We can now construct circle S′.

Likewise, line T , the perpendicular bisector of AD and BC, passes through
point O, inverts into a circle T ′ whose center is at F ′, the intersection of lines
A′D′, B′C ′, and is orthogonal to circle A′B′C ′D′. So we can construct circle T ′.

Now under the inversion we seek, S′, T ′ invert into lines S and T , so the pole
that effects this inversion can only be one of their intersections P or Q of these
two circles. These two circles must intersect, because one of them intersects arcs

A′B′, C ′D′, while the other intersects arcs A′D′, B′C ′, of circle A′B′C ′D′.
Finally, we find a pole P of inversion for which PA′, PB, PC ′ PD′ form a

square. Let us look at an inversion with pole P and power equal to the power of
P with respect to circle A′B′C ′D′. We will show that in fact under this inversion,
the image ABCD of quadrilateral A′B′C ′D′ is a square. Indeed, we know that
any circle through A′ and B′ is orthogonal to S′. We look in particular at circle
PA′B′, which inverts into line AB. Since circle PA′B′ is orthogonal to S′, line
AB is perpendicular to line S, the image of S′. For the same reason, line CD
must be perpendicular to line S. Similar reasoning starting with circle T ′ shows
that lines AD, BC must be perpendicular to line T . This reasoning shows that
ABCD is a parallelogram. And since A′, B′, C ′, D′ line on a circle, their images
A, B, C, D must lie on a circle (the image of the circle through A′B′C ′D′).
Thus parallelogram ABCD must be a rectangle. Finally, the algebraic reasoning
associated with equation (1) leads us from the relation A′B′ · C ′D′ = A′D′ · B′C ′
to the relation AB · CD = AD · BC, and if we apply this formula to a rectangle
(whose opposite sides must be equal), we quickly find that the rectangle is in fact
a square.

The same reasoning applies to an inversion around point Q. These two points,
constructed as indicated, give solutions to the problem: lines connecting them to
A′, B′, C ′, D′ intersect circle A′B′C ′D′ again in the four vertices of a square.

Note. We have indicated in passing how to construct a circle with a given
center and perpendicular to a given circle. Students can be asked to do this con-
struction as an exercise, before undertaking this problem.

(This is a particular case of Exercise 270b, 5o. However, the problem here
admits of two solutions, while there is only one in the general case. What is the
reason for this difference?)

Solution. The problem has two solutions because quadrilateral A′B′C ′D′ is
assumed to be cyclic. See, for example the solution to exercise 270, 5◦, note 2.
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Problem 388. More generally, find an inversion which transforms the vertices
A′, B′, C ′, D′ of a cyclic quadrilateral into the vertices of a rectangle.

Show that the poles are the limit points (Exercise 152) of the inscribed circle
and of the third diagonal of quadrilateral A′B′C ′D′.

Solution. Suppose (fig. t388) that an inversion with pole P transforms cyclic
quadrilateral A′B′C ′D′ into rectangle ABCD. We first show that we can find an
inversion such that ABCD is in fact inscribed in the same circle as A′B′C ′D′.

Figure t388

We follow the reasoning of exercise 387. As before, it is not hard to see that
the line S that joins the midpoints of sides AB, CD must be orthogonal to any
circle through A and B, and also to any circle through C and D. Therefore, under
the inversion we seek, the image S′ of S is a circle orthogonal to lines A′B′, C ′D′,
and also to circle A′B′C ′D′. The center of S′ must be the intersection E′ of lines
A′B′, C ′D′, and its radius must be the length of the tangent from E′ to circle
A′B′C ′D′.

Analogously, the line T joining the midpoints of sides AD, BC inverts into
a circle T ′ whose center F ′ is the intersection of lines A′D′, B′C ′, and whose
radius is the length of the tangent from F ′ to circle A′B′C ′D′. So we have enough
information to construct circles S′, T ′.

Now the inversion we seek will take circles S′, T ′ into lines S, T , so its pole
must be one of the two intersections P, Q of the circles. And if we want ABCD
to be inscribed in circle A′B′C ′D′, we need only take the power of the inversion to
be the power of P or Q with respect to circle A′B′C ′D′. But in fact, by 215 any
inversion with P or Q as its pole will transform A′B′C ′D′ into a rectangle, usually
with a different circumcircle.
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We now prove the statement in the problem concerning limit points. The third
diagonal of A′B′C ′D′ (considered as a complete quadrilateral) is simply E′F ′. By
construction (the lengths of their radii), circles S′, T ′ are orthogonal to circle
A′B′C ′D′. And they are certainly orthogonal to line E′F ′ (their common center-
line). It follows (exercise 152) that P and Q are the limit points of line E′F ′ and
circle A′B′C ′D′.

Problem 389. Still more generally, find an inversion which transforms four
given points into the vertices of a parallelogram.

Solution. Suppose there is an inversion taking four given points A′, B′, C ′, D′

into a parallelogram ABCD. If A′, B′, C ′, D′ all lie on the same circle, then so
do A, B, C,D, and we are led to the situation in exercise 388. So let us assume
that A′, B′, C ′, D′ do not lie on the same circle.

Since triangles ABC, ADC must be congruent, so must circles ABC, ADC.
Line AC is the extension of their common chord, so the two circles are symmetric
in line AC. That is, AC forms equal angles with both these circles.

Let us see what this implies for the original diagram, before inversion. Circle
ABC is the inversion of circle A′B′C ′. Circle ADC is the inversion of circle A′D′C ′.
Line AC is the image of some circle S′ through the pole of inversion. Circle S′ must
form equal angles with circles A′B′C ′, A′D′C ′; that is, it must bisect the angle

between arcs A′B′C ′ and A′D′C ′.
Likewise, the pole of inversion must lie on a circle T ′ bisecting the angle between

arcs B′A′D′ and B′C ′D′. Circles S′ and T ′ intersect twice, and either point of
intersection can be taken as the pole of the required inversion. As in exercise 388,
the power of the inversion can be arbitrary.

Notes. In this argument, we chose arcs A′B′C ′, A′D′C ′ because we want A′

and D′ to lie on opposite sides of circle S′, just as their images A, D lie on opposite
sides of line AC.

Students can be given the auxiliary problem of constructing a circle forming
equal angles with two given circles. See 227.

Problem 390. Given two circles and a point A, find an inversion in which the
point corresponding to A is a center of similarity of the transformed circles.

Lemma. A line intersecting two circles at equal angles must pass through one
of their centers of similarity, and conversely.

Proof of lemma. Radii of the two circles, drawn to their points of intersection
with the given line, are parallel in pairs. Thus the intersection of the given line
with the common centerline of the two circles is a center of similarity of the two
circles.

Conversely, if a line passes through a center of similarity of two circles, pairs of
radii to the points of intersection are homothetic, thus parallel. It follows that the
line makes equal angles with the two circles.
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Figure t389

Note. This lemma tells us that we can characterize the centers of similarity
of two circles as the point common to all the lines which intersect them at equal
angles.

Students can fill in the details of the proof of this elementary lemma. See 227.

Solution. Suppose the required inversion is I, and it takes point A onto point
A′. Then the set of circles through A which intersect the given circles C1, C2 at
equal angles are transformed into the set of lines passing through A′.

There are two inversions J and K which take C1 onto C2 (227). A circle
intersecting C1 and C2 at equal angles will be its own image under either J or K.
It follows that any circle through A which forms equal angles with C1 and C2 must
pass either through point PJ , the inverse point to A under J , or through PK , the
inverse point to A under K. In order that these circles invert into lines, we must
take either PJ or PK as the pole. The power of inversion can be chosen arbitrarily.



Problem 391. A variable point M on a circle is joined to two fixed points
A, B. The two lines intersect the circle again at P, Q. Denote by R the second
intersection of the circle with the parallel to AB passing through P . Show that line
QR intersects AB at a fixed point.

Use this result to find a method of inscribing a triangle in a given circle
with two sides passing through given points, while the third is parallel to a given
direction; or such that the three sides pass through given points. (These two
questions are easily reduced to each other, and to 115).

Solve the analogous problem for a polygon with an arbitrary number of sides.
(Another method is proposed in Exercise 253b.)

Note. We break this problem statement down into seven parts:
1◦. The intersection of QR and AB is fixed.
2◦. Inscribe a triangle in a given circle, with two sides passing through given

points, while the third is parallel to a given direction.
3◦. Inscribe a triangle in a given circle, whose three sides pass through three

given points.
4◦. Inscribe a polygon in a given circle with an even number of sides, such that

one side passes through a given point while the others are parallel respectively to
a set of given lines.

5◦. Inscribe a polygon in a given circle with an odd number of sides, such that
one side passes through a given point while the others are parallel respectively to
a set of given lines.

6◦. Inscribe a polygon in a given circle, such that a number of consecutive sides
pass through a set of given points while the others are parallel respectively to a set
of given lines.

7◦. Inscribe a polygon in a give circle, such that a number of sides, located
arbitrarily around the figure, pass through a a given set of points while the others
are parallel respectively to a set of given lines.

Solution 1◦. In figure t391a, point S is the intersection of lines QR and AB.

We have R̂QM = 1
2 RM= R̂PM = B̂AM , and certainly M̂BA = ŜBQ, so

triangles MBA, QBS are similar, so that BS = BM ·BQ
AB . The product BM · BQ

(the numerator of this fraction) is just the power of B with respect to the circle,
and so does not change as point M varies along the circle. And the denominator
of the fraction is certainly constant, so BS is constant, and point S does not move
as M varies.

Note. We can phrase this result slightly differently. For any two points A, B
on the circle, there is an associated fixed point S with the property described in
the problem statement.

Solution 2◦. We will adapt the notation of figure t391a to address this con-
struction. We show how to construct a triangle MPQ with sides passing through
fixed points A, B and a third side parallel to some line KL.

We find the fixed point S associated (as in 1◦) with points A and B. We then
use the result of exercise 115 to construct auxiliary triangle PQR, inscribed in the
given circle, with one side parallel to line AB and another to KL, and the third
side (QR) passing through S. Indeed, by construction (of point S), line RS must
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intersect the circle again at a point collinear with M and B, which thus must be
Q. Then triangle MPQ satisfies the required conditions.

Having constructed PQR, we draw line PA, and label its second intersection
with the circle as M . Then we draw line MB. It is not hard to see that the second
intersection of MB with the given circle must be Q. Indeed, the intersection of
MB and the given circle must be collinear with RS (by 1◦), so it must be point Q.

Solution 3◦. We again use the notation of figure t391a, but in a different way.
Let the three given points be A, B and C. Again, we determine point S, dependent
on A and B, as indicated in the result to our main problem. Construction 2◦ above
allows us to find a triangle PQR, two of whose sides pass through points C and S,
and whose third side PR is parallel to line AB.

Having constructed triangle PQR, we determine M as the second intersection
of line PA with the circle. As in the previous construction, line MB must intersect
the circle again at Q, and triangle MPQ satisfies the conditions of the problem.

4◦. We solve the problem for a hexagon. The generalization to any even number
of sides is immediate.

Suppose the required figure is PQRSTU , that side PQ passes through a given
point A, while the other sides are parallel respectively to lines Q1R1, R2S1, S2T1,
T2U1, SU2P1.

We choose an arbitrary point Q′ on the circle, and construct a polygon starting
with Q′ as one vertex by drawing lines parallel in turn to the given lines. We get
polygon P ′Q′R′S′T ′U ′ (fig. t391b), whose sides are parallel respectively to the

required polygon. Because chords QR, Q′R′ are parallel, arcs QQ′, RR′ are equal,

but oppositely oriented. Similarly, arcs R′R, SS′, T ′T , UU ′, P ′P are all equal,
and consecutive arcs (in this list) are oppositely oriented. Since the number of sides

of the polygon is even (here that number is 6), it follows that arcs P ′P , QQ′ are
equal and oppositely oriented. It follows that chords P ′Q′, PQ are parallel. (Note
that we began with only five given lines; chords PQ, P ′Q′ are not parallel a priori).

We have constructed a polygon inscribed in the given circle, with sides parallel
to the (five) given lines. It remains to arrange for the last side to pass through the
given point. But this is easy. If the given point is A, we draw a parallel to PQ
through A. Its intersection points P and Q with the given circle are one side of the
required polygon, and the others are found by drawing parallels as before.

Notes. This construction, as well as the next, does not depend on the very
first result in this exercise. We will not use that result until we come to statement
6◦. Thus students can be given this problem independent of the others in this
sequence. Or, they can be asked first to solve the simpler problem of inscribing in
a circle any hexagon (or polygon wtih evenly many sides) with all but one of its
sides parallel to a set of lines. They will find, in the process, that this condition
determines the direction of the sixth side of the hexagon (but not its length).

Solution 5◦. The argument is only slightly different from the proof of 4◦. We
solve the problem for a pentagon. The generalization to an arbitrary odd number
of sides is immediate.
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Suppose the required polygon PQRST (fig. t391c), is such that side PQ
passes through a given point A, and the other sides are parallel respectively to lines
Q1R1, R2S1, S2T1, T2P1.

We choose an arbitrary point Q′ on the circle, and construct a polygon starting
with Q′ as one vertex by drawing lines parallel in turn to the given lines. We
get polygon P ′Q′R′S′T ′ (fig. t391c), whose sides are parallel respectively to the

required polygon. As before, arcs QQ′, SS′, T ′T , P ′P are all equal, but this time,

because there are oddly many sides in the polygon, arcs P ′P , QQ′ are oriented in

the same direction. It follows (by adding arc P ′Q to both) that arcs P ′Q′, PQ
are equal, so chords P ′Q′, PQ are also equal. This construction, starting with an
arbitrary point, gives us the length of PQ. Thus we can start our construction of
the polygon by drawing a chord through the given point A and equal in length to
PQ.

Notes. We have shown, within the argument, that the length of side P ′Q′ of
a polygon constructed as in the solution, does not depend on the choice of point
Q′.

Students can complete the construction, by recalling how to draw a chord of
a given length through a given point. They can recall that this construction is
possible whenever the given length is between the diameter of the circle and the
minimal length of a chord through A. The length of PQ is determined by the
directions of the given lines, and students can think about when the construction
indicated in 5◦ is possible.

In 4◦, we saw that for even n, if we know the directions of n − 1 sides of an
n-gon, then the direction of the last side is determined, but not its length. Now
we see that for odd n, if we know the directions of n − 1 sides of a n-gon, then
the length of the last side is determined, but not its direction. For this reason, the
construction is not always possible when n is odd.

Solution 6◦. If only one of the sides of the polygon is required to go through
a given point, the problem is solved in 3◦ and 4◦. We solve the problem for a
hexagon. The generalization to any number of sides offers no new difficulties.

Suppose the required hexagon is PMQUVW (fig. t391d), in which sides PM
and MQ pass through given points A and B respectively, and choose these sides so
that side WP is required to be parallel to a given line; that is, so that proceeding
around the figure (in a clockwise direction, for figure 391d) , PM and MQ are the
first two sides we encounter which are required to go through given points. We will
show that if we can construct another hexagon PRQUVW in which one fewer side
is required to go through a fixed point, then we can also construct PMQUVW .

Indeed, we have essentially done this, in 2◦. Figure t391d is labeled similarly to
figure 391a, and in that figure, we know that if can construct triangle PQR, (with
two sides in given direction and a third passing through a given point), we can also
construct triangle PMQ. This shows us how to construct hexagon PMQUVW , if
we have already constructed hexagon PRQUVW . That is, we have reduced by one
the number of sides required to pass through a given point.

Because we have assumed that the sides passing through points are consecutive
around the required figure, we can continue this process, finally arriving at the
construction of 4◦ or 5◦.
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Solution 7◦. We use auxiliary polygons to reduce this problem to the situation
in 6◦. That is, we show that the construction of our polygon can be made to depend
on that of another polygon, in which the order of the sides satisfying two different
sorts of conditions is reversed. Applying this result several times, we can arrange
that all the sides of the auxiliary polygon which are required to pass through a
given point are consecutive, which is the situation in 6◦. We can thus construct the
sequence of auxiliary polygons, and arrive a the required figure.

Suppose, for example, we are required to construct hexagon PQRSTU (fig.
t391e), in which side PQ must be parallel to a given line KL, and side QR must
pass through a given point A. We will show that this construction depends on the
construction of an auxiliary hexagon PQ1RSTU , in which PQ1 passes through a
given point, and Q1R is parallel to a given line.

We draw chord RQ1 parallel to KL through point R, and let A1 be the in-
tersection of line PQ1 with the line parallel to KL through A. Then PQRQ1 is
an isosceles trapezoid, and therefore so is ARQ1A1. Thus points A, A1 are the
same distance from the center O of the given circle, and we can construct point
A1, without knowing hexagon PQRSTU , as the intersection of a circle of radius
OA with the parallel through A to KL. Now if we know how to construct polygon
PQ1RSTU , we can construct polygon PQRSTU .

But in PQ1RSTU , side PQ1 must go through a given point A1, and side Q1R
must be parallel to the given line KL. That is, we have reversed the order of the
sides satisfying different requirements. Following the plan given above, we can then
construct polygon PQRSTU .

Note. In figure t391e, polygon PQ1RSTU is not a ‘proper’ polygon, in the
sense of 21. Two of its sides intersect at a point which is not a vertex. We must
in general allow such figures for our auxiliary polygons. If we want to say that
the required polygon itself can always be constructed, we must likewise allow such
re-entrant figures as solutions.

Problem 392. About a given circle, circumscribe a triangle whose vertices
belong to given lines.

Solution. We use the method of poles and polars (see 206). Since the polar
of a tangent to a circle is its point of contact, (204), the polar of the circumscribed
triangle is the inscribed triangle formed by the three points of intersection of its
sides with the circle. Since the vertices of the original triangle lie on certain lines
a, b, c, the sides of the new inscribed triangle must pass through the points A, B, C
which are the polars of these lines.

Thus we have the following construction. We take the polars of the three given
lines with respect to the circle, then use the result of exercise 391 to draw a triangle
inscribed in the circle, whose sides pass through these three points. We then take
the polar figure to this inscribed triangle to get the required circumscribed triangle.

Problem 393. Given two points A, B on a line, we draw two variable circles
tangent to the line at these points, and also tangent to each other. These two
circles have a second common (external) tangent A′B′. Show that as the two
tangent circles vary, the circles on diameter A′B′ remain tangent to yet another
(fixed) circle. Find the locus of the midpoint of A′B′.
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Figure t393

Solution. Suppose (fig. t393) T is the point of tangency of the two circles,
and that IK is their common internal tangent, with I on line AB and K on line
A′B′. Then we know (92) that IT = IA = IB = 1

2AB. It follows that point I
is the midpoint of AB, and is fixed (for any two such circles). We also know that
TK = KA′ = KB′. Since the common centerline of the two circles is a line of
symmetry for the whole figure, we know that IT = TK, so IK = 2IT = AB, a
fixed distance. Hence the locus of point K (the locus of midpoints of A′B′) is a
circle centered at I with radius AB.

Now any circle on diameter A′B′ (for any two positions of the intial tangent
circles) must have a radius equal to A′K = B′K = TK = TI = AI = 1

2AB, and
its center moves along the circle with center I described in the previous paragraph.
Hence any such circle is tangent to a fixed circle centered at I, of radius 3

2AB. And
in fact, it is also tangent to another fixed circle, also centered at I, with radius
1
2AB.

Problem 394. Two variable circles C, C1 are tangent at a point M , and
tangent to a given circle at given points A, B.

1o. Find the locus of M ;

Solution 1◦. In figure t394a, point P is the intersection of the tangents to the
given circle O. We use the result of 139. Line PA is the radical axis of circles
O, C, and line PB is the radical axis of circles O, C1, so P is the radical center
of circles O, C, C1, and lies on the radical axis of C, C1. But this radical axis
is simply the common tangent PM of these two circles. From 92, it follows that
PA = PB = PM . Since PA = PB is constant, so is PM , and point M lies on a
circle centered at P with radius PA.
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Figure t394a

Note. It is not hard to see that any point on this circle can serve as a position
of point M . For some positions, circles C, C! are tangent internally to circle O,
and when P coincides with A or B, one of the circles degenerates to a point.

2o. Find the locus of the second center of similarity of C, C1;

Solution. It follows from the discussion of 227 that points A and B are anti-
homologous points in circles C,C1. Thus the second center N of similarity lies on
line AB.

But the locus of N is not the whole line: N must lie outside circle P constructed
in part 1◦. To prove this, we note first that the common centerline of C, C1 tangent
to circle P . Indeed, M is the foot of the perpendicular to this common centerline,
and is also the point of contact of the common tangent from P to the two circles.
Now N lies on the common centerline of C, C1 (143), which is tangent to circle P
and this centerline is tangent to circle P .

It follows that N , being on line CC1, must lie outside circle P and therefore
must also lie outside circle O. So the locus of N is that part of line AB lying outside
circle O. (The proof of this statement is actually completed in 3◦)

Note. Within this proof, we have shown that if three circles are tangent ex-
ternally, then their common centerlines are tangent to the circle centered at their
radical center whose radius is the length of the tangent to any of the circles from
the radical center. Students can be asked to prove this result independently of the
rest of the problem.

3o. To each point N of the preceding locus there correspond two pairs of circles
C,C1; C ′, C ′1 satisfying the given conditions, and therefore two points of tangency
M, M ′.
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Solution. We can construct circle P independent of the choice of N . Then,
for any position of N , we can draw tangents NM, NM ′ to this circle (fig. t394a).
One pair of centers is given by the intersections of OA, OB with tangent NM , and
the other pair of centers is the corresponding intersections with NM ′.

Note. This statement provides the converse to 2◦ by showing that every point
N on the locus claimed does in fact serve as the center of similarity of a pair of
circles C, C1; in fact, to two pairs of such circles.

Find the locus of the center of the circle circumscribing NMM ′, the locus of
the circle inscribed in this triangle, and the locus of the intersection of its altitudes.
Each common point of pairs of these loci belongs to the third.

Solution. We break this statement into three parts.

4◦. To find the locus of the circumcenter ω of NMM ′, we note that angles

N̂MP, N̂M ′P are right angles, so the circle on diameter NP passes through points
M, M ′; that is, this circle is the circumcircle of NMM ′, whose center ω is therefore
the midpoint of segment NP . Since P is fixed, we can describe the locus of ω as
the image of the locus of N under a homothecy centered at P with factor 1

2 .

Figure t394b

Since the locus of N consists of the extensions outside circle P of segment AB,
the locus of ω is the set of points on line A′B′, where A′ and B′ are the midpoints
respectively of PA, PB, but outside of segment A′B′(fig. t394b).
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5◦. To find the locus of the incenter I of triangle NMM ′, we note that it is

located on the bisector NP of angle M̂NM ′, and also on the bisector of angle

N̂MM ′.
We now show that point I in fact lies on circle P . Indeed, we have P̂MI =

90◦ − N̂MI = 90◦ − ÎMM ′ = P̂ IM , so triangle PIM is isoscele, with PM = PI.
Thus I is on circle P . But (by symmetry in line PN), the extension of PI must
pass through N . That is, point I lies on the intersections of PN with circle P .
These points are those on two arcs lying between lines AB and the parallel to AB
through P (fig. t394c).

6◦. We will find the locus of the intersection of the altitudes (the orthocenter)
of triangle NMM ′ in a rather indirect fashion. We will first find the locus of the
midpoint K of base MM ′ of the isosceles triangle. Then we relate positions of
point K to positions of point H using the result of exercise 70.

We start with some results from the theory of poles and polars. In figure 394d,
we note that line MM ′ is the polar of point N with respect to circle P . Since line
AB passes through point N , the pole of line AB lies on the polar of N (205). But
the polar of AB with respect to circle P is just point O (as we proved in the note
to 2◦, OA and OB are the tangents to circle P at the endpoints of chord AB). So
line MM ′ passes through point O.

Let K be the foot of the altitude from N in triangle NMM ′, and consider the

circle Σ on diameter OP . Since angle P̂KO is a right angle, point K lies on circle

Σ. But OB is tangent to circle P at B, so angle P̂BO is also a right angle, and B
is also on Σ. We can show in the same way that A is on Σ. Note that points O, P
do not vary with point N , so circle Σ also does not vary. And in fact it is easy to
see that as N varies along line AB (but outside of circle P ) , the locus of point K

is arc APB of circle Σ.
Now point P is equidistant from lines NM, NM ′, and so is on the bisector of

angle N̂ of triangle NMM ′. Since this triangle is isosceles, this angle bisector is
also an altitude. So point P is the intersection of an altitude of triangle NMM ′

with its circumcircle. It follows from exercise 70 that the orthocenter H of the
triangle is symmetric to P in line MM ′, or equivalently, in point K.

That is, PH = 2PK, and point H is the homothetic image of point K, with
(fixed) point P as center and a factor of 2. Thus its locus is the homothetic image
of an arc of circle Σ′, homothetic to Σ with factor 2.

7◦. We need to show that the loci of 4◦, 5◦ and 6◦ are concurrent. Let us
consider the first two loci separately. The locus of 4◦ is that part of line A′B′ lying
outside circle P . The locus in 5◦ consists of two arcs of circle P . So these two loci
cannot intersect in more than two points labeled E and F in figure t394b.

For positions of N where these loci coincide, say E, the incenter and circum-
center of triangle NMM ′ must also coincide with E, which means that the triangle
is equilateral, and not just isosceles. But the orthocenter of an equilateral triangle
also coincides with the incenter and circumcenter, and hence with point E. This
means that point E is on circle Σ′, the locus of H. Likewise, point F is on circle
Σ′.

Problem 395. Two circles C, C ′ meet at A, and a common tangent meets
them at P, P ′. If we circumscribe a circle about triangle APP ′, show that the angle
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subtended by PP ′ at the center of this circumscribed circle is equal to the angle
between circles C, C ′, and that the radius of this circle is the mean proportion
between the radii of circles C, C ′ (which implies the result of Exercise 262, 3o).
Show that the ratio AP

AP ′ is the square root of the ratio of these two radii.

Solution. The exercise asks us to prove three statements.

Figure t395

1◦. We first prove the result about the angle subtended by PP ′ at the circum-
center of triangle APP ′.

Let S be the external center of similitude for circles C, C ′, and let A′′, A′ be the
second points of intersection of line SA with circles C, C ′ respectively (fig. t395).
Then clearly triangles APA′′, A′P ′A are homothetic with center S of homothecy.

(In particular, they are similar.) And (73, 74) angles P̂A′′A, ÂPP ′ are equal, as

each is equal to half arc AP in circle C. Likewise, P̂ ′A′A = ÂP ′P = 1
2 AP ′ in

circle C ′. It follows that triangles A′′PA, PAP ′, AP ′A′ are similar.
Now we note that the three circumcenters O, O′,Ω of these triangles, consid-

ered as parts of the triangles, are corresponding points. Therefore quadrilaterals
A′′PAO, PAP ′Ω, AP ′A′O′ are also similar.

From these three quadrilaterals we have: ÔAP = Ω̂P ′A and Ô′AP ′ = Ω̂PA.

Therefore P̂ΩP ′ = 360◦ − Ω̂PA − P̂AP ′ − Ω̂P ′A = 360◦ − Ô′AP ′ − P̂AP ′ −
ÔAP = ÔAO′. That is, the angle subtended by PP ′ at the center Ω of the circle
circumscribing triangle APP ′ is equal to the angle between the radii of circles C, C ′

drawn to their point of intersection. It is not hard to see that this angle is equal to
the angle between the tangents to these circles at their point of their intersection,
which is the angle between the two circles themselves.
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Note. Students may have trouble accepting the argument that quadrilaterals
A′′PAO, PAP ′Ω, AP ′A′O′ are similar. They can avoid this difficulty, but lengthen
the argument, by seeing that triangles OA′′A, ΩPP ′ , O′AA′ are also similar,
then use sides of these triangles and combinations of their angles with the angles
of similar triangles A′′PA, PAP ′, AP ′A′. This longer argument offers no new
difficulties.

2◦. Next we prove the result about the circumradius of triangle APP ′.
Let r, r′, ω be the radii of circles C, C ′,Ω respectively. From the similar

quadrilaterals pointed out in 1◦ we have

r : ω = AP : AP ′, ω : r′ = AP : AP ′.

It follows from these two proportions above that r : ω = ω : r′, so ω is the
mean proportion between r and r′.

4◦. Finally, we get the result of exercises 262, 3◦. Let B be the second in-
tersection of circles C, C ′, and let Q, Q′ be the points of contact of the second
common tangent to those circles. Then it is clear from symmetry in line OO′ that
the circumradii of APP ′, BQQ′ are equal.

We can repeat the argument of 1◦ to show that triangles A′′QA, QAQ′, AQ′A′

are similar, so that the quadrilaterals formed by those three triangles and their
circumcenters are also similar, and therefore the circumradius of AQQ′ is likewise
the mean proportion between r and r′. By symmetry in line OO′, the same is true
of the circumradius of triangle BPP ′. Thus we obtain the result of exercise 262,
3◦.

Problem 396. What are necessary and sufficient conditions which four circles
A,B; C,D must satisfy in order that they can be transformed by inversion so that
the figure formed by the first two is congruent to that formed by the second two?
(Using the terminology introduced in Note A, 289, 294, what are the invariants,
under the group of inversions, of the figure formed by two circles?)

1o. If circles A, B have a common point, it is necessary and sufficient that the
angle of these two circles equal the angle of C, D; or, which is the same (by the
preceding exercise), that the ratio of the common tangent to the geometric mean
of the radii be the same in both cases;

Solution 1◦. Two circles will always invert into lines or circles meeting at the
same angle. So unless circles A, B meet at the same angle as circles C, D, the
second pair cannot be congruent to an image of the first pair under inversion. That
is, the condition that the pairs of circles meet at the same angles is necessary.

Let us show that this condition is also sufficient. Suppose circles A, B (fig.
t396a) intersect at points P, P ′, and circles C, D intersect at points Q,Q′, both
pairs intersecting at the same angle α. If we invert the first pair of circles in pole P
(with any power at all), we will get two lines a, b which intersect at angle α (221).
If we invert circles C, D in pole Q (with any power at all), we get another pair of
lines c, d, intersecting at angle α. By suitable rotation and/or translation, we can
move the figure consisting of C, D, c, d so that lines c, d coincide with lines a, b.
Let Q1 be the image of Q under this series of rotation and translation.

Now we can invert A, B into a, b around P , then invert a, b around Q1 into
two circles congruent to the figure formed by C, D. Assuming that P and Q1 do
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Figure figt396a

not coincide, these two inversions can be replaced by a single inversion, followed
by a line reflection (see exercise 251, 2◦). If we neglect the line reflection, then the
figure formed by A, B are inverted into a figure congruent to that formed by C, D.

If P, Q1 coincide, we can repeat the argument, choosing Q′ in place of Q, and
obtaining a center Q2 of inversion (by translation and rotation of C, D) which
cannot coincide with P .

Thus the condition that the two pairs of circle meet at equal angles α is suffi-
cient as well as necessary. The solution to exercise 395 shows that the value of α

determines the value of angle P̂ΩP ′ in figure t395, which in turn determines the
ratio PP ′ : PΩ. This last ratio is the one referred to in the problem statement.

We must make some changes to this argument if the pairs of circles are tangent
(i.e., intersect at an angle of 0◦). Lines a, b will be parallel, as will lines c, d. By
adjusting the power of the inversion, we can make the distance between lines c, d
equal to the distance between a, b. Then we can follow the previous argument.

Note. Students can fill in details of the last paragraph, showing how the power
of inversion determines the distance between the parallel lines. They can also
consider the case in which both pairs of circles are tangent at the same point.
(Translate one of the pairs away from the common point, so that the argument
above applies.)

2◦. If circles A, B have no common point, it is necessary and sufficient that the
ratio of the radii of the concentric circles into which they can be transformed by an
inversion (Exercise 248) be the same as the ratio of the radii of the concentric circles
into which C, D can be transformed by an inversion (generally, a different inversion
from the first). (Using the language of Note A, it is necessary and sufficient that
the figures (A, B) and (C, D) have the same reduced form under inversion.)

This result can also be expressed as follows: the cross ratio (212) of the
intersection points of A, B with any of their common orthogonal circles is constant,
and the same is true of the cross ratio of two of these points and the limit points.
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The required condition is that this ratio have the same value for the circles C, D
as for A, B.

Finally, if r, r′ are the radii of A, B, and d is the distance between their

centers, the quantity d2−r2−r′2
rr′ must have the same value as the corresponding

value calculated for the circles C, D.
We could also express this by saying that if the circles A, B have a common

tangent (for example, a common external tangent) of length t, and the same is true
for C, D, then the ratio t√

rr′
must be the same in the two cases.

Solution 2◦. We first prove that the given condition is necessary. Suppose
some inversion S takes circles A, B onto circles A′, B′, which taken together form
a figure congruent to that formed by circles C, D. If we translate and rotate circles
C, D, they will then coincide with circles A′, B′. So we can assume, without loss
of generality, that circles C, D are in fact the same as A′, B′.

Recall (exercise 248) that any two non-intersecting circles can be inverted into
concentric circles by using one of their limit points (exercise 152) as the pole. So
we can invert C, D around one of their limit points to get concentric circles c, d.
We call this inversion T . (Since C and D have two limit points, we can choose
the pole of T to be different from the pole of S.) The inversion S followed by the
inversion T takes A, B onto c, d. But the composition of these two inversions
can be replaced by a single inversion S′ and a line reflection (exercise 251, 2◦). So
S′ (without the line reflection) takes A, B into two concentric circles which are
congruent to c, d. And T takes circles C, D into concentric circles c, d. That is,
if there is an inversion S taking A, B onto a figure congruent to C, D, then the
ratio of the concentric circles into which they can be inverted must be the same.
The condition of the problem is necessary.

We next show that this condition is sufficient, using an argument similar to
that in 1◦. Suppose A, B invert into concentric circles a, b, while C, D invert into
concentric circles c, d, and suppose that the radii of c, d are proportional to those
of a, b. We choose any power at all for the inversion taking A, B onto a, b, and
recall (215) that two figures which are inversions of the same figure with the same
pole are homothetic to each other. This means that we can choose the power of
the inversion taking C, D onto c, d in such a way that the figure formed by c, d
is congruent to that formed by a, b. (We use here the fact that the radii of the
four circles are in proportion.) We can translate and rotate the figure formed by
C, D so that circles a, b in fact coincide with circles c, d. As in 1◦, we now see
that C, D can be obtained from A, B by a sequence of two inversions. (We can
avoid the situation where the poles of these inversions coincide by rotating C, D
around the common center of a, b.) As before, the sequence of two inversions can
be replaced by a single inversion S′ followed by a line reflection, and the inversion
S′ alone takes A, B onto a figure congruent to C, D.

We now express this condition in terms of the cross ratios of the intersections
of the given circles with the circles orthogonal to them. We will show, in the case
of intersecting circles, that this cross ratio depends only on the angle at which the
circles intersect, and not on the particular orthogonal circle. In the case of non-
intersecting circles, we will show that this cross ratio depends only on the ratio of
the concentric circles they invert into, and not on the particular orthogonal circle.
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(The value of the cross ratio described here depends on the order in which the
points are taken. Without loss of generality we can take the first pair of points to
be the intersection of the orthogonal circle with one of the two given circles, and the
second pair of points to be its intersection with the second of the given circles. The
result of exercise 274 will tell us that the value λ of the cross ratio is then limited
to two values, whose product is 1. We can then, again without loss of generality,
take the points in order so that |λ| ≤ 1.)

Figure t396b

We start with the case of two intersecting circles. These can be inverted into
two intersecting lines, and the circles orthogonal to them into circles whose center
is their point of intersection. One such circle, in figure t396b, is KNLM , where
K and L belong to different semicircles. The cross ratio λ = (KLMN) = −KMLM :
KN
LN = −(KMLM )2. But this last ratio depends only on the angle at which the two lines
intersect, and not on the choice of orthogonal circle. Since inversion preserves both
orthogonality and cross ratio (see exercise 273), the same is true of two intersecting
circles.

In the case of two non-intersecting circles, we invert them into two concentric
circles. Then the circles orthogonal to them invert into lines through the common
center of the two circles. One such line, in figure t396c, is MKOLN . If the radii
of the concentric circles are R and r, then the cross ratio (KLMN) = KM

LM : KNLN =(
R−r
R+r

)2

. Dividing numerator and denominator of this last fraction by R, we find

λ =
(

1− r
R

1+ r
R

)2

, and so depends only on the ratio of the radii of the concentric circles.

Since inversion preserves both orthogonality and cross ratio, the same is true of the
original two non-intersecting circles.

Note. If the circles are tangent, any circle orthogonal to both must pass
through their point of tangency. The cross ratio of the four points described in
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Figure t396c

the problem (and taken in order) is 1, as two of the points coincide. Students can
fill in the details for this case.

Figure t396d

We treat separately the assertions in the rest of the exercise.

3◦. The quantity ν = d2−r2−r′2
rr′ must have the same value as the corresponding

value calculated for the circles C, D (with the variables as described in the problem
statement).

Solution. We will show that ν is uniquely determined by the cross ratio λ.
We already know that we can compute λ from an image under inversion of the
original circles, so we choose, without losing generality, the situation where the
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circle orthogonal to the two original circles is simply their common centerline (fig.
t396d), and we can do this whether or not the given circles have a point in common.
Then we have

λ = (LKMN) =
KM

LM
:
KN

LN
=
d+ r − r′

d− r − r′
:
d+ r + r′

d− r + r′
=
d2 − (r − r′)2

d2 − (r + r′)
=

=
d2 − r2 − r′2 + 2rr′

d2 − r2 − r′2 − 2rr′
=
ν + 2

ν − 2
.

Solving from ν in terms of λ, we find that ν = 2λ+2
λ−1 . That is, the value of ν is

determined uniquely by the value of λ. Since λ has the same value for the two pairs
of circles considered, so must ν.

4◦. If circles A, B have a common tangent of length t, and the same is true
for C, D, then the ratio t√

rr′
must be the same in the two cases.

Solution. Let τ = t√
rr′

. Then t2 = d2− (r− r′)2 = d2− r2− r′2− 2rr′. Com-

paring this to the definition of ν invites the direct computation ν+ 2 = d2−r2+2rr′

rr ,

so that τ = t
rr′ =

√
ν + 2, As in 4◦, this means that τ has the same value for the

pairs of circles considered.

Problem 397. We are given two points A, A′ and two lines D, D′ parallel
to, and at equal distance from, AA′.

1o. Show that for every point P on D there corresponds a point P ′ on D′ such
that line PP ′ is tangent to the two circles PAA′, P ′AA′;

Solution 1◦. For any point P on line D, we draw the circle through P, A′, A,
and also its tangent at P (fig. t397a). Let P ′ be the point of intersection of this
tangent with D′. The centers of the circles through A, A′ lie on the perpendicular
bisector of AA′. The centers of circles tangent to PP ′ lie on the line through
P ′ perpendicular to PP ′. Their intersection O′ is the center of a circle through
P, A, A′.

Indeed, if M is the intersection of AA′ and PP ′, then M is the midpoint of
PP ′ (113), and we have MP ′2 = MP 2 = MA ·MA′. By 132 (converse), this
means that P ′, A′, and A are on the same circle, which must have its center at O′.

2o. Prove that the product of the distances from A, A′ to line PP ′ is constant;

Solution. Let H, H ′ (fig. t397a) be the feet of the perpendiculars from A, A′

respectively to line PP ′. We know that (132) that

(1) MA ·MA′ = PM2.

We use similar triangles to rewrite (1). Triangles AHM, A′H ′M are similar
(their sides are parallel in pairs; see 43, 118, first case). If we draw MM ′ perpen-
dicular to D, we find that triangle PMM ′ is similar to the two triangles identified
above (they are right triangles with two pairs of parallel sides; see 43, 118, case I).
That is, segments AH, A′H ′, MM ′ are proportional to segments AM, A′M, PM .

Now we rewrite (1). We have A′H′

A′M = MM ′

PM , so A′M = A′H ′ · PMMM ′ . Likewise,

AM = AH · PM
MM ′ , and we can rewrite (1) as A′H ′ · PM

MM ′ · AH · PM
MM ′ = PM2.

Dividing this equation by
(
MM ′

PM

)2

, we find that
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Figure t397a

(2) A′H ′ ·AH = MM ′2,

and this last length is constant, since AA′ ‖ D.

3o. Find the locus of the projection of A onto PP ′;

Figure t397b
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Solution. We use the result of exercise 141, and also some ideas from its
solution for the case m = n = 1, in the notation of that solution. (Students can
be given this statement as a hint.) To apply this result, we examine the sum
HA2 +HA′2, by looking at triangle HAA′.

In that triangle, we have AA′2 = A′H2 +AH2 − 2AH ·HN (126), where N is
the foot of the perpendicular from A to line HA. But HN = A′H ′ (from rectangle
A′NHH ′), so

(3) HA2 +HA′2 = AA′2 + 2AH ·AH ′,

and the result of 2◦ shows that this last quantity is constant. Thus the result of
exercise 141 shows that H lies on a circle whose center is the midpoint T of AA′

To compute the radius of this circle, we proceed as in exercise 141 (or use 128),
1◦. From either of these results, we have

4HT 2 = 2A′H2 + 2AH2 −AA′2

= 2(AA′2 + 2AH ·AH ′)−AA′2(from(3))

= AA′2 + 4MM ′2.(from(2))

So the radius HT of the circle is equal to
√

1
4AA

′2 +MM ′2.

Notes. In figure t397b, right triangle ATK shows that radius HT of this circle
is equal to the distance from A to point K, the point on line D which is equidistant
from A and A′.

Analogous reasoning starting with triangle A′H ′A will show that point H ′ lies
on the same circle.

4o. Find a point P such that the line PP ′ passes through a given point Q;

Figure t397c
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Solution. If we start with any point Q, the associated point H must lie on a

circle with diameter AQ (since angle Q̂HA is a right angle), and also on the circle
described in 3◦. The line connecting Q to any intersection point of these two circles
will intersect D in a point P which satisfies the conditions of the problem.

5o. Show that the angle of the circles PAA′, P ′AA′, and angle P̂A′P ′, are
constant.

Figure t397d

Solution. We take the angle between the two circles to be equal to the angle

between their radii at a point of intersection. In figure t397d, this is angle ÔA′O′,

and we will show that it is equal to the constant angle K̂A′K ′, where K, K ′ are
the intersections of the two given parallel lines with the perpendicular bisector of
segment AA′.

To this end, we lay off segment KO′′ as in the figure so that KO′′ = K ′O′.
Then triangles A′KO′′, A′K ′O′ are symmetric in line AA′, so they are congruent,
and

(4) K̂A′O′′ = K̂ ′A′O′.

Next we show that A′K bisects angle ÔA′O′′. Indeed, triangles OPK, O′P ′K ′

are similar. (See 43; their sides are parallel in pairs). So OP : O′P ′ = OK : O′K ′.
But OP = OA′, O′P ′ = O′A′ = O′′A′, O′K ′ = KO′′, so this proportion is
equivalent to OA′ : O′′A′ = OK : KO′′, and this last proportion shows (115) that
A′K is an angle bisector in triangle A′OO′′.

Now from (4) we have Ô′A′K = K̂A′O′′ = K̂ ′A′O′. Adding angle K̂A′O′ to

each, we find that ÔA′O′ = K̂A′K ′. The first angle is the angle between the two
circles, and the second angle is constant. This proves the first assertion.

To show that P̂A′P ′ is constant, we examine the angles around vertex A′, and
will show that the sum of the remaining angles is also contant. We know that
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ÔA′O′ is constant from the previous paragraph. So we need to show that the sum

ÔA′P + Ô′A′P ′ is constant.
Since ÔA′O′ is constant, so is the sum Â′OO′ + Â′O′O (it is equal to 180◦ −

ÔA′O′). And since OP ‖ O′P ′, we know that P̂OO′′ + ÔO′P ′ = 180◦, so the sum

Â′OP + Â′O′P ′ = (POO′ + ÔO′P ′)− (Â′OO′ + Â′O′O) = ÔA′O′.
Now we look at isosceles triangles POA′, P ′O′A′. The sum of their vertex

angles is constant, so the sum of a pair of base angles is also constant: P̂A′O +

P̂ ′A′O′ = 1
2 (180◦ − P̂OA′ + 180◦ − P̂ ′O′A′) = 180◦ − 1

2 (ÔA′O′).
We have shown that the sum of the other angles around A′ is constant, so

P̂A′P ′ must also be constant: P̂A′P ′ = 360◦ − (P̂A′O + P̂ ′A′O′) − ÔA′O′ =

180◦ − 1
2 ÔA

′O′ = 180◦ − 1
2K̂A

′K ′, which is constant.

Problem 398. Let C be a circle with diameter AB, and D a line perpendicular
to this diameter, which intersects C. Let c, c′ be the circles whose diameters are
the two segments into which D divides AB. We draw a circle tangent to C, c, D,
and another circle tangent to C, c′, D. Show that these two circles are equal, and
that their common radius is the fourth proportional to the radii of C, c, c′.

Solution. Let S be the circle tangent to c, D, and C, and let S′ be the circle
tangent to c′, D, and C.

Figure t398

We consider the inversion with pole A and power AM ·AB. We will show that
the image of line D is circle C. Indeed, the image is a circle through A (220) which
is orthogonal to line AB (219). Points M and B are clearly images of each other,
so the image of D must contain point B. That is, the image of D is a circle through
A and B which is orthogonal to line AB. This must be circle C. And the image
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of circle C is of course then line D. Further, it is not hard to see circle c′ is its
own image. (The power of inversion is the power of A with respect to this circle.)
Finally, the image of circle S′ is a circle tangent to D, C, and c′, and the only such
circle (on the same side of AB as S′) is S′ itself.

It follows that the common tangent to c and S′ at their point T of tangency
must pass through the pole A of this inversion. Indeed, since c′, S′ are their own
images under the inversion, their common point must be its own image as well.
That is, AT 2 is the power of the inversion. But then AT 2 = AM ·AB and by 132
(converse), AT is the tangent to c′ (and therefore also to S′) at T .

Let o′, P ′ be the centers of circles c′, S′ respectively. Let N be the foot of the
perpendicular from P ′ to diameter AB, and let R, r, r′, ρ′ be the respective radii
of circles C, c, c′, S′. Triangles ATo′, P ′No′ are both right triangles, and share

angle P̂ ′o′A, so they are similar, and Ao′ : P ′o′ = To′ : No′ or 2R−r′
ρ′+r′ = r′

r′−ρ′ .

Transforming this expression gives us ρ′R = (R − r′)r′. Since R = r + r′, it
follows that ρ′R = rr′. Thus the radius of circle S′ is the fourth proportional to
the radii of C, c, c′.

Similarly, we could compute the value of the radius r of circle S in terms of ρ′

and R. But we need not carry out the argument: the expression we got for ρ′ is
symmetric in r and r′, and we will just be changing the names of the objects in the
argument, not their relationships to each other. Either way, we see that the radii
of S, S′ are equal.

Problem 399. (the Greek Arbelos) Let A, B be two tangent circles. Let C
be a circle tangent to the first two; let C1 be a circle tangent to A, B, C; let C2

be a circle tangent to A, B, C1; let C3 be tangent to A, B, C2, . . . ; and let Cn
be a circle tangent to A, B, Cn−1. Consider the distance from any of the centers
of C, C1, . . . , Cn to the line of centers of A, B, and the ratio of this distance to
the diameter of the corresponding circle. Show that this ratio varies by one unit
in passing from any circle to the next one, at least in the case in which they are
exterior (which always happens when circles A, B are tangent internally). Show
how this statement must be modified when two consecutive circles Cn−1, Cn are
tangent internally. (Arbelos is a Greek word meaning sickle)1.

Solution. The problem describes a chain of circles, starting with a single circle
C, which are all tangent to two larger circles, and each circle tangent to the previous
as well. It will be convenient to discuss a slightly more general situation, in which
the chain of circles is continued in both directions, so that there is an initial circle
C = C0, a chain of circles C1, · · ·Cn, and also a chain of circles C−1, C−2, · · · as in
figure t399a.

Let the center of circle Cn be On, and its radius as rn. Let ` be the common
centerline of circles A, B. We will also need to talk about the projection of On
onto `. We call this point Pn.

In that figure, T is point of tangency of circles A, B, and we invert the figure
around T as the pole, using any power. Circles A, B invert into two parallel lines
A′, B′ (220, corollary), and circles · · · , C−2, C−1, C0, C1, C2, · · · invert into

1This note is Hadamard’s own. The usual translation of arbelos is shoemaker’s knife. But
see for instance Harold P. Boas, Reflections On the Arbelos, American Mathematical Monthly,

113, no. 3 (March 2006), 236-249. –transl.
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Figure t399a

circles · · · , C ′−2, C
′
−1, C

′
0, C

′
1, C

′
2, · · · tangent to both lines, which therefore have

equal radii. We denote this radius as r′.
Let the centers of the circles C ′n be the points O′n. Because the circles are equal,

these centers are collinear. Let P ′ be the intersection of this common centerline
with `.

For those circles whose centers lie on the same side of line `, it is clear that
O′n−1P

′ −OnP ′ = 2r′. We can write this as

(1)
O′n−1P

′

2r′
− O′nP

′

2r′
= 1.

For those circles whose centers lie on different sides of line `, this relationship
becomes O′n−1P

′ +O′nP
′ = 2r′, or

(2)
O′n−1P

′

2r′
+
O′nP

′

2r′
= 1.

Now the pole of inversion is a center of similarity for any pair of circles which are
inverses of each other, so (fig. t399b) we have r′ : rn = TO′n : TOn = O′nP

′ : OnPn.
Therefore O′nP

′ : 2r′ = OnPn : 2rn. That is, the ratio of the distance from the
centers of any of our circles Cn from the common centerline of A, B to the diameter
of that same circle Cn does not change when we invert around pole T . Because of
this, we can rewrite (1) and (2) as:
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Figure t399b

(3)
On+1Pn+1

2rn+1
− OnPn

2rn
= 1.

(4)
On+1Pn+1

2rn+1
− OnPn

2rn
= 1.

These two equations prove the assertion of the problem.
In the case mentioned in the problem statement, where A and B are tangent

internally, any two circles Cn, Cn+1 are tangent externally. Since circles Cn, Cn+1

are tangent externally, it follows that the centers of the inverted circles C ′n, C
′
n+1

lie on the same or different sides of line ` according as the centers of Cn, Cn+1 lie
on the same or different sides of `. Thus in this case, we can say that equation (3)
holds whenever the centers of the circles lie on the same side of `, and equation (4)
holds if these centers lie on opposite sides of `.

If circles A, B are tangent externally (fig. 399c), then circles C−1, C0 and
C0, C1 are tangent internally, while the others are tangent externally. This re-
quires a small change in the concluding statement above. For those pairs of circles
Cn, Cn+1 which are tangent internally, equation (3) holds if their centers are on
opposite sides of `, and equation (4) holds if their centers are on the same side of `.

Note. We can state this result more generally if we allow for signed distances
to line `. If xn, xn+1 are the distances of consecutive circles from `, and rn, rn+1

are their radii, then we can say that xn

2rn
− xn+1

2rn+1
= 1, when xn is positive for circles

on one side of ` and negative for circles on the other side.



140

Figure t399c

For circles that are tangent externally, we have xn

2rn
+ xn+1

2rn+1
= 1, with similar

conventions of sign for xn, xn+1.

Problem 400. Let A, B, C be three circles with centers at the vertices of a
triangle, each pair of which are tangent externally (Exercise 91). Draw the circle
externally tangent to these three circles, and also the circle internally tangent to
these three circles. Calculate the radii of these circles knowing the sides a, b, c of
the triangle (preceding exercise, Exercise 301).

Solution. If a, b, c, s are the sides and semiperimeter of triangle ABC, then
exercise 91 shows that the radii of the circles centered at A, B, C are s−a, s−b, s−c
respectively.

There are many circles tangent to the three described in the problem, but only
two (also mentioned in the problem) which are tangent to all three externally or to
all three internally (see figure t400a). We first consider the circle which is externally
tangent to all three (the small circle in figure t400a) which lies inside the curvilinear
triangle formed by the three given circles. Let O be its center and ρ its radius.

We will apply the result of exercise 399 in various ways, with pairs of circles
A, B, C playing the role of the original circles given in that exercise. The common
centerlines of these circles are the sides of the given triangle, so we will need the
distances of these from O. Let these be x, y, z, and let h, k, ` be the lengths of
the altitudes of the given triangle.



141

Figure t400a

We can now use formula (3) from exercise 399, applying it to circles B and C
as the two given circles, and A and O as the (short) chain of circles. we have:

(1)
x

2ρ
− h

2(s− a)
= 1.

Analogously, if we start with A and B as the given circles, and C, O the chain of
circles, we have:

y

2ρ
− k

2(s− b)
= 1,

and starting with circles A and C we have:

z

2ρ
− `

2(s− c)
= 1.

Multiplying (1) by 2ρ and dividing by h, we get:
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x

h
− ρ

s− a
=

2ρ

h
,

and analogously:

y

k
− ρ

s− a
=

2ρ

k
,

z

`
− ρ

s− c
=

2ρ

`
.

Adding, and using the result of exercise 301, we get

ρ

(
1

s− a
+

1

s− b
+

1

s− c
+

2

h
+

2

k
+

2

`

)
= 1.

This gives an expression for ρ, as required. We can transform it by introducing
the area ∆ of the triangle, and the radii ra, rb, rc of its escribed circles.

From exercise 299, we have 1
s−a = ra

∆ , 1
s−b = rb

∆ , 1
s−c = rc

∆ . And from 249
2
h = a

∆ ,
2
k = b

∆ ,
2
` = c

∆ , so we have:

ρ

(
ra
∆

+
rb
∆

+
rc
∆

+
a

∆
+

b

∆
+

c

∆

)
= 1,

or

ρ

(
ra
∆

+
rb
∆

+
rc
∆

+
a

∆
+

b

∆
+

c

∆

)
= 1,

or

ρ =
∆

a+ b+ c+ ra + rb + rc
=

∆

2s+ ra + rb + rc
.

Now suppose O′ and ρ′ are the center and radius of the second circle tangent
to the three given circles. This circle can touch the others either internally (fig.
t 400a) or externally (fig. t 400b). In the case where the new circle is tangent
internally to the others, its center can lie either inside the given triangle or outside
it.

Proceeding as before, we get the expression ρ′ = ± ∆
2s−(ra+rb+rc) .

Notes. We can explore the situation further if we introduce the convention
of exercise 301 for the signed distance from a point to a line. Let x′, y′, z′ are the
distances from point O′ to the sides of the triangle. In the case of a circle externally
tangent to the others, we then have the system of equations:

h

2ra
+

x′

2ρ′
= 1;

k

2rb
+

y′

2ρ′
= 1;

`

2rc
+

z′

2ρ′
= 1.

In the case of a circle internally tangent to the others, we have:

h

2ra
− x′

2ρ′
= 1;
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k

2rb
− y′

2ρ′
= 1;

`

2rc
− z′

2ρ′
= 1.

Solving the first system, we get ρ′ = ∆
2s−(ra+rb+rc) . From the second system,

we get ρ′ = − ∆
2s−(ra+rb+rc) . If ra + rb + rc = 2s, circle O′ becomes a straight line.

Problem 382. Let ABC be a triangle, and let O, a, b, c be four arbitrary
points. Construct (a) a triangle BCA′ similar to triangle bcO and with the same
orientation (B, C being the points corresponding to b, c); (b) a triangle CAB′

similar to caO with base CA, and (c) a triangle ABC ′ similar to abO with base
AB. Show that triangle A′B′C ′ is similar to, but with opposite orientation from,
the triangle whose vertices are the inverses of the points a, b, c with pole O.

Solution. In light of exercises 380-381, we introduce three figures Fa, Fb, Fc,
each pair of which is similar and similarly oriented. Figure Fa includes point A;
figure Fb includes point B as the point corresponding to A in Fa, and figure Fc
includes point C as the point corresponding to B in Fb. We think of point A′ as
the fixed point of the similarity between figures Fb, Fc and B′ as the fixed point of
the similarity between figures Fc, Fa. We can then show that C ′ is the fixed point
of the similarity between figures Fa, Fb.

We first examine the angles between the three figures. The angle between

figures Fb and Fc is equal to B̂A′C = b̂Oc, and has the same orientation. Likewise,

the angle between figures Fc and Fa will be ĈB′A = ĉOa. It follows that the angle

between figures Fc and Fa is equal to âOb = ÂC ′B.
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Next we examine the ratios of corresponding sides in the three figures. This
ratio, for figures Fb, Fc is A′B : A′C = Ob : Oc. For figures Fc, Fa it is B′C :
B′A = Oc : Oa. It follows that the ratio of corresponding sides for figures Fa and
Fb is equal to Oa : Ob = C ′A : C ′B. Therefore C ′ is the fixed point of the similarity
taking Fa onto Fb.

Let a′, b′, c′ be the points inverse to A, B, C respectively, with respect to some
circle centered at O. We are now in a position to prove that triangles A′B′C ′, a′b′c′

are similar but oppositely oriented. We do this by showing that they have equal
but oppositely oriented angles. We introduce an auxiliary point A′′, corresponding
to A′ in figure Fa.

Triangle C ′A′′A′ is similar to triangle C ′AB, and has the same orientation,

so that Ĉ ′A′A′′ = Ĉ ′BA = Ôba (both in magnitude and orientation). In the
same way, triangles B′A′A′′, B′CA are similar, with the same orientation, so that

B̂′A′A′′ = B̂′CA = Ôca.
It follows that B̂′A′C ′ = B̂′A′A′′ + Â′′A′C ′ = Ôca + âbO = ĉ′a′O + Ôa′b′ =

ĉ′a′b′, where a′, b′, c′ are the points inverse to a, b, c respectively in a circle
centered at O (217).

Thus we have, both in magnitude and sense of rotation, B̂′A′C ′ = ĉ′a′b′. A
similar argument gives the same result for the other two angles of triangle A′B′C ′.
Triangles A′B′C ′, a′b′c′ are similar, but with opposite senses of rotation.

Figure t382
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Problem 383. On two given segments as chords, construct circular arcs sub-

tending the same arbitrary angle V̂ . Show that, as V̂ varies, the radical axis of
the two circles turns around a fixed point. (This point can be considered to be
determined by the fact that the triangles with this vertex and with the two given
segments as bases are equivalent, and they have the same angle at the common
vertex.)

Solution. Suppose (fig. t383) the given segments are AB and CD, and P is
the intersection of the lines they belong to. We assume, for now, that the angles
we construct on AB and CD have the same orientation.

Following the hint in the problem statement, we will prove the following lemma:

Lemma. There exists exactly one point O with the following properties:

• (a) triangles OAB, OCD have the same area;

• (b) angles ÂOB, ĈOD have the same orientation;

• (c) angles ÂOB, ĈOD are equal.

We prove this lemma by constructing the point in question.
For condition (a) to be true, the distances from O to lines AB, CD must be in

the ratio CD : AB (note the reversal of the order AB, CD). By 157, the locus of
these points consists of two lines, both passing through P . It is not hard to see, from

figure t383, that for any point X on one of these lines, angles ÂXB, ĈXD have

the same orientation, while for any point Y on the other line, angles ÂXB, ĈXD
have the opposite orientation. Thus point O satisfies conditions (a) and (b) if and
only if it lines on line PX.

The set of points satisfying condition (c), in addition to (a) and (b), is a bit
more difficult to describe. We will show that condition (c) requires point O to be on
a second line, which is the locus of points such that OM2−ON2 is constant, where
M, N are the midpoints of segments AB, CD respectively. (See 128b, corollary.)
We do this by examining relationships within triangles AOB, COD.

Figure t383

Let E be the foot of the perpendicular frm A to OB, and let F be the f of the
perpendiculars from C to OD. From 126 we have:
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(1) AB2 = OA2 +OB2 ± 2OB ·OE,

(2) CD2 = OC2 +OD2 ± 2OD ·OF.

Because ÂOB = ĈOD, the ambiguous signs on the right are either both positive
or both negative. And in fact we will show that these rightmost products in the
equations above are equal. Indeed, from the equality of the same two angles we
know that right triangles OAE, OCF are similar, so that

(3)
OA

OE
=
OC

OF

.
Now we use condition (a). Because triangles AOB, COD have the same area,

and ÂOB = ĈOD, we have (256):

(4) OA ·OB = OC ·OD.

We now divide equation (4) by equation (3), to get

(5) OB ·OE = OD ·OF.

This equation shows that the rightmost products in equations (1) and (2) are
equal, and we have already noted that the signs are the same. This observation,
together with the fact that we want to look at the difference of squares of certain
segments, suggests that we subtract these first two equations. Doing so, we have:

(6) AB2 − CD2 = OA2 +OB2 −OC2 −OD2.

We now use the result of 128 to write

OA2 +OB2 = 2OM2 +
1

2
AB2,

OC2 +OD2 = 2ON2 +
1

2
CD2.

Substituting these values into (6), we find:

(7) OM2 −ON2 =
1

4

(
AB2 − CD2

)
.

By the result of 128b, the locus of points satisfying (7) is some line UU ′, and
point O must lie on this line. This argument shows that there is exactly one point
O satisfying conditions (a), (b), and (c).
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Note. For condition (c) to hold, it is necessary, but not sufficient, that point
O be on line UU ′. This is because we used condition (a) to define line UU ′. It
would have been more straightforward simply to find the locus of points satisfying
condition (c) independent of the other conditions, but this problem is in general
not an elementary one.

We now turn to the solution of the exercise itself. Most of the work has already
been done, in proving our lemma. Suppose arcs AV1B, CV2D are the loci of points
at which segments AB, CD both subtend angle V . Let B′, D′ be the second
points of intersection of these arcs with lines OB, OD respectively (where O is the

point located in our lemma). We have ÂOB = ÂB′B± ÔAB′, with the ambiguous
sign depending on whether O lies inside or outside circle AV1B. Analogously,

ĈOD = ĈD′D ± ÔCD′. Since ÂB′B = ĈD′D = V and ÂOB = ĈOD by

construction, it follows that ÔAB′ = ÔCD′, and therefore triangles OAB′, OCD′

are similar. Thus we have

(8) OA : OB′ = OC : OD′.

Dividing equation (4) by equation (8), we find that OB · OB′ = OD · OD′, so O
has the same power with respect to circles AV1B and CV2D. Thus O is always on
the radical axis of these two circles. Since the position of O does not depend on
the particular angle V (or equivalently, on the particular circles AV1B, CV2D, this
proves the required statement.

Notes. We have assumed that angles ÂOB, ĈOD have the same orientation

as well as being equal, and that the same is true for angles ÂV1B, ĈV2D. If these
angles have opposite orientations, the same argument holds, but with the roles of
points C and D reversed. Point O will be located at the intersection of line UU ′

with line PY (rather than PX).

Problem 384. A quadrilateral ABCD (a kite or rhomboid) is such that the
adjacent sides AD, AB are equal, and the other two sides are equal as well. Show
that this quadrilateral is circumscribed about two circles. Find the locus of the
centers of these circles if the quadrilateral is articulated, one of its sides remaining
fixed.

Solution. Suppose the interior angle bisector at B in triangle ABC intersects
AC at point O. Then (115) AB : BC = AO : OC. But from the problem
statement, this is also the ratio AD : DC, which means that O is on the interior
angle bisector at D of triangle ADC as well. It follows that O is equidistant
from lines AB, BC, AD, DC, and so is the center of a circle tangent to lines
AB, BC, CD, DA.

Similarly, the bisector of the exterior angle at B in triangle ABC intersects AC
(extended) at point O′ such that AO′ : O′C = AB : BC = AD : DC, so O′ is on
the exterior angle bisector at D of triangle ADC, and so is the center of another
circle tangent to lines AB, BC, CD, DA.

Now suppose segment AB remains fixed as the quadrilateral is articulated.
Then point C describes a circle centered at B with radius BC. But the ratio
AO : OC = AB : BC remains fixed, as does point A, so O describes a circle
homothetic to the one described by C, with center of homothecy at A and ratio
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AB : (AB+BC) (142). Similarly, O′ describes a circle homothetic to that described
by C, with center of homothecy at A and ratio (AB −BC) : AB.

Problem 385. More generally, if a quadrilateral ABCD has an inscribed cir-
cle, and is articulated while the side AB remains fixed, then it has an inscribed circle
in all its positions (Exercise 87). Find the locus of the center O of the inscribed
circle.

(To make the situation definite, assume the inscribed circle is inside the poly-
gon, and lay off lengths AE = AD (in the direction of AB) and BF = BC (in
the direction of BA), both on side AB. Using Exercise 87, reduce the question to
Exercise 257.)

Show that the ratio of the distances from O to two opposite vertices remains
constant.

Solution. Quadrilateral ABCD is circumscribed about a circle (fig. t385) if
and only if AD+BC = AC +BD. As the quadrilateral is articulated, the lengths
of its sides do not change, so this relationship either continues to hold or never
holds. That is, the articulated quadrilateral always has an inscribed circle, if the
original quadrilateral does, or never has an inscribed circle, if the original does not.

Next we find the locus of point O, the incenter, as the quadrilateral is ar-
ticulated. To find this locus, we find E on line AB so that AE is in the same
direction as AB and AE = AD. Similarly, we find F on line AB so that BF is
in the same direction as BA and BF = BC. Note that E and F could both be
inside segment AB, or one or both of them may lie outside AB. But in any case,
AE +BF = AD +BC > AB, so segments AE and BF must overlap.
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We will reduce the situation to that of exercise 257 by showing that segments
AB, EF subtend supplementary angles at O.

We know that O is the intersection of the angle bisectors of ABCD, so triangles
ODA, OEA are symmetric with respect to line AO and are therefore congruent.
Hence OD = OE. Similarly, triangles OCB, OFB are symmetric with respect to
line BO, so OC = OF .

We next note that CD = EF . Indeed, AB + CD = AD + BC, so CD =
AD + BC − AB = AE + BF − AB = EF (since AE and BF overlap). It follows

that triangles OCD, OFE are congruent (24, case 3), so ĈOD = ÊOF . But
adding up the six angles in triangles AOB, COD we have:

ÂOB +
1

2
(Â+ B̂) + ĈOD +

1

2
(Ĉ + D̂)

= ÂOB + +ĈOD +
1

2
(Â+ B̂ + Ĉ + D̂)

= ÂOB + ĈOD + 180◦ = 360◦.

So ÂOB + ĈOD = 180◦, and

(1) ÂOB + ÊOF = 180◦

as well. Therefore if O is a position of the incenter of ABCD, it lies on the locus of
points at which AB, EF subtend supplementary angles. By the result of exercise
257, this locus is a circle whose center lies on line AB.

Conversely, any point on this locus is the incenter of some position of quadri-
lateral ABCD. Indeed, let point O satisfy condition (1), where E and F are con-
structed as above from some original position of articulated quadrilateral ABCD.
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We can construct an articulated version of this quadrilateral such that O is its incen-
ter, by finding triangles AOD, BOC congruent respectively to AOE, BOF . Then

ÂOD+ B̂OC = ÂOE + B̂OF = ÂOB + ÊOF = 180◦. Therefore ÂOB + ĈOD =
360◦ − (ÂOD + B̂OC = 180◦, so ĈOD = ÊOF .

We know that O is the intersection of the angle bisectors at A and B of quadri-
lateral ABCD. So if ABCD is circumscribed, then O must be its incenter. We
now show that ABCD is in fact circumscribed.

Now OC = OF and OD = OE by construction, so triangles COD,FOE are
congrent (24, case 2), and CD = EF . Thus AD+BC = AE+BF = AB+EF =
AB + CD, so that quadrilateral ABCD is indeed circumscribed, and the locus
of its incenter O coincides with the locus of points at which AB, EF subtend
supplementary angles.

Finally, we show that the ratio OA : OC is constant. Let S be the circle which
is the locus of O. It is not obvious, but was shown in the solution to exercise 257,
that when the endpoints of AB are inverted in S, their images are the endpoints
of EF . In this case, A inverts onto F and B onto E. The result of exercise 242
tells us that the ratio of the distances of any point on circle S to two inverse points
is constant. So, for example, the ratio OA : OF is constant, and since OF = OC,
the ratio OA : OC is also constant. In the same way we can show that OB : OD
is also constant.

Notes. This generalization of exercise 384 is far from obvious, but it can be
broken down into smaller sections which are not so hard, once the subgoal of each
section is given. It is a bit of a challenge to construct a working model of the
articulated quadrilateral ABCD using dynamic geometry software.

Problem 386. Given four fixed points A, B, C, D on a circle, take an arbi-
trary point P in the plane, and denote by Q the second intersection point of the
circles PAB and PCD. Find the locus of Q as P moves on a line or on a circle.
Find the locus of points P such that Q coincides with P .

Solution. We observe first that lines AB, PQ,CD are the radical axes respec-
tively of circles PAB, CAB, of circles PAB, PCD, and of circles ACD, PCD.
Hence these three lines pass through the radical center O of these three circles
(139). Since O is the intersection of lines AB, CD, it remains fixed as point P
moves about the plane. This means that the product OP ·OQ remains fixed: it is
equal to the products OA · OB and OC · OD, so its value is the power of O with
respect to the original circle. This implies that P and Q are images of each other
in an inversion about pole O with power equal to the power of O with respect to
circle ABCD. This observation essentially solves the problem.

For instance, if point P describes a line not passing through O, then point Q
describes a circle through O, and conversely (220, 221). If P describes a circle not
passing through O, then Q describes a circle which is the inversion of that circle.
If P describes a line or circle through O, Q likewise describes a line through O.
Points P and Q coincide if and only if P lies on the circle of inversion.

Notes. The fact that point O remains fixed as points P varies is surprising
in itself. Students might be shown this phenomenon with a dynamic sketch, and
asked to explain it.
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Problem 387. We join the vertices of a square ABCD with an arbitrary point
P in the plane. Let A′, B′, C ′, D′ be the second points of intersection of these
four lines with the circle circumscribed about ABCD. Show that A′B′ × C ′D′ =
A′D′ ×B′C ′.

Conversely, let A′B′C ′D′ be a cyclic quadrilateral such that A′B′ × C ′D′ =
A′D′ ×B′C ′.

Find a point P such that the lines PA′, PB′, PC ′, PD′ intersect the cir-
cumscribed circle in the vertices of a square.

Solution. In figure t367, we have (131) PA · PA′ = PB · PB′ = PC · PC ′ =
PD ·PD′ = p, where p is the power of point P with respect to circle ABCD. That
is, A′, B,′ , C ′, D′ are the images of A, B, C, D under an inversion about pole P
with power p. By 218, then, we have:

(1) A′B′ =
p ·BA
PA · PB

,

with analogous expressions for B′C ′, C ′D′, D′A′. By direct computation, taking
into account that AB = BC = CD = DA, we have A′B′ · C ′D′ = A′D′ · B′C ′ =

p2cȦB2

PA·PB·PC·PD .
We next consider the converse statement. Suppose cyclic quadrilateralA′B′C ′D′

is such that A′B′ ·C ′D′ = A′D′ ·B′C ′. (We assume that A′B′C ′D′ is convex; that
is, not self-intersecting.) Let us suppose that we know where point P (as described
in the problem statement) lies. We consider the inversion around P as pole, with
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a power p equal to the power of P with respect to circle A′B′C ′D′. That is, we
assume that this inversion takes A′, B′, C ′, D′ into A, B, C, D respectively, and
these last points lie on circle A′B′C ′D′. Note that this circle is its own image under
this inversion.

Let us consider line S, the perpendicular bisector of AB. It is also the perpen-
dicular bisector of CD (since we are assuming that ABCD is a square), and we
invert it, around pole P with power p. Line S is perpendicular to line AB, but also
to any circle through A and B. Indeed, any such circle has its center on line S,
so a tangent to S at their point of intersection will be perpendicular to the radius
at that point; that is, perpendicular to S. The image of S will thus be a circle S′

which is orthogonal to any circle through A′ and B′ (219), and in particular will
be orthogonal to line A′B′. Likewise, S′ will be orthogonal to every circle through
C ′ and D′, in particular to line C ′D′. It follows that lines A′B′, C ′D′ pass through
the center E′ of S′; that is, E′ is the intersection of lines A′B′, C ′D′. Finally, line
S is certainly orthogonal to circle ABCD, so the images of these two objects are
also orthogonal That is, circle S′ is orthogonal to circle A′B′C ′D′.

But does such a circle S′ exist? Well, we have chosen quadrilateral A′B′C ′D′

to be convex, so point E′, the intersection of A′B′ and C ′D′, lies outside the
quadrilateral. Therefore S′ is just the circle centered at E′ with radius equal to the
length of the tangent from E′ to circle A′B′C ′D′. We can now construct circle S′.

Likewise, line T , the perpendicular bisector of AD and BC, passes through
point O, inverts into a circle T ′ whose center is at F ′, the intersection of lines
A′D′, B′C ′, and is orthogonal to circle A′B′C ′D′. So we can construct circle T ′.
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Now under the inversion we seek, S′, T ′ invert into lines S and T , so the pole
that effects this inversion can only be one of their intersections P or Q of these
two circles. These two circles must intersect, because one of them intersects arcs

A′B′, C ′D′, while the other intersects arcs A′D′, B′C ′, of circle A′B′C ′D′.
Finally, we find a pole P of inversion for which PA′, PB, PC ′ PD′ form a

square. Let us look at an inversion with pole P and power equal to the power of
P with respect to circle A′B′C ′D′. We will show that in fact under this inversion,
the image ABCD of quadrilateral A′B′C ′D′ is a square. Indeed, we know that
any circle through A′ and B′ is orthogonal to S′. We look in particular at circle
PA′B′, which inverts into line AB. Since circle PA′B′ is orthogonal to S′, line
AB is perpendicular to line S, the image of S′. For the same reason, line CD
must be perpendicular to line S. Similar reasoning starting with circle T ′ shows
that lines AD, BC must be perpendicular to line T . This reasoning shows that
ABCD is a parallelogram. And since A′, B′, C ′, D′ line on a circle, their images
A, B, C, D must lie on a circle (the image of the circle through A′B′C ′D′).
Thus parallelogram ABCD must be a rectangle. Finally, the algebraic reasoning
associated with equation (1) leads us from the relation A′B′ · C ′D′ = A′D′ · B′C ′
to the relation AB · CD = AD · BC, and if we apply this formula to a rectangle
(whose opposite sides must be equal), we quickly find that the rectangle is in fact
a square.

The same reasoning applies to an inversion around point Q. These two points,
constructed as indicated, give solutions to the problem: lines connecting them to
A′, B′, C ′, D′ intersect circle A′B′C ′D′ again in the four vertices of a square.

Note. We have indicated in passing how to construct a circle with a given
center and perpendicular to a given circle. Students can be asked to do this con-
struction as an exercise, before undertaking this problem.

(This is a particular case of Exercise 270b, 5o. However, the problem here
admits of two solutions, while there is only one in the general case. What is the
reason for this difference?)

Solution. The problem has two solutions because quadrilateral A′B′C ′D′ is
assumed to be cyclic. See, for example the solution to exercise 270, 5◦, note 2.

Problem 388. More generally, find an inversion which transforms the vertices
A′, B′, C ′, D′ of a cyclic quadrilateral into the vertices of a rectangle.

Show that the poles are the limit points (Exercise 152) of the inscribed circle
and of the third diagonal of quadrilateral A′B′C ′D′.

Solution. Suppose (fig. t388) that an inversion with pole P transforms cyclic
quadrilateral A′B′C ′D′ into rectangle ABCD. We first show that we can find an
inversion such that ABCD is in fact inscribed in the same circle as A′B′C ′D′.

We follow the reasoning of exercise 387. As before, it is not hard to see that
the line S that joins the midpoints of sides AB, CD must be orthogonal to any
circle through A and B, and also to any circle through C and D. Therefore, under
the inversion we seek, the image S′ of S is a circle orthogonal to lines A′B′, C ′D′,
and also to circle A′B′C ′D′. The center of S′ must be the intersection E′ of lines
A′B′, C ′D′, and its radius must be the length of the tangent from E′ to circle
A′B′C ′D′.
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Figure t388

Analogously, the line T joining the midpoints of sides AD, BC inverts into
a circle T ′ whose center F ′ is the intersection of lines A′D′, B′C ′, and whose
radius is the length of the tangent from F ′ to circle A′B′C ′D′. So we have enough
information to construct circles S′, T ′.

Now the inversion we seek will take circles S′, T ′ into lines S, T , so its pole
must be one of the two intersections P, Q of the circles. And if we want ABCD
to be inscribed in circle A′B′C ′D′, we need only take the power of the inversion to
be the power of P or Q with respect to circle A′B′C ′D′. But in fact, by 215 any
inversion with P or Q as its pole will transform A′B′C ′D′ into a rectangle, usually
with a different circumcircle.

We now prove the statement in the problem concerning limit points. The third
diagonal of A′B′C ′D′ (considered as a complete quadrilateral) is simply E′F ′. By
construction (the lengths of their radii), circles S′, T ′ are orthogonal to circle
A′B′C ′D′. And they are certainly orthogonal to line E′F ′ (their common center-
line). It follows (exercise 152) that P and Q are the limit points of line E′F ′ and
circle A′B′C ′D′.

Problem 389. Still more generally, find an inversion which transforms four
given points into the vertices of a parallelogram.

Solution. Suppose there is an inversion taking four given points A′, B′, C ′, D′

into a parallelogram ABCD. If A′, B′, C ′, D′ all lie on the same circle, then so
do A, B, C,D, and we are led to the situation in exercise 388. So let us assume
that A′, B′, C ′, D′ do not lie on the same circle.
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Since triangles ABC, ADC must be congruent, so must circles ABC, ADC.
Line AC is the extension of their common chord, so the two circles are symmetric
in line AC. That is, AC forms equal angles with both these circles.

Let us see what this implies for the original diagram, before inversion. Circle
ABC is the inversion of circle A′B′C ′. Circle ADC is the inversion of circle A′D′C ′.
Line AC is the image of some circle S′ through the pole of inversion. Circle S′ must
form equal angles with circles A′B′C ′, A′D′C ′; that is, it must bisect the angle

between arcs A′B′C ′ and A′D′C ′.
Likewise, the pole of inversion must lie on a circle T ′ bisecting the angle between

arcs B′A′D′ and B′C ′D′. Circles S′ and T ′ intersect twice, and either point of
intersection can be taken as the pole of the required inversion. As in exercise 388,
the power of the inversion can be arbitrary.

Notes. In this argument, we chose arcs A′B′C ′, A′D′C ′ because we want A′

and D′ to lie on opposite sides of circle S′, just as their images A, D lie on opposite
sides of line AC.

Students can be given the auxiliary problem of constructing a circle forming
equal angles with two given circles. See 227.

Figure t389

Problem 390. Given two circles and a point A, find an inversion in which the
point corresponding to A is a center of similarity of the transformed circles.

Lemma. A line intersecting two circles at equal angles must pass through one
of their centers of similarity, and conversely.
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Proof of lemma. Radii of the two circles, drawn to their points of intersection
with the given line, are parallel in pairs. Thus the intersection of the given line
with the common centerline of the two circles is a center of similarity of the two
circles.

Conversely, if a line passes through a center of similarity of two circles, pairs of
radii to the points of intersection are homothetic, thus parallel. It follows that the
line makes equal angles with the two circles.

Note. This lemma tells us that we can characterize the centers of similarity
of two circles as the point common to all the lines which intersect them at equal
angles.

Students can fill in the details of the proof of this elementary lemma. See 227.

Solution. Suppose the required inversion is I, and it takes point A onto point
A′. Then the set of circles through A which intersect the given circles C1, C2 at
equal angles are transformed into the set of lines passing through A′.

There are two inversions J and K which take C1 onto C2 (227). A circle
intersecting C1 and C2 at equal angles will be its own image under either J or K.
It follows that any circle through A which forms equal angles with C1 and C2 must
pass either through point PJ , the inverse point to A under J , or through PK , the
inverse point to A under K. In order that these circles invert into lines, we must
take either PJ or PK as the pole. The power of inversion can be chosen arbitrarily.

Problem 391. A variable point M on a circle is joined to two fixed points
A, B. The two lines intersect the circle again at P, Q. Denote by R the second
intersection of the circle with the parallel to AB passing through P . Show that line
QR intersects AB at a fixed point.

Use this result to find a method of inscribing a triangle in a given circle
with two sides passing through given points, while the third is parallel to a given
direction; or such that the three sides pass through given points. (These two
questions are easily reduced to each other, and to 115).

Solve the analogous problem for a polygon with an arbitrary number of sides.
(Another method is proposed in Exercise 253b.)

Note. We break this problem statement down into seven parts:
1◦. The intersection of QR and AB is fixed.
2◦. Inscribe a triangle in a given circle, with two sides passing through given

points, while the third is parallel to a given direction.
3◦. Inscribe a triangle in a given circle, whose three sides pass through three

given points.
4◦. Inscribe a polygon in a given circle with an even number of sides, such that

one side passes through a given point while the others are parallel respectively to
a set of given lines.

5◦. Inscribe a polygon in a given circle with an odd number of sides, such that
one side passes through a given point while the others are parallel respectively to
a set of given lines.

6◦. Inscribe a polygon in a given circle, such that a number of consecutive sides
pass through a set of given points while the others are parallel respectively to a set
of given lines.



157

7◦. Inscribe a polygon in a give circle, such that a number of sides, located
arbitrarily around the figure, pass through a a given set of points while the others
are parallel respectively to a set of given lines.

Solution 1◦. In figure t391a, point S is the intersection of lines QR and AB.

We have R̂QM = 1
2 RM= R̂PM = B̂AM , and certainly M̂BA = ŜBQ, so

triangles MBA, QBS are similar, so that BS = BM ·BQ
AB . The product BM · BQ

(the numerator of this fraction) is just the power of B with respect to the circle,
and so does not change as point M varies along the circle. And the denominator
of the fraction is certainly constant, so BS is constant, and point S does not move
as M varies.

Note. We can phrase this result slightly differently. For any two points A, B
on the circle, there is an associated fixed point S with the property described in
the problem statement.

Solution 2◦. We will adapt the notation of figure t391a to address this con-
struction. We show how to construct a triangle MPQ with sides passing through
fixed points A, B and a third side parallel to some line KL.

We find the fixed point S associated (as in 1◦) with points A and B. We then
use the result of exercise 115 to construct auxiliary triangle PQR, inscribed in the
given circle, with one side parallel to line AB and another to KL, and the third
side (QR) passing through S. Indeed, by construction (of point S), line RS must
intersect the circle again at a point collinear with M and B, which thus must be
Q. Then triangle MPQ satisfies the required conditions.

Having constructed PQR, we draw line PA, and label its second intersection
with the circle as M . Then we draw line MB. It is not hard to see that the second
intersection of MB with the given circle must be Q. Indeed, the intersection of
MB and the given circle must be collinear with RS (by 1◦), so it must be point Q.

Solution 3◦. We again use the notation of figure t391a, but in a different way.
Let the three given points be A, B and C. Again, we determine point S, dependent
on A and B, as indicated in the result to our main problem. Construction 2◦ above
allows us to find a triangle PQR, two of whose sides pass through points C and S,
and whose third side PR is parallel to line AB.

Having constructed triangle PQR, we determine M as the second intersection
of line PA with the circle. As in the previous construction, line MB must intersect
the circle again at Q, and triangle MPQ satisfies the conditions of the problem.

4◦. We solve the problem for a hexagon. The generalization to any even number
of sides is immediate.

Suppose the required figure is PQRSTU , that side PQ passes through a given
point A, while the other sides are parallel respectively to lines Q1R1, R2S1, S2T1,
T2U1, SU2P1.

We choose an arbitrary point Q′ on the circle, and construct a polygon starting
with Q′ as one vertex by drawing lines parallel in turn to the given lines. We get
polygon P ′Q′R′S′T ′U ′ (fig. t391b), whose sides are parallel respectively to the

required polygon. Because chords QR, Q′R′ are parallel, arcs QQ′, RR′ are equal,

but oppositely oriented. Similarly, arcs R′R, SS′, T ′T , UU ′, P ′P are all equal,
and consecutive arcs (in this list) are oppositely oriented. Since the number of sides
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of the polygon is even (here that number is 6), it follows that arcs P ′P , QQ′ are
equal and oppositely oriented. It follows that chords P ′Q′, PQ are parallel. (Note
that we began with only five given lines; chords PQ, P ′Q′ are not parallel a priori).

We have constructed a polygon inscribed in the given circle, with sides parallel
to the (five) given lines. It remains to arrange for the last side to pass through the
given point. But this is easy. If the given point is A, we draw a parallel to PQ
through A. Its intersection points P and Q with the given circle are one side of the
required polygon, and the others are found by drawing parallels as before.

Notes. This construction, as well as the next, does not depend on the very
first result in this exercise. We will not use that result until we come to statement
6◦. Thus students can be given this problem independent of the others in this
sequence. Or, they can be asked first to solve the simpler problem of inscribing in
a circle any hexagon (or polygon wtih evenly many sides) with all but one of its
sides parallel to a set of lines. They will find, in the process, that this condition
determines the direction of the sixth side of the hexagon (but not its length).

Solution 5◦. The argument is only slightly different from the proof of 4◦. We
solve the problem for a pentagon. The generalization to an arbitrary odd number
of sides is immediate.

Suppose the required polygon PQRST (fig. t391c), is such that side PQ
passes through a given point A, and the other sides are parallel respectively to lines
Q1R1, R2S1, S2T1, T2P1.

We choose an arbitrary point Q′ on the circle, and construct a polygon starting
with Q′ as one vertex by drawing lines parallel in turn to the given lines. We
get polygon P ′Q′R′S′T ′ (fig. t391c), whose sides are parallel respectively to the

required polygon. As before, arcs QQ′, SS′, T ′T , P ′P are all equal, but this time,

because there are oddly many sides in the polygon, arcs P ′P , QQ′ are oriented in

the same direction. It follows (by adding arc P ′Q to both) that arcs P ′Q′, PQ
are equal, so chords P ′Q′, PQ are also equal. This construction, starting with an
arbitrary point, gives us the length of PQ. Thus we can start our construction of
the polygon by drawing a chord through the given point A and equal in length to
PQ.

Notes. We have shown, within the argument, that the length of side P ′Q′ of
a polygon constructed as in the solution, does not depend on the choice of point
Q′.

Students can complete the construction, by recalling how to draw a chord of
a given length through a given point. They can recall that this construction is
possible whenever the given length is between the diameter of the circle and the
minimal length of a chord through A. The length of PQ is determined by the
directions of the given lines, and students can think about when the construction
indicated in 5◦ is possible.

In 4◦, we saw that for even n, if we know the directions of n − 1 sides of an
n-gon, then the direction of the last side is determined, but not its length. Now
we see that for odd n, if we know the directions of n − 1 sides of a n-gon, then
the length of the last side is determined, but not its direction. For this reason, the
construction is not always possible when n is odd.
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Solution 6◦. If only one of the sides of the polygon is required to go through
a given point, the problem is solved in 3◦ and 4◦. We solve the problem for a
hexagon. The generalization to any number of sides offers no new difficulties.

Suppose the required hexagon is PMQUVW (fig. t391d), in which sides PM
and MQ pass through given points A and B respectively, and choose these sides so
that side WP is required to be parallel to a given line; that is, so that proceeding
around the figure (in a clockwise direction, for figure 391d) , PM and MQ are the
first two sides we encounter which are required to go through given points. We will
show that if we can construct another hexagon PRQUVW in which one fewer side
is required to go through a fixed point, then we can also construct PMQUVW .

Indeed, we have essentially done this, in 2◦. Figure t391d is labeled similarly to
figure 391a, and in that figure, we know that if can construct triangle PQR, (with
two sides in given direction and a third passing through a given point), we can also
construct triangle PMQ. This shows us how to construct hexagon PMQUVW , if
we have already constructed hexagon PRQUVW . That is, we have reduced by one
the number of sides required to pass through a given point.

Because we have assumed that the sides passing through points are consecutive
around the required figure, we can continue this process, finally arriving at the
construction of 4◦ or 5◦.

Solution 7◦. We use auxiliary polygons to reduce this problem to the situation
in 6◦. That is, we show that the construction of our polygon can be made to depend
on that of another polygon, in which the order of the sides satisfying two different
sorts of conditions is reversed. Applying this result several times, we can arrange
that all the sides of the auxiliary polygon which are required to pass through a
given point are consecutive, which is the situation in 6◦. We can thus construct the
sequence of auxiliary polygons, and arrive a the required figure.

Suppose, for example, we are required to construct hexagon PQRSTU (fig.
t391e), in which side PQ must be parallel to a given line KL, and side QR must
pass through a given point A. We will show that this construction depends on the
construction of an auxiliary hexagon PQ1RSTU , in which PQ1 passes through a
given point, and Q1R is parallel to a given line.

We draw chord RQ1 parallel to KL through point R, and let A1 be the in-
tersection of line PQ1 with the line parallel to KL through A. Then PQRQ1 is
an isosceles trapezoid, and therefore so is ARQ1A1. Thus points A, A1 are the
same distance from the center O of the given circle, and we can construct point
A1, without knowing hexagon PQRSTU , as the intersection of a circle of radius
OA with the parallel through A to KL. Now if we know how to construct polygon
PQ1RSTU , we can construct polygon PQRSTU .

But in PQ1RSTU , side PQ1 must go through a given point A1, and side Q1R
must be parallel to the given line KL. That is, we have reversed the order of the
sides satisfying different requirements. Following the plan given above, we can then
construct polygon PQRSTU .

Note. In figure t391e, polygon PQ1RSTU is not a ‘proper’ polygon, in the
sense of 21. Two of its sides intersect at a point which is not a vertex. We must
in general allow such figures for our auxiliary polygons. If we want to say that
the required polygon itself can always be constructed, we must likewise allow such
re-entrant figures as solutions.
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Problem 392. About a given circle, circumscribe a triangle whose vertices
belong to given lines.

Solution. We use the method of poles and polars (see 206). Since the polar
of a tangent to a circle is its point of contact, (204), the polar of the circumscribed
triangle is the inscribed triangle formed by the three points of intersection of its
sides with the circle. Since the vertices of the original triangle lie on certain lines
a, b, c, the sides of the new inscribed triangle must pass through the points A, B, C
which are the polars of these lines.

Thus we have the following construction. We take the polars of the three given
lines with respect to the circle, then use the result of exercise 391 to draw a triangle
inscribed in the circle, whose sides pass through these three points. We then take
the polar figure to this inscribed triangle to get the required circumscribed triangle.

Problem 393. Given two points A, B on a line, we draw two variable circles
tangent to the line at these points, and also tangent to each other. These two
circles have a second common (external) tangent A′B′. Show that as the two
tangent circles vary, the circles on diameter A′B′ remain tangent to yet another
(fixed) circle. Find the locus of the midpoint of A′B′.

Figure t393

Solution. Suppose (fig. t393) T is the point of tangency of the two circles,
and that IK is their common internal tangent, with I on line AB and K on line
A′B′. Then we know (92) that IT = IA = IB = 1

2AB. It follows that point I
is the midpoint of AB, and is fixed (for any two such circles). We also know that
TK = KA′ = KB′. Since the common centerline of the two circles is a line of
symmetry for the whole figure, we know that IT = TK, so IK = 2IT = AB, a
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fixed distance. Hence the locus of point K (the locus of midpoints of A′B′) is a
circle centered at I with radius AB.

Now any circle on diameter A′B′ (for any two positions of the intial tangent
circles) must have a radius equal to A′K = B′K = TK = TI = AI = 1

2AB, and
its center moves along the circle with center I described in the previous paragraph.
Hence any such circle is tangent to a fixed circle centered at I, of radius 3

2AB. And
in fact, it is also tangent to another fixed circle, also centered at I, with radius
1
2AB.

Problem 394. Two variable circles C, C1 are tangent at a point M , and
tangent to a given circle at given points A, B.

1o. Find the locus of M ;

Solution 1◦. In figure t394a, point P is the intersection of the tangents to the
given circle O. We use the result of 139. Line PA is the radical axis of circles
O, C, and line PB is the radical axis of circles O, C1, so P is the radical center
of circles O, C, C1, and lies on the radical axis of C, C1. But this radical axis
is simply the common tangent PM of these two circles. From 92, it follows that
PA = PB = PM . Since PA = PB is constant, so is PM , and point M lies on a
circle centered at P with radius PA.

Figure t394a

Note. It is not hard to see that any point on this circle can serve as a position
of point M . For some positions, circles C, C! are tangent internally to circle O,
and when P coincides with A or B, one of the circles degenerates to a point.

2o. Find the locus of the second center of similarity of C, C1;



162

Solution. It follows from the discussion of 227 that points A and B are anti-
homologous points in circles C,C1. Thus the second center N of similarity lies on
line AB.

But the locus of N is not the whole line: N must lie outside circle P constructed
in part 1◦. To prove this, we note first that the common centerline of C, C1 tangent
to circle P . Indeed, M is the foot of the perpendicular to this common centerline,
and is also the point of contact of the common tangent from P to the two circles.
Now N lies on the common centerline of C, C1 (143), which is tangent to circle P
and this centerline is tangent to circle P .

It follows that N , being on line CC1, must lie outside circle P and therefore
must also lie outside circle O. So the locus of N is that part of line AB lying outside
circle O. (The proof of this statement is actually completed in 3◦)

Note. Within this proof, we have shown that if three circles are tangent ex-
ternally, then their common centerlines are tangent to the circle centered at their
radical center whose radius is the length of the tangent to any of the circles from
the radical center. Students can be asked to prove this result independently of the
rest of the problem.

3o. To each point N of the preceding locus there correspond two pairs of circles
C,C1; C ′, C ′1 satisfying the given conditions, and therefore two points of tangency
M, M ′.

Solution. We can construct circle P independent of the choice of N . Then,
for any position of N , we can draw tangents NM, NM ′ to this circle (fig. t394a).
One pair of centers is given by the intersections of OA, OB with tangent NM , and
the other pair of centers is the corresponding intersections with NM ′.

Note. This statement provides the converse to 2◦ by showing that every point
N on the locus claimed does in fact serve as the center of similarity of a pair of
circles C, C1; in fact, to two pairs of such circles.

Find the locus of the center of the circle circumscribing NMM ′, the locus of
the circle inscribed in this triangle, and the locus of the intersection of its altitudes.
Each common point of pairs of these loci belongs to the third.

Solution. We break this statement into three parts.

4◦. To find the locus of the circumcenter ω of NMM ′, we note that angles

N̂MP, N̂M ′P are right angles, so the circle on diameter NP passes through points
M, M ′; that is, this circle is the circumcircle of NMM ′, whose center ω is therefore
the midpoint of segment NP . Since P is fixed, we can describe the locus of ω as
the image of the locus of N under a homothecy centered at P with factor 1

2 .
Since the locus of N consists of the extensions outside circle P of segment AB,

the locus of ω is the set of points on line A′B′, where A′ and B′ are the midpoints
respectively of PA, PB, but outside of segment A′B′(fig. t394b).

5◦. To find the locus of the incenter I of triangle NMM ′, we note that it is

located on the bisector NP of angle M̂NM ′, and also on the bisector of angle

N̂MM ′.
We now show that point I in fact lies on circle P . Indeed, we have P̂MI =

90◦ − N̂MI = 90◦ − ÎMM ′ = P̂ IM , so triangle PIM is isoscele, with PM = PI.
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Figure t394b

Thus I is on circle P . But (by symmetry in line PN), the extension of PI must
pass through N . That is, point I lies on the intersections of PN with circle P .
These points are those on two arcs lying between lines AB and the parallel to AB
through P (fig. t394c).

6◦. We will find the locus of the intersection of the altitudes (the orthocenter)
of triangle NMM ′ in a rather indirect fashion. We will first find the locus of the
midpoint K of base MM ′ of the isosceles triangle. Then we relate positions of
point K to positions of point H using the result of exercise 70.

We start with some results from the theory of poles and polars. In figure 394d,
we note that line MM ′ is the polar of point N with respect to circle P . Since line
AB passes through point N , the pole of line AB lies on the polar of N (205). But
the polar of AB with respect to circle P is just point O (as we proved in the note
to 2◦, OA and OB are the tangents to circle P at the endpoints of chord AB). So
line MM ′ passes through point O.

Let K be the foot of the altitude from N in triangle NMM ′, and consider the

circle Σ on diameter OP . Since angle P̂KO is a right angle, point K lies on circle

Σ. But OB is tangent to circle P at B, so angle P̂BO is also a right angle, and B
is also on Σ. We can show in the same way that A is on Σ. Note that points O, P
do not vary with point N , so circle Σ also does not vary. And in fact it is easy to
see that as N varies along line AB (but outside of circle P ) , the locus of point K

is arc APB of circle Σ.
Now point P is equidistant from lines NM, NM ′, and so is on the bisector of

angle N̂ of triangle NMM ′. Since this triangle is isosceles, this angle bisector is
also an altitude. So point P is the intersection of an altitude of triangle NMM ′
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with its circumcircle. It follows from exercise 70 that the orthocenter H of the
triangle is symmetric to P in line MM ′, or equivalently, in point K.

That is, PH = 2PK, and point H is the homothetic image of point K, with
(fixed) point P as center and a factor of 2. Thus its locus is the homothetic image
of an arc of circle Σ′, homothetic to Σ with factor 2.

7◦. We need to show that the loci of 4◦, 5◦ and 6◦ are concurrent. Let us
consider the first two loci separately. The locus of 4◦ is that part of line A′B′ lying
outside circle P . The locus in 5◦ consists of two arcs of circle P . So these two loci
cannot intersect in more than two points labeled E and F in figure t394b.

For positions of N where these loci coincide, say E, the incenter and circum-
center of triangle NMM ′ must also coincide with E, which means that the triangle
is equilateral, and not just isosceles. But the orthocenter of an equilateral triangle
also coincides with the incenter and circumcenter, and hence with point E. This
means that point E is on circle Σ′, the locus of H. Likewise, point F is on circle
Σ′.

Problem 395. Two circles C, C ′ meet at A, and a common tangent meets
them at P, P ′. If we circumscribe a circle about triangle APP ′, show that the angle
subtended by PP ′ at the center of this circumscribed circle is equal to the angle
between circles C, C ′, and that the radius of this circle is the mean proportion
between the radii of circles C, C ′ (which implies the result of Exercise 262, 3o).
Show that the ratio AP

AP ′ is the square root of the ratio of these two radii.

Solution. The exercise asks us to prove three statements.

Figure t395



165

1◦. We first prove the result about the angle subtended by PP ′ at the circum-
center of triangle APP ′.

Let S be the external center of similitude for circles C, C ′, and let A′′, A′ be the
second points of intersection of line SA with circles C, C ′ respectively (fig. t395).
Then clearly triangles APA′′, A′P ′A are homothetic with center S of homothecy.

(In particular, they are similar.) And (73, 74) angles P̂A′′A, ÂPP ′ are equal, as

each is equal to half arc AP in circle C. Likewise, P̂ ′A′A = ÂP ′P = 1
2 AP ′ in

circle C ′. It follows that triangles A′′PA, PAP ′, AP ′A′ are similar.
Now we note that the three circumcenters O, O′,Ω of these triangles, consid-

ered as parts of the triangles, are corresponding points. Therefore quadrilaterals
A′′PAO, PAP ′Ω, AP ′A′O′ are also similar.

From these three quadrilaterals we have: ÔAP = Ω̂P ′A and Ô′AP ′ = Ω̂PA.

Therefore P̂ΩP ′ = 360◦ − Ω̂PA − P̂AP ′ − Ω̂P ′A = 360◦ − Ô′AP ′ − P̂AP ′ −
ÔAP = ÔAO′. That is, the angle subtended by PP ′ at the center Ω of the circle
circumscribing triangle APP ′ is equal to the angle between the radii of circles C, C ′

drawn to their point of intersection. It is not hard to see that this angle is equal to
the angle between the tangents to these circles at their point of their intersection,
which is the angle between the two circles themselves.

Note. Students may have trouble accepting the argument that quadrilaterals
A′′PAO, PAP ′Ω, AP ′A′O′ are similar. They can avoid this difficulty, but lengthen
the argument, by seeing that triangles OA′′A, ΩPP ′ , O′AA′ are also similar,
then use sides of these triangles and combinations of their angles with the angles
of similar triangles A′′PA, PAP ′, AP ′A′. This longer argument offers no new
difficulties.

2◦. Next we prove the result about the circumradius of triangle APP ′.
Let r, r′, ω be the radii of circles C, C ′,Ω respectively. From the similar

quadrilaterals pointed out in 1◦ we have

r : ω = AP : AP ′, ω : r′ = AP : AP ′.

It follows from these two proportions above that r : ω = ω : r′, so ω is the
mean proportion between r and r′.

4◦. Finally, we get the result of exercises 262, 3◦. Let B be the second in-
tersection of circles C, C ′, and let Q, Q′ be the points of contact of the second
common tangent to those circles. Then it is clear from symmetry in line OO′ that
the circumradii of APP ′, BQQ′ are equal.

We can repeat the argument of 1◦ to show that triangles A′′QA, QAQ′, AQ′A′

are similar, so that the quadrilaterals formed by those three triangles and their
circumcenters are also similar, and therefore the circumradius of AQQ′ is likewise
the mean proportion between r and r′. By symmetry in line OO′, the same is true
of the circumradius of triangle BPP ′. Thus we obtain the result of exercise 262,
3◦.

Problem 396. What are necessary and sufficient conditions which four circles
A,B; C,D must satisfy in order that they can be transformed by inversion so that
the figure formed by the first two is congruent to that formed by the second two?
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(Using the terminology introduced in Note A, 289, 294, what are the invariants,
under the group of inversions, of the figure formed by two circles?)

1o. If circles A, B have a common point, it is necessary and sufficient that the
angle of these two circles equal the angle of C, D; or, which is the same (by the
preceding exercise), that the ratio of the common tangent to the geometric mean
of the radii be the same in both cases;

Solution 1◦. Two circles will always invert into lines or circles meeting at the
same angle. So unless circles A, B meet at the same angle as circles C, D, the
second pair cannot be congruent to an image of the first pair under inversion. That
is, the condition that the pairs of circles meet at the same angles is necessary.

Figure figt396a

Let us show that this condition is also sufficient. Suppose circles A, B (fig.
t396a) intersect at points P, P ′, and circles C, D intersect at points Q,Q′, both
pairs intersecting at the same angle α. If we invert the first pair of circles in pole P
(with any power at all), we will get two lines a, b which intersect at angle α (221).
If we invert circles C, D in pole Q (with any power at all), we get another pair of
lines c, d, intersecting at angle α. By suitable rotation and/or translation, we can
move the figure consisting of C, D, c, d so that lines c, d coincide with lines a, b.
Let Q1 be the image of Q under this series of rotation and translation.

Now we can invert A, B into a, b around P , then invert a, b around Q1 into
two circles congruent to the figure formed by C, D. Assuming that P and Q1 do
not coincide, these two inversions can be replaced by a single inversion, followed
by a line reflection (see exercise 251, 2◦). If we neglect the line reflection, then the
figure formed by A, B are inverted into a figure congruent to that formed by C, D.

If P, Q1 coincide, we can repeat the argument, choosing Q′ in place of Q, and
obtaining a center Q2 of inversion (by translation and rotation of C, D) which
cannot coincide with P .

Thus the condition that the two pairs of circle meet at equal angles α is suffi-
cient as well as necessary. The solution to exercise 395 shows that the value of α
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determines the value of angle P̂ΩP ′ in figure t395, which in turn determines the
ratio PP ′ : PΩ. This last ratio is the one referred to in the problem statement.

We must make some changes to this argument if the pairs of circles are tangent
(i.e., intersect at an angle of 0◦). Lines a, b will be parallel, as will lines c, d. By
adjusting the power of the inversion, we can make the distance between lines c, d
equal to the distance between a, b. Then we can follow the previous argument.

Note. Students can fill in details of the last paragraph, showing how the power
of inversion determines the distance between the parallel lines. They can also
consider the case in which both pairs of circles are tangent at the same point.
(Translate one of the pairs away from the common point, so that the argument
above applies.)

2◦. If circles A, B have no common point, it is necessary and sufficient that the
ratio of the radii of the concentric circles into which they can be transformed by an
inversion (Exercise 248) be the same as the ratio of the radii of the concentric circles
into which C, D can be transformed by an inversion (generally, a different inversion
from the first). (Using the language of Note A, it is necessary and sufficient that
the figures (A, B) and (C, D) have the same reduced form under inversion.)

This result can also be expressed as follows: the cross ratio (212) of the
intersection points of A, B with any of their common orthogonal circles is constant,
and the same is true of the cross ratio of two of these points and the limit points.
The required condition is that this ratio have the same value for the circles C, D
as for A, B.

Finally, if r, r′ are the radii of A, B, and d is the distance between their

centers, the quantity d2−r2−r′2
rr′ must have the same value as the corresponding

value calculated for the circles C, D.
We could also express this by saying that if the circles A, B have a common

tangent (for example, a common external tangent) of length t, and the same is true
for C, D, then the ratio t√

rr′
must be the same in the two cases.

Solution 2◦. We first prove that the given condition is necessary. Suppose
some inversion S takes circles A, B onto circles A′, B′, which taken together form
a figure congruent to that formed by circles C, D. If we translate and rotate circles
C, D, they will then coincide with circles A′, B′. So we can assume, without loss
of generality, that circles C, D are in fact the same as A′, B′.

Recall (exercise 248) that any two non-intersecting circles can be inverted into
concentric circles by using one of their limit points (exercise 152) as the pole. So
we can invert C, D around one of their limit points to get concentric circles c, d.
We call this inversion T . (Since C and D have two limit points, we can choose
the pole of T to be different from the pole of S.) The inversion S followed by the
inversion T takes A, B onto c, d. But the composition of these two inversions
can be replaced by a single inversion S′ and a line reflection (exercise 251, 2◦). So
S′ (without the line reflection) takes A, B into two concentric circles which are
congruent to c, d. And T takes circles C, D into concentric circles c, d. That is,
if there is an inversion S taking A, B onto a figure congruent to C, D, then the
ratio of the concentric circles into which they can be inverted must be the same.
The condition of the problem is necessary.
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We next show that this condition is sufficient, using an argument similar to
that in 1◦. Suppose A, B invert into concentric circles a, b, while C, D invert into
concentric circles c, d, and suppose that the radii of c, d are proportional to those
of a, b. We choose any power at all for the inversion taking A, B onto a, b, and
recall (215) that two figures which are inversions of the same figure with the same
pole are homothetic to each other. This means that we can choose the power of
the inversion taking C, D onto c, d in such a way that the figure formed by c, d
is congruent to that formed by a, b. (We use here the fact that the radii of the
four circles are in proportion.) We can translate and rotate the figure formed by
C, D so that circles a, b in fact coincide with circles c, d. As in 1◦, we now see
that C, D can be obtained from A, B by a sequence of two inversions. (We can
avoid the situation where the poles of these inversions coincide by rotating C, D
around the common center of a, b.) As before, the sequence of two inversions can
be replaced by a single inversion S′ followed by a line reflection, and the inversion
S′ alone takes A, B onto a figure congruent to C, D.

We now express this condition in terms of the cross ratios of the intersections
of the given circles with the circles orthogonal to them. We will show, in the case
of intersecting circles, that this cross ratio depends only on the angle at which the
circles intersect, and not on the particular orthogonal circle. In the case of non-
intersecting circles, we will show that this cross ratio depends only on the ratio of
the concentric circles they invert into, and not on the particular orthogonal circle.

(The value of the cross ratio described here depends on the order in which the
points are taken. Without loss of generality we can take the first pair of points to
be the intersection of the orthogonal circle with one of the two given circles, and the
second pair of points to be its intersection with the second of the given circles. The
result of exercise 274 will tell us that the value λ of the cross ratio is then limited
to two values, whose product is 1. We can then, again without loss of generality,
take the points in order so that |λ| ≤ 1.)

Figure t396b
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We start with the case of two intersecting circles. These can be inverted into
two intersecting lines, and the circles orthogonal to them into circles whose center
is their point of intersection. One such circle, in figure t396b, is KNLM , where
K and L belong to different semicircles. The cross ratio λ = (KLMN) = −KMLM :
KN
LN = −(KMLM )2. But this last ratio depends only on the angle at which the two lines
intersect, and not on the choice of orthogonal circle. Since inversion preserves both
orthogonality and cross ratio (see exercise 273), the same is true of two intersecting
circles.

Figure t396c

In the case of two non-intersecting circles, we invert them into two concentric
circles. Then the circles orthogonal to them invert into lines through the common
center of the two circles. One such line, in figure t396c, is MKOLN . If the radii
of the concentric circles are R and r, then the cross ratio (KLMN) = KM

LM : KNLN =(
R−r
R+r

)2

. Dividing numerator and denominator of this last fraction by R, we find

λ =
(

1− r
R

1+ r
R

)2

, and so depends only on the ratio of the radii of the concentric circles.

Since inversion preserves both orthogonality and cross ratio, the same is true of the
original two non-intersecting circles.

Note. If the circles are tangent, any circle orthogonal to both must pass
through their point of tangency. The cross ratio of the four points described in
the problem (and taken in order) is 1, as two of the points coincide. Students can
fill in the details for this case.

We treat separately the assertions in the rest of the exercise.

3◦. The quantity ν = d2−r2−r′2
rr′ must have the same value as the corresponding

value calculated for the circles C, D (with the variables as described in the problem
statement).
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Figure t396d

Solution. We will show that ν is uniquely determined by the cross ratio λ.
We already know that we can compute λ from an image under inversion of the
original circles, so we choose, without losing generality, the situation where the
circle orthogonal to the two original circles is simply their common centerline (fig.
t396d), and we can do this whether or not the given circles have a point in common.
Then we have

λ = (LKMN) =
KM

LM
:
KN

LN
=
d+ r − r′

d− r − r′
:
d+ r + r′

d− r + r′
=
d2 − (r − r′)2

d2 − (r + r′)
=

=
d2 − r2 − r′2 + 2rr′

d2 − r2 − r′2 − 2rr′
=
ν + 2

ν − 2
.

Solving from ν in terms of λ, we find that ν = 2λ+2
λ−1 . That is, the value of ν is

determined uniquely by the value of λ. Since λ has the same value for the two pairs
of circles considered, so must ν.

4◦. If circles A, B have a common tangent of length t, and the same is true
for C, D, then the ratio t√

rr′
must be the same in the two cases.

Solution. Let τ = t√
rr′

. Then t2 = d2− (r− r′)2 = d2− r2− r′2− 2rr′. Com-

paring this to the definition of ν invites the direct computation ν+ 2 = d2−r2+2rr′

rr ,

so that τ = t
rr′ =

√
ν + 2, As in 4◦, this means that τ has the same value for the

pairs of circles considered.

Problem 397. We are given two points A, A′ and two lines D, D′ parallel
to, and at equal distance from, AA′.

1o. Show that for every point P on D there corresponds a point P ′ on D′ such
that line PP ′ is tangent to the two circles PAA′, P ′AA′;

Solution 1◦. For any point P on line D, we draw the circle through P, A′, A,
and also its tangent at P (fig. t397a). Let P ′ be the point of intersection of this
tangent with D′. The centers of the circles through A, A′ lie on the perpendicular
bisector of AA′. The centers of circles tangent to PP ′ lie on the line through
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P ′ perpendicular to PP ′. Their intersection O′ is the center of a circle through
P, A, A′.

Indeed, if M is the intersection of AA′ and PP ′, then M is the midpoint of
PP ′ (113), and we have MP ′2 = MP 2 = MA ·MA′. By 132 (converse), this
means that P ′, A′, and A are on the same circle, which must have its center at O′.

Figure t397a

2o. Prove that the product of the distances from A, A′ to line PP ′ is constant;

Solution. Let H, H ′ (fig. t397a) be the feet of the perpendiculars from A, A′

respectively to line PP ′. We know that (132) that

(1) MA ·MA′ = PM2.

We use similar triangles to rewrite (1). Triangles AHM, A′H ′M are similar
(their sides are parallel in pairs; see 43, 118, first case). If we draw MM ′ perpen-
dicular to D, we find that triangle PMM ′ is similar to the two triangles identified
above (they are right triangles with two pairs of parallel sides; see 43, 118, case I).
That is, segments AH, A′H ′, MM ′ are proportional to segments AM, A′M, PM .

Now we rewrite (1). We have A′H′

A′M = MM ′

PM , so A′M = A′H ′ · PMMM ′ . Likewise,

AM = AH · PM
MM ′ , and we can rewrite (1) as A′H ′ · PM

MM ′ · AH · PM
MM ′ = PM2.

Dividing this equation by
(
MM ′

PM

)2

, we find that

(2) A′H ′ ·AH = MM ′2,

and this last length is constant, since AA′ ‖ D.

3o. Find the locus of the projection of A onto PP ′;
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Figure t397b

Solution. We use the result of exercise 141, and also some ideas from its
solution for the case m = n = 1, in the notation of that solution. (Students can
be given this statement as a hint.) To apply this result, we examine the sum
HA2 +HA′2, by looking at triangle HAA′.

In that triangle, we have AA′2 = A′H2 +AH2 − 2AH ·HN (126), where N is
the foot of the perpendicular from A to line HA. But HN = A′H ′ (from rectangle
A′NHH ′), so

(3) HA2 +HA′2 = AA′2 + 2AH ·AH ′,

and the result of 2◦ shows that this last quantity is constant. Thus the result of
exercise 141 shows that H lies on a circle whose center is the midpoint T of AA′

To compute the radius of this circle, we proceed as in exercise 141 (or use 128),
1◦. From either of these results, we have

4HT 2 = 2A′H2 + 2AH2 −AA′2

= 2(AA′2 + 2AH ·AH ′)−AA′2(from(3))

= AA′2 + 4MM ′2.(from(2))

So the radius HT of the circle is equal to
√

1
4AA

′2 +MM ′2.

Notes. In figure t397b, right triangle ATK shows that radius HT of this circle
is equal to the distance from A to point K, the point on line D which is equidistant
from A and A′.

Analogous reasoning starting with triangle A′H ′A will show that point H ′ lies
on the same circle.

4o. Find a point P such that the line PP ′ passes through a given point Q;
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Figure t397c

Solution. If we start with any point Q, the associated point H must lie on a

circle with diameter AQ (since angle Q̂HA is a right angle), and also on the circle
described in 3◦. The line connecting Q to any intersection point of these two circles
will intersect D in a point P which satisfies the conditions of the problem.

5o. Show that the angle of the circles PAA′, P ′AA′, and angle P̂A′P ′, are
constant.

Figure t397d

Solution. We take the angle between the two circles to be equal to the angle

between their radii at a point of intersection. In figure t397d, this is angle ÔA′O′,

and we will show that it is equal to the constant angle K̂A′K ′, where K, K ′ are
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the intersections of the two given parallel lines with the perpendicular bisector of
segment AA′.

To this end, we lay off segment KO′′ as in the figure so that KO′′ = K ′O′.
Then triangles A′KO′′, A′K ′O′ are symmetric in line AA′, so they are congruent,
and

(4) K̂A′O′′ = K̂ ′A′O′.

Next we show that A′K bisects angle ÔA′O′′. Indeed, triangles OPK, O′P ′K ′

are similar. (See 43; their sides are parallel in pairs). So OP : O′P ′ = OK : O′K ′.
But OP = OA′, O′P ′ = O′A′ = O′′A′, O′K ′ = KO′′, so this proportion is
equivalent to OA′ : O′′A′ = OK : KO′′, and this last proportion shows (115) that
A′K is an angle bisector in triangle A′OO′′.

Now from (4) we have Ô′A′K = K̂A′O′′ = K̂ ′A′O′. Adding angle K̂A′O′ to

each, we find that ÔA′O′ = K̂A′K ′. The first angle is the angle between the two
circles, and the second angle is constant. This proves the first assertion.

To show that P̂A′P ′ is constant, we examine the angles around vertex A′, and
will show that the sum of the remaining angles is also contant. We know that

ÔA′O′ is constant from the previous paragraph. So we need to show that the sum

ÔA′P + Ô′A′P ′ is constant.
Since ÔA′O′ is constant, so is the sum Â′OO′ + Â′O′O (it is equal to 180◦ −

ÔA′O′). And since OP ‖ O′P ′, we know that P̂OO′′ + ÔO′P ′ = 180◦, so the sum

Â′OP + Â′O′P ′ = (POO′ + ÔO′P ′)− (Â′OO′ + Â′O′O) = ÔA′O′.
Now we look at isosceles triangles POA′, P ′O′A′. The sum of their vertex

angles is constant, so the sum of a pair of base angles is also constant: P̂A′O +

P̂ ′A′O′ = 1
2 (180◦ − P̂OA′ + 180◦ − P̂ ′O′A′) = 180◦ − 1

2 (ÔA′O′).
We have shown that the sum of the other angles around A′ is constant, so

P̂A′P ′ must also be constant: P̂A′P ′ = 360◦ − (P̂A′O + P̂ ′A′O′) − ÔA′O′ =

180◦ − 1
2 ÔA

′O′ = 180◦ − 1
2K̂A

′K ′, which is constant.

Problem 398. Let C be a circle with diameter AB, and D a line perpendicular
to this diameter, which intersects C. Let c, c′ be the circles whose diameters are
the two segments into which D divides AB. We draw a circle tangent to C, c, D,
and another circle tangent to C, c′, D. Show that these two circles are equal, and
that their common radius is the fourth proportional to the radii of C, c, c′.

Solution. Let S be the circle tangent to c, D, and C, and let S′ be the circle
tangent to c′, D, and C.

We consider the inversion with pole A and power AM ·AB. We will show that
the image of line D is circle C. Indeed, the image is a circle through A (220) which
is orthogonal to line AB (219). Points M and B are clearly images of each other,
so the image of D must contain point B. That is, the image of D is a circle through
A and B which is orthogonal to line AB. This must be circle C. And the image
of circle C is of course then line D. Further, it is not hard to see circle c′ is its
own image. (The power of inversion is the power of A with respect to this circle.)
Finally, the image of circle S′ is a circle tangent to D, C, and c′, and the only such
circle (on the same side of AB as S′) is S′ itself.
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Figure t398

It follows that the common tangent to c and S′ at their point T of tangency
must pass through the pole A of this inversion. Indeed, since c′, S′ are their own
images under the inversion, their common point must be its own image as well.
That is, AT 2 is the power of the inversion. But then AT 2 = AM ·AB and by 132
(converse), AT is the tangent to c′ (and therefore also to S′) at T .

Let o′, P ′ be the centers of circles c′, S′ respectively. Let N be the foot of the
perpendicular from P ′ to diameter AB, and let R, r, r′, ρ′ be the respective radii
of circles C, c, c′, S′. Triangles ATo′, P ′No′ are both right triangles, and share

angle P̂ ′o′A, so they are similar, and Ao′ : P ′o′ = To′ : No′ or 2R−r′
ρ′+r′ = r′

r′−ρ′ .

Transforming this expression gives us ρ′R = (R − r′)r′. Since R = r + r′, it
follows that ρ′R = rr′. Thus the radius of circle S′ is the fourth proportional to
the radii of C, c, c′.

Similarly, we could compute the value of the radius r of circle S in terms of ρ′

and R. But we need not carry out the argument: the expression we got for ρ′ is
symmetric in r and r′, and we will just be changing the names of the objects in the
argument, not their relationships to each other. Either way, we see that the radii
of S, S′ are equal.

Problem 399. (the Greek Arbelos) Let A, B be two tangent circles. Let C
be a circle tangent to the first two; let C1 be a circle tangent to A, B, C; let C2

be a circle tangent to A, B, C1; let C3 be tangent to A, B, C2, . . . ; and let Cn
be a circle tangent to A, B, Cn−1. Consider the distance from any of the centers
of C, C1, . . . , Cn to the line of centers of A, B, and the ratio of this distance to
the diameter of the corresponding circle. Show that this ratio varies by one unit
in passing from any circle to the next one, at least in the case in which they are
exterior (which always happens when circles A, B are tangent internally). Show
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how this statement must be modified when two consecutive circles Cn−1, Cn are
tangent internally. (Arbelos is a Greek word meaning sickle)2.

Solution. The problem describes a chain of circles, starting with a single circle
C, which are all tangent to two larger circles, and each circle tangent to the previous
as well. It will be convenient to discuss a slightly more general situation, in which
the chain of circles is continued in both directions, so that there is an initial circle
C = C0, a chain of circles C1, · · ·Cn, and also a chain of circles C−1, C−2, · · · as in
figure t399a.

Figure t399a

Let the center of circle Cn be On, and its radius as rn. Let ` be the common
centerline of circles A, B. We will also need to talk about the projection of On
onto `. We call this point Pn.

In that figure, T is point of tangency of circles A, B, and we invert the figure
around T as the pole, using any power. Circles A, B invert into two parallel lines
A′, B′ (220, corollary), and circles · · · , C−2, C−1, C0, C1, C2, · · · invert into
circles · · · , C ′−2, C

′
−1, C

′
0, C

′
1, C

′
2, · · · tangent to both lines, which therefore have

equal radii. We denote this radius as r′.
Let the centers of the circles C ′n be the points O′n. Because the circles are equal,

these centers are collinear. Let P ′ be the intersection of this common centerline
with `.

2This note is Hadamard’s own. The usual translation of arbelos is shoemaker’s knife. But
see for instance Harold P. Boas, Reflections On the Arbelos, American Mathematical Monthly,

113, no. 3 (March 2006), 236-249. –transl.
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Figure t399b

For those circles whose centers lie on the same side of line `, it is clear that
O′n−1P

′ −OnP ′ = 2r′. We can write this as

(1)
O′n−1P

′

2r′
− O′nP

′

2r′
= 1.

For those circles whose centers lie on different sides of line `, this relationship
becomes O′n−1P

′ +O′nP
′ = 2r′, or

(2)
O′n−1P

′

2r′
+
O′nP

′

2r′
= 1.

Now the pole of inversion is a center of similarity for any pair of circles which are
inverses of each other, so (fig. t399b) we have r′ : rn = TO′n : TOn = O′nP

′ : OnPn.
Therefore O′nP

′ : 2r′ = OnPn : 2rn. That is, the ratio of the distance from the
centers of any of our circles Cn from the common centerline of A, B to the diameter
of that same circle Cn does not change when we invert around pole T . Because of
this, we can rewrite (1) and (2) as:

(3)
On+1Pn+1

2rn+1
− OnPn

2rn
= 1.

(4)
On+1Pn+1

2rn+1
− OnPn

2rn
= 1.

These two equations prove the assertion of the problem.
In the case mentioned in the problem statement, where A and B are tangent

internally, any two circles Cn, Cn+1 are tangent externally. Since circles Cn, Cn+1
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Figure t399c

are tangent externally, it follows that the centers of the inverted circles C ′n, C
′
n+1

lie on the same or different sides of line ` according as the centers of Cn, Cn+1 lie
on the same or different sides of `. Thus in this case, we can say that equation (3)
holds whenever the centers of the circles lie on the same side of `, and equation (4)
holds if these centers lie on opposite sides of `.

If circles A, B are tangent externally (fig. 399c), then circles C−1, C0 and
C0, C1 are tangent internally, while the others are tangent externally. This re-
quires a small change in the concluding statement above. For those pairs of circles
Cn, Cn+1 which are tangent internally, equation (3) holds if their centers are on
opposite sides of `, and equation (4) holds if their centers are on the same side of `.

Note. We can state this result more generally if we allow for signed distances
to line `. If xn, xn+1 are the distances of consecutive circles from `, and rn, rn+1

are their radii, then we can say that xn

2rn
− xn+1

2rn+1
= 1, when xn is positive for circles

on one side of ` and negative for circles on the other side.
For circles that are tangent externally, we have xn

2rn
+ xn+1

2rn+1
= 1, with similar

conventions of sign for xn, xn+1.

Problem 400. Let A, B, C be three circles with centers at the vertices of a
triangle, each pair of which are tangent externally (Exercise 91). Draw the circle
externally tangent to these three circles, and also the circle internally tangent to
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these three circles. Calculate the radii of these circles knowing the sides a, b, c of
the triangle (preceding exercise, Exercise 301).

Solution. If a, b, c, s are the sides and semiperimeter of triangle ABC, then
exercise 91 shows that the radii of the circles centered at A, B, C are s−a, s−b, s−c
respectively.

Figure t400a

There are many circles tangent to the three described in the problem, but only
two (also mentioned in the problem) which are tangent to all three externally or to
all three internally (see figure t400a). We first consider the circle which is externally
tangent to all three (the small circle in figure t400a) which lies inside the curvilinear
triangle formed by the three given circles. Let O be its center and ρ its radius.

We will apply the result of exercise 399 in various ways, with pairs of circles
A, B, C playing the role of the original circles given in that exercise. The common
centerlines of these circles are the sides of the given triangle, so we will need the
distances of these from O. Let these be x, y, z, and let h, k, ` be the lengths of
the altitudes of the given triangle.
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We can now use formula (3) from exercise 399, applying it to circles B and C
as the two given circles, and A and O as the (short) chain of circles. we have:

(1)
x

2ρ
− h

2(s− a)
= 1.

Analogously, if we start with A and B as the given circles, and C, O the chain of
circles, we have:

y

2ρ
− k

2(s− b)
= 1,

and starting with circles A and C we have:

z

2ρ
− `

2(s− c)
= 1.

Multiplying (1) by 2ρ and dividing by h, we get:

x

h
− ρ

s− a
=

2ρ

h
,

and analogously:

y

k
− ρ

s− a
=

2ρ

k
,

z

`
− ρ

s− c
=

2ρ

`
.

Adding, and using the result of exercise 301, we get

ρ

(
1

s− a
+

1

s− b
+

1

s− c
+

2

h
+

2

k
+

2

`

)
= 1.

This gives an expression for ρ, as required. We can transform it by introducing
the area ∆ of the triangle, and the radii ra, rb, rc of its escribed circles.

From exercise 299, we have 1
s−a = ra

∆ , 1
s−b = rb

∆ , 1
s−c = rc

∆ . And from 249
2
h = a

∆ ,
2
k = b

∆ ,
2
` = c

∆ , so we have:

ρ

(
ra
∆

+
rb
∆

+
rc
∆

+
a

∆
+

b

∆
+

c

∆

)
= 1,

or

ρ

(
ra
∆

+
rb
∆

+
rc
∆

+
a

∆
+

b

∆
+

c

∆

)
= 1,

or

ρ =
∆

a+ b+ c+ ra + rb + rc
=

∆

2s+ ra + rb + rc
.

Now suppose O′ and ρ′ are the center and radius of the second circle tangent
to the three given circles. This circle can touch the others either internally (fig.
t 400a) or externally (fig. t 400b). In the case where the new circle is tangent
internally to the others, its center can lie either inside the given triangle or outside
it.

Proceeding as before, we get the expression ρ′ = ± ∆
2s−(ra+rb+rc) .
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Figure t400b

Notes. We can explore the situation further if we introduce the convention
of exercise 301 for the signed distance from a point to a line. Let x′, y′, z′ are the
distances from point O′ to the sides of the triangle. In the case of a circle externally
tangent to the others, we then have the system of equations:

h

2ra
+

x′

2ρ′
= 1;

k

2rb
+

y′

2ρ′
= 1;

`

2rc
+

z′

2ρ′
= 1.

In the case of a circle internally tangent to the others, we have:

h

2ra
− x′

2ρ′
= 1;

k

2rb
− y′

2ρ′
= 1;

`

2rc
− z′

2ρ′
= 1.

Solving the first system, we get ρ′ = ∆
2s−(ra+rb+rc) . From the second system,

we get ρ′ = − ∆
2s−(ra+rb+rc) . If ra + rb + rc = 2s, circle O′ becomes a straight line.
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Problem 401. Given three circles with centers A,B,C and radii a, b, c,
let H be the radical center of the circles concentric with the first and with radii
a + h, b + h, c + h, and let N be taken on AH such that AN

AH = a
a+h . Show that,

as h varies, points H and N move on two straight lines, the first of which passes
through the centers of the tangent circles (with contacts of the same kind) of the
three given circles, and the second of which passes through the points of contact of
these circles with circle A. Give an analogous statement which allows one to find
the circles which have different kinds of contact with circles A, B, C.

Solution. We divide the problem into five statements:

(i). The locus of H is a line.

(ii). The locus of N is also line.

(iii). The locus of H passes through the center of the circle tangent externally
to the three given circles.

(iv). The locus of N passes through the points of contact of the circle tangent
externally to the three given circles with circle A.

(v). The locus of H and that of N pass through the analogous points for the
circle tangent internally to the three given circles.

We consider both positive and negative values of the increment h, and circles
Ah, Bh, Ch with radii equal to |a+ h|, |b+ h|, |c+ h|. Using this convention, the
circles A, B, C referred to in the problem statement can also be called A0, B0, C0.

(i). We use the result of exercise 124 to find the path of H. Let K be the
projection of point H on line AB, so that HK is the radical axis of circles Ah, Bh.
If D is the midpoint of segment AB (fig. t401a), then we have (136) DK =
(a+h)2−(b+h)2

2AB . When h = 0, point H coincides with the radical center H0 of circles
A0, B0, C0, point K assumes the position K0 which is the projection of H0 onto

line AB, and we have DK0 = a2−b2
2AB . It follows that

(1) K0K = DK −DK0 =
(a− b)h
AB

.
We now make the same computation with point H and line AC. If L, L0

are the projections respectively of H, H0 on line AC, the same argument gives us

L0L = (a−c)h
AC . Thus K0K

L0L
= a−b

a−c ·
AC
AB .

Thus we can describe point H using the following construction: We locate
pointsK0, L0 on linesAB, AC respectively, and lay off variable segmentsK0K, L0L,
which maintain the same ratio as they vary. At K and L we erect perpendiculars to
AB and AC respectively. Point H is then the intersection of these perpendiculars.
It follows from the result of exercise 124 that the locus of point H is a line.
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Figure t401a

(ii). We use Menelaus’ theorem(193) to get the locus of point N . We fix some
position H ′ of H, with the associated value h′ of h (fig. t401b), and let K ′ be the
projection of H ′ onto line AB, We have, by analogy to (1) above,

(2) K0K
′ =

(a− b)h′

AB
.

from (1) and (2) it follows that

(3) H0H : H0H
′ = K0K : K0K

′ = h : h′.

Suppose points N, N ′ (in figure t401b) divide segments AH, AH ′ in the ratios
AN : AH = a : (a+ h) and AN ′ : AH ′ = a : (a+ h′). Then we have

(4) AN : NH = a : h,

(5) AN ′ : N ′H ′ = a : h′.
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Figure t401b

Relations (3), (4), (5) imply that H0H
H0H′ · N

′H′

N ′A ·
NA
NH = 1, If we then ap-

ply Menelaus’ Theorem to these three points and triangle AHH ′, we find that
H0, N, N

′ lie on the same line.
In other words, the locus of N is the line H0N

′, where N ′ is the point corre-
sponding to some particular value of h.

(iii). We take (fig. t401c) h equal to the radius r of circle Σ which is tangent
externally to the three given circles A0, B0, C0. Then clearly the circles Ar, Br, Cr
(with radius a+r, b+r, c+r) will all pass through the center O of circle Σ, which is
therefore the radical center of these three circles, and a position of H corresponding
to h− r. Thus the line which is the locus of point H must pass through O.

(iv). The point Nr corresponding to h = r will (by definition) divide segment
AO in the ratio a : (a+ r) (since for this value of h, point Hr coincides with point
O), and so must coincide with the point of tangency of circles A0, Σ.

(v). Analogously, we can take h equal to −r′, where r′ is the radius of the
circle Σ′ tangent internally to circles A, B, C. Then the circles A−r, B−r, C−r



185

Figure t401c

will all pass through the center O′ of circle Σ′, which is therefore the radical center
of these three circles. Thus the line which is the locus of point H must pass through
O′.

Similarly, the locus of point N must pass through the point of contact of circle
Σ′ with circle A0.

Notes. We can proceed in the same way in the case of circles tangent internally
and externally to A0, B0, C0 in different combinations. For example, if we want to
examine the circle tangent externally to A0, and internally to B0 and C0, we take
circles centered at A, B, C, with radii |a− h|, |b+ h|, |c+ h|. Other cases can be
treated analogously.

This exercise gives a new construction of circles Σ, Σ′, the circles tangent
externally and internally to the three given circles. (See 231 -236 and 309 -
312b). We first construct the radical center H0 of the three given circles, then the
radical center H of circles Ah, Bh, Ch for any value of h. Next we construct the
point Nh corresponding to this value of h. The intersections of line H0Nh with
circle A0 will be the points of contact of Σ, Σ′ with circle A0. We then draw the
two lines connecting these points of contact with point A. Their intersections with
line HH0 will be the centers of Σ and Σ′.



Problem 402. Find a circle which intersects four given circles at equal angles.

Lemma. Construction: Find a circle which intersects three given circles at
equal angles.

Figure t402a

Solution (for lemma). Suppose the circles are C1, C2, C3 (fig. t402a). In
227 we saw that the circles making equal angles with C1, C2 are exactly those
which pass through a pair of antihomologous points, relative to one of the two
centers of symmetry of the two circles. If S12 is one of these centers, we can draw
any common secant to C1, C2 through it, and find a pair P1, P2 of antihomologous
points in circles C1, C2. Then we can choose a center of symmetry S23 of circles
C2, C3, and draw line P2S23. Its intersection with circle C3 will determine a point
P3 which is antihomologous to P2 with respect to S23. From 227 it follows that
the circle through P1, P2, P3 will make equal angles with circles C1, C2, C3. The
construction can clearly be done in infinitely many ways.

Solution (to exercise 402). Let the four given circles be C1, C2, C3, C4,
and let σ be the required circle, which makes equal angles with them.

It was shown in 227, 309-310 that the circles constructed in Lemma 1, those
which make equal angles with any three given circles, form four families, corre-
sponding to the four axes of similarity of the circles (145). Each axis of similarity
serves as the common radical axis of the circles in one of the families. These circles
all have a common centerline, which is the perpendicular from the radical center of
the three circles to the radical axis of the circles in the family considered.

We apply these observations first to the three circles C1, C2, C3 and then
to the three circles C1, C2, C4 to give us two conditions for the location of the
center O of the required circle σ. First, O must lie on the perpendicular from the
radical center I4 of circles C1, C2, C3 to one of their axes s4 of similarity. Second,
the center of σ must lie on the perpendicular from the radical center I3 of circles
C1, C2, C4 to one of their axes s3 of similarity.

186
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We have one more clue. if σ intersects C1, C2 in two pairs of antihomologous
points, the the center of similarity S12 for which these pairs of points are antiho-
mologous must lie on s3 and also on s4. This limits our choice of s3 to two of the
four axes of similarity of circles C1, C2, C4 .

These considerations allow us to find the center O of σ. We first choose any axis
s4 (fig. t402b) of the four axes of similarity of circles C1, C2, C3. We then choose
a center of similarity S12 of circles C1, C2 which lies on s4. Next we choose one of
the two axes of similarity s3 of circles C1, C2, C4 which passes through S12. We
drop perpendiculars from I4 and I3 (the radical centers of circles C1, C2, C3 and
C1, C2, C4 respectively) onto s3, s4 (note the reversal of subscripts). The center
of the required circle must be at the intersection of these two perpendiculars.

Each of the four axes of similarity of circles C1, C2, C3 can be paired with two
of the axes of similarity of C1, C2, making eight possible centers for the required
circle.

Figure t402b

We choose one of these points O and show how to construct the circle σ centered
at O and making equal angles with C1, C2, C3, C4. First (using the result of our
lemma) we draw any circle σ4 making equal angles with C1, C2, C3 (fig. t402a)
and belonging to the family associated with s4, the axis of similarity chosen above.
Thus s4 is the radical axis of circles σ, σ4. Thus we can construct σ as the circle
centered at the known point O and whose radical axis with circle σ4 is line s4.

This last task is not difficult. The radical axis of two circles is the locus of
centers of circles orthogonal to both. So we just draw any circle c whose center lies
on s4 and which is orthogonal to circle σ4. Then σ is the circle centered at O and
orthogonal to c.

This circle σ makes equal angles with C1, C2, C3 by construction. But we
must prove that it makes the same angle with C4. To investigate this issue, we
draw any circle σ3 making equal angles with C1, C2, C4, and its associated axis
s3, of similarity for these circles. (Circle σ3 and s3 are not shown in figure t402b.)
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The common centerline of σ and σ3 is the perpendicular from I3 to line s3. If S12

is the intersection of the axes of similarity s3, s4, then S12 has the same power
with respect to circles σ and σ3, equal to the power of the inversion about pole
S12 which takes circle C1 onto C2. (This follows from the fact that each of circles
σ, σ3 intersects C1 and C2 in pairs of antihomologous points with respect to S12).
From the facts that (a) the common centerline of σ, σ3 is perpendicular to s3, and
(b) that point S12 of line s3 has the same power with respect to these two circles,
it follows that that s3 is the radical axis of these two circles. Therefore circle σ
intersects C1, C2, C4 (and therefore all four circles) at the same angle.

As noted above, there are eight choices for point O, and so, in general, at most
eight solutions to the problem. A given choice of point O leads to a solution if O
lies outside circle c. Note (see exercise 152) that any choice of point O will either
always lie inside, always lie on, or always lie outside, any choice of circle c.

Notes. Students may see right away that the construction of σ depends on
the construction of σ4, and, as our lemma shows, there are infinitely many possible
circles σ4. But all these circles have a common radical axis (the line S4), so σ is
actually determined by its center (which is uniquely fixed) and its radical axis with
any of the circles σ4.

Likewise, the construction of σ depends on the choice of circle c, orthogonal to
σ4 with its center on S4. It is not hard to see (but difficult to prove directly) that
there can be only one such circle σ.

Finally, students may notice that the construction of circle σ depends on the
initial choice of three circles to be labeled C1, C2, C3, then on the choice another
triple of circles, including two of the first three and also C4. It would appear that
this makes for more choices for point O. But following the construction for other
such choices quickly shows that in fact we end up with only distinct eight pairs of
axes of similarity, and therefore only eight possibilities for point O.

It may be useful to look at the very special case of four each circles with centers
at the vertices of a square. In that case there are infinitely many solutions.

Problem 402b. Find a circle which intersects three given circles at given
angles. (We know (Exercise 256) the angle at which the required circle intersects any
circle having the same radical center as the given circles. Among these, determine
(Note C, 311) three for which this angle is zero, so as to reduce the problem to
the problem of tangent circles; or two1 for which this angle is a right angle, thus
reducing the question to Exercise 259.)

Lemma 1. We are given two circles A and B (with centers at points A, B), a
point M on circle A, and two angles α and β. Construct a circle O which intersects
A at M , and which intersects A and B at angles equal to α, β respectively.

Solution for Lemma 1. Let N (fig. t402bi) be one of the points of inter-
section of circles O and B. We rotate point B about O through an angle equal to

N̂OM . Let K be the image of point B under this rotation. We consider triangle
OMK. It is congruent to ONB, and has the same orientation. Therefore, point O

1(1)The problem considered in no. 311 does not always have a solution, since the point α

mentioned there might be inside the given circles; this situation can actually occur in this problem,
even when the problem has a solution. One should show that this inconvenience can always be
avoided by an appropriate combination of the two methods we indicate.
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Figure t402bi

is equidistant from points K and B. Also AM meets OM at an angle equal to α,

and MK meets OM at an angle equal to B̂NO, which is equal to β.
Thus we have the following construction. We draw line MX, forming an angle

with AM equal to α, and line MY , forming an angle with XM equal to β. We
then lay off segment MK along MY , equal to the radius of circle B. Finally, we
draw the perpendicular bisector of segment BK. Its intersection with MX gives
us point O.

We can choose for MX either of two lines forming an angle equal to α with
MA. In general, the problem has two solutions.

Notes. We get no new solutions if we take for MY the other line forming an
angle equal to β with OM . In this case, we will get a point K ′ symmetric to K in
line OM . Then OB = OK = OK ′, so points B, K, K ′ all lie on a circle centered
at O, and the perpendicular bisector of any chord of that circle (such as BK ′) will
pass through point O.

In the solution to exercise 256, we noted that the phrase ‘angle between two
circles’ is ambiguous. It could refer to either of the two angles (one obtuse and one
acute) made by the tangents to the circles at their point of intersection. Equiva-
lently, it could refer to either of the two angles formed by the lines extending the
radii of the two circles drawn to a point of intersection.

So if a circle meets two circles at ’equal angles’, we can construe these angles
to be α, β, or 180◦ − α, 180◦ − β, or α, 180◦ − β, or 180◦ − α, β. In the present
situation, the first two conditions describe a single family of circles, and the second
two conditions describe a different family of circles.

The construction described will give us circles of either family, depending on

how we choose point X. If we take point X such that angle ÂMX is equal to
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α (and not 180◦ − α) , and lay off segment MK so that X̂MK = β (and not
180◦ − β), then we get a circle of the first family. Indeed, if point O lies on ray
MX, the resulting circle will clearly intersect the given circles in angles equal to α
and β. But if O lies on the extension of line MX past M , then the resulting circle
will intersect the given circles in angles equal to 180◦ − α and 180◦ − β.

As special cases, we can use this lemma to construct circles which are tangent
(internally or externally) to two given circles, and passing through a given point on
one of the circles (its point of tangency with that circle).

In the proof of the main problem, we will not use the full force of this lemma.
We will need only to construct a circle meeting two given circles at two given angles.
This easier problem can be solved in infinitely many ways, as we can pick point M
on circle A arbitrarily.

Lemma 2. Construct a circle having a common radical axis with each of two
given circles, and orthogonal to a third given circle.

Solution to Lemma 2. Let the first two given circles be A and B, and let
C be the third given circle. Using 138, we can construct two circles C ′, C ′′ each
orthogonal to both A and B. The centers of C ′, C ′′ will be on the radical axis of
A and B, which is also the radical axis of the circle we need. Hence (by the note
to 139e), each of circles C ′, C ′′ must be orthogonal to the circle we need. Thus, if
the required circle exists, we can construct it using 139, by constructing the circle
orthogonal to C, C ′, and C ′′. The center of such a circle is the radical center of
these three circles, and its radius is the tangent from the radical center to one of
the three.

Solution to Exercise 402b. Suppose we must construct a circle σ which
intersects circles A, B, C at angles equal to α, β, γ respectively.

As noted in exercise 256, and also in the discussion of lemma 1, the phrase
‘angle between two circles’ is ambiguous. Taking this ambiguity into consideration,
the required circle can belong to one of four families of circles, intersecting the given
circles at angles equal to:

i) α, β, γ or 180◦ − α, 180◦ − β, 180◦ − γ;
ii) 180◦ − α, β, γ or α, 180◦ − β, 180◦ − γ;
iii) α, 180◦ − β, γ or 180◦ − α, β, 180◦ − γ;
iv) α, β, 180◦ − γ or 180◦ − α, 180◦ − β, γ.
We examine the first case, and make the further assumption that the angles be-

tween the radii of the circle are strictly equal to α, β, γ. We indicate in parentheses
the changes necessary if these angles are replaced by their supplements.

We first use Lemma 1 to construct some circle σ1 (fig. t402bii) which intersects
circles A and B at angles equal to α and β. (Alternatively, we could construct a
circle σ′1 which intersects circles A and B at angles equal to 180◦−α and 180◦−β.)
The required circle σ and circle σ1 (or σ′1) will make equal angles with circles A and
B. It follows from the solution to problem 256 that any circle which has a common
radical axis with A and B will intersect circles σ and σ1 at a constant angle.

Next, using the result of 311, we choose, from among the circles with a common
radical axis with A and B, two circles A′ and B′ which are both tangent to σ1 (or
to σ′1). We will assume for now that these two circles exist. Since we can think of
tangent circles as circles which intersect at angles of 0◦ or 180◦, the considerations
above show that circles A′, B′ will also be tangent to circle σ. Moreover, circle A′
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Figure t402bii

will be tangent to σ and σ1 in the same way (both externally or both internally),
since the circles meet at angles which are strictly equal (or supplementary). The
same is true of circle B′.

Thus the required circle σ must be tangent to each of circles A′, B′ (and we
can tell whether this tangency is internal or external), and must intersect circle C
at an angle strictly equal to γ.

We now construct any circle σ2 which intersects C at an angle γ, and is tangent
to circle A′ in the same manner (internally or externally) that A′ is tangent to circle
σ. (Or, we construct circle σ′2, which intersects C at an angle 180◦−γ and is tangent
to circle A′ in the opposite manner from the way A′ is tangent to σ). Lemma 1
shows us how to do this construction: the fixed circles are σ2, A

′ (or σ′2, A
′), and

the given angles are γ, 0◦ (or their supplements).
The result of exercise 256 assures us that any circle that has a common radical

axis with C and A′ will intersect circles σ, σ2 at equal angles (or will intersect
circles σ, σ′2 at supplementary angles).

We know that among the circles having a common radical axis with A′ and C,
there is one circle (namely A′) which is tangent to circle σ2 (or to σ′2). Therefore
(following the construction of 311) among these same circles, there is in general
a second circle C ′ which is tangent to circle σ2 (or to σ′2). Furthermore, circles
σ, σ2 are tangent to C ′ in the same manner (or tangent to circles σ, σ′2 in different
manners).

It follows that the required circles σ must be tangent to three circles A′, B′, C ′

which we know how to construct, and that the manner of their tangency (internal
or external) is completely determined.
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We have been looking for circle σ which intersects the given circles at angles
strictly equal to α, β, γ. Using analogous arguments, it is not hard to see that a
circle σ′ which intersects the three given circles at angles strictly equal to 180◦ −
α, 180◦ − β, 180◦ − γ must be tangent to the same circles A′, B′, C ′ as circle σ.
However, the two circles σ, σ′ must have different manners of tangency with each
of circles A′, B′, C ′. This follows from the fact that the construction of circle σ′

can be accomplished using the same auxiliary circles σ1 or σ′1 that we used above,
and also the same auxiliary circles σ2 or σ′2 that we used above. However, circles
σ1, σ

′
1 exchange roles, as do circles σ2, σ

′
2.

We can also prove the converse: that any circle tangent to A′, B′, C ′ in the
manner indicated (internally or externally) will intersect the given circles at angles
equal to α, β, γ or 180◦ − α, 180◦ − β, 180◦ − γ. Indeed, suppose some circle σ
is tangent to circles A′, B′ in the same manner that A′, B′ are tangent to σ1, and
that σ is tangent to C ′ in the same manner as it is tangent to σ2. Circles σ, σ1
are tangent to A′ in the same manner; that is, they intersect A′ at the same angle
(equal to 0◦ or 180◦). Similarly, these circles σ, σ1 also intersect B′ at the same
angle (0◦ or 180◦). Therefore any circle which has a common radical axis with
A′ and B′ will intersect σ and σ1 at exactly the same angle. In particular, this
is true of circle A. But circle σ1, by construction, intersects A at an angle α. It
follows that circle σ also intersects A at angle α. The same reasoning shows that σ
intersects B at angle β.

Also, circles σ, σ2 are both tangent to A′ in the same manner, because σ, σ1
are tangent to A′ in the same manner (by definition of circle σ1), and σ1, σ2 are
also tangent to A′ in the same manner (by definition of circle σ2). For analogous
reasons, circles σ, σ2 are tangent to C ′ in the same manner. Thus any circle having
a common radical axis with A′ and C ′, and in particular circle C, will intersect σ
and σ2 in angles which are strictly equal. But circle σ2, by construction, intersects
C at an angle strictly equal to γ. Therefore circle σ also intersects C at an angle
strictly equal to γ.

In just the same way, we can show that any circle σ′ which is tangent to circles
A′, B′ in the opposite manner from its tangency to σ1, and which is also tangent
to C ′ in the opposite manner from its tangency to σ2 will intersect circles A, B,
and c at angles strictly equal to 180◦ − α, 180◦ − β, 180◦ − γ.

Thus the required circles belonging to the first (i) of the four families listed
above, are tangent to the three circles A′, B′, C ′. Also, they comprise one of four
pairs of circles which are tangent to A′, B′, C ′, in the sense of the solution to
exercise 267. Indeed, it follows from the argument above that if one of the required
circles belonging to this first family is tangent to two of the three circles (say A′

and B′) in the same manner, than any circle belonging to the first family is tangent
to them in the same manner.

So far, we have assumed that among the circles having a common radical axis
with A and B, there exist two circles A′, B′ which are tangent to the auxiliary
circle σ1 (or σ′1). This will always be the case, if circles A and B have no points in
common. Indeed, if we construct circles A′, B′ as in 311, we will find two solutions
for this case, because the radical center α of circles A, B, σ1 (or A′, B′, σ′1) which
we used there, will lie outside the three circles. But in fact circles A′, B′ can exist
even when circles A and B intersect (see figure 402bii).
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But suppose there is no circle which has a common radical axis with A, B and
tangent to the required circle, and suppose this is true also for the pairs of circles
B, C and C, A. Then the argument above is no longer valid. This situation can
occur only when each pair of the three given circles has points in common. One
example of such a situation is shown in figure t402biii.

Figure t402biii

For a solution to the problem in this situation we can argue differently. We
construct auxiliary circle σ1 (or σ′1) as before. Then we use lemma 2 above to find
a circle B0 having a common radical axis with A, B and orthogonal to σ1 (or σ′1).
The required circle σ (or σ′) must also be orthogonal to B0 , since circles σ, σ1 (or
σ, σ′1) intersect B0 at equal angles. Analogously, if we construct a new auxiliary
circle σ2,which intersects A and B at angles equal to α and γ, we can find a circle
C0 which has a common radical axis with A and C and which is orthogonal to circle
σ2. Circle C0 will also be orthogonal to the required circle σ.

Thus the required circle σ (or σ′) must intersect circle A at an angle strictly
equal to α (or 180◦ − α), and must be orthogonal to circles B0, C0. Conversely,
we can show that any circle which satisfies the conditions just described will also
satisfy the conditions of the original problem. Thus we are led to exercise 259.

Note that this second type of argument will also work in those cases where
the first argument will not; that is, when the three given circles intersect in pairs.
Indeed, through every pair of intersections, for example the intersections of circles
A and B, we can draw a circle orthogonal to the known circle σ1 (see the note in
the solution to exercise 258).

However, this second argument can fail, in some of those cases where the first
argument holds. Indeed, if two circles (say A and B) do not intersect, then there
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may not exist a circle having a common radical axis with the two, and orthogonal
to, say σ1. And there are still more cases to consider, if pairs of the given circles
intersect.

We have here examined the two cases covered by family (i) of circles as defined
above. The discussion for the other three families of circles would proceed analo-
gously, by substituting one of the angles α, β, γ with its supplement. We would
need to define auxiliary circles analogous to A′, B′, C ′, C0, B0. In general, these
circles will be different from those constructed in the solution above.

Each of the four families of circles will include at most two circles satisfying
the conditions of the problem. Thus there can be as many as eight solutions to the
problem.

Problem 403. Given three circles, find a fourth whose common tangents with
the first three have given lengths. (Reduce this to the preceding problem by draw-
ing, through each point of contact of these common tangents, a circle concentric
with the corresponding given circle.)

Lemma. Given a circle A (with center A) and a segment a, find all those
circles whose common tangents with A have length a.

Figure t403

Solution to Lemma. We choose some point X on circle A, draw a tangent to
A at X, and lay off a segment XY equal to a along this tangent (in either direction).
We then draw circle A′ with radius AY , and line ` through y perpendicular to XY .
Clearly any circle with its center on ` will have XY as its common tangent with
circle A, so these circles will among those we are required to find. And, since
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AX ‖ `, any circle B with its center on ` will form an angle equal to X̂AY with
circle A′.

However, note (figure t403) that if the center of the circle is on the same side of
XY as point A, then XY is a common external tangent, and circles A, B will meet

at an angle strictly equal to X̂AY . But if the center of the circle is on the opposite
side of XY as point A, then XY is a common internal tangent, and circles A, B

will meet at an angle strictly equal to 180◦ − X̂AY .
Any other circle with a common tangent with A of length a can be obtained

by starting with other points of circle A playing the role of X. Alternatively, we
can rotate figure t403a around point A to get all these circles.

Solution to exercise 403. Suppose the original circles are A, B, C, and the
given lengths are α, β, γ. Let the required circle be called σ. Then our lemma
tells us that σ must intersect a certain circle A′ (fully determined by A and α) at
a particular angle. Similarly, σ must meet a certain circle B′, fully determined by
B and β, at another angle, determined by the same given data, and σ must meet
a third determined circle C ′ at a determined angle.

Thus we are led to the situation of exercise 402b.

Problem 404. We are given a circle, two points A, A′ on this circle, and a
line D. Show that this line contains points I, I ′ with the following property: if
P, P ′ denote the intersections of D with the lines joining A, A′ with a variable
point M on the circle, the product IP · I ′P ′ remains constant, that is, independent
of the position of M .

Figure t404



196

Solution. We draw chords AB, A′B′ through A, A′ respectively, both parallel
to line D. Let I, I ′ be the intersections of AB′, A′B with line D. We will show
that I, I ′ are the required points.

Indeed, we have ÂIP = ÂB′A′; Â′I ′P ′ = B̂A′B′ (from parallel lines), and

ÂB′A′ = B̂A′B′, since ABA′B′ is an isosceles trapezoid. Hence ÂIP = Â′I ′P ′.

And ÎAP = B̂′A′M (they both intercept arc B′M on the given circle), and

B̂′A′M = Â′P ′I ′ (again, from parallel lines). Hence ÎAP = Â′P ′I ′, so triangles
AIP, P ′I ′A′ are similar. It follows that IP · I ′P ′ = IA · I ′A′, which is independent
of point M .

Note. The main difficulty here is to locate the required points I, I ′.

The proof above must be changed slightly if point M is on minor arc BB′, a
case not shown in the diagram. But the result still holds.

Special cases occur when M falls on B or B′, so that AM or A′M is parallel
to D. As M approaches B, point P recedes to infinity, and P ′ approaches I ′.
Similarly, as M approaches B′, point P approaches I.

Problem 405. In the preceding problem, assume that the line D does not
intersect the circle. Show that on each side of the line there is a point from which
the segment PP ′ subtends a constant angle (Exercise 278).

Solution. We use figure t404, which shows a case in which line D does not
intersect the given circle.

In exercise 2 we defined the limit point of two circles. We can analogously
define the limit point of a given circle C and a line D. We just choose any circle
C ′ for which D is the radical axis of C, C ′. We define the limit points of circle C
and line D as the limit points of circles C, C ′. (For example, we can take C ′ to be
the circle symmetric to C in line D.)

This definition makes sense if we consider C ′ as a member of a family of circles,
all of whom have a common radical axis D with C. As the radius of such a circle
increases, the circle approaches line D as a limit.

We can use a slight variation of the argument in exercise 152 to prove that any
circle with its center on D and orthogonal to C passes through two fixed points,
and that these fixed points are the limit points of circle C and line D, as defined
above.

We proceed to the proof of the statement in the problem. Let U be one of
the limit points of the given circle and line D. As in the solution to exercise 152,
we obtain IU2 = I ′U2 = IA · IB′. From the result of exercise 404, this gives

us IU2 = I ′U2 = IP · I ′P ′. By symmetry, we have ÛIP = ÛI ′P ′, and these
two pieces of information show (118, second case) that triangles UIP, P ′I ′U are

similar. The similarity of these triangles gives us ÎUP = Î ′P ′U , so P̂UP ′ =

180◦ − ÎPU − Î ′P ′U = 180◦ − ÎPU − ÎUP = ÛIP , which is constant.
This argument furnishes the point U at which segment PP ′ subtends a constant

angle. The other limit point of D and the given circle lies on the other side of line
D, and must have the same property.

Problem 406. We are given circles S,Σ without common points, with centers
O,ω, and radii R, ρ, and we consider the circles C which are tangent to S and
orthogonal to Σ.
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1◦. Show that all of these circles are tangent to a second fixed circle;

Figure t406a

Solution. Suppose C (fig. t406a) is any circle tangent to S and orthogonal
to Σ. Consider an inversion in circle Σ. This inversion takes C onto itself (227b),
and S onto another circle S′ which must also be tangent to C (219, corollary).

2◦. Denote by M, M ′ the common points of C with Σ and, through a fixed

point A on Oω, draw parallel lines to the bisectors of the angles ÔωM, ÔωM ′, to
their intersection points P, P ′ with a fixed line D, perpendicular to Oω. Show that
there exist two pointsX, X ′ such that the linesXP, X ′P ′ are always perpendicular;

Solution. We first examine a very special case, when the point A mentioned
in the problem statement is one of the intersections of line Oω with circle Σ. We

draw AM, AM ′, and note that ÔωM = 2ÔAM and ÔωM ′ = 2ÔAM ′. Thus
AM, AM ′ are, for this special case, the lines through A parallel to the bisectors of

ÔωM, ÔωM ′. Put another way, for this position of A, the two lines described in
the problem statement pass through points M, M ′.

We now consider an inversion about point A which takes circle Σ onto the
given line D. (Note that the power of this inversion is the distance from A to the
intersection of D and Σ). This inversion takes points M, M ′ onto points P, P ′.
The image of circle C is a circle through P and P ′ which is orthogonal to line D;
that is, circle C inverts into the circle c with diameter PP ′. Circle S inverts into
some circle s. Since C is tangent to S, circle c must be tangent to circle s at a point
T . This point T is a center of similarity for circles c, s, and so if we extend lines
PT, P ′T past T , they will intersect s at the endpoints Q, Q′ of a diameter parallel
to line D. Because we can describe QQ′ with respect to line D and circle s, and
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without regard to the particular circle C we chose, points Q, Q′ do not depend on
C, and so play the role of X, X ′ as required in the problem.

Figure t406b

Thus we have solved the problem for a point A which is the intersection of
line Oω and circle Σ, and for any line D perpendicular to Oω. We now translate
point A parallel to Oω by any distance at all to get point An, and apply the same
translation to line D to get Dn. If we carry out the same construction described
in the problem statement, we get two new lines through An, parallel respectively
to AM, AM ′. Their intersections with Dn are simply the images of P, P ′ under
the same translation. Thus if we translate Q, Q′ to get points Qn, Q

′
n, these new

points will also have the property that QnPn ⊥ Q′nP ′n, independent of the position
fo circle C. Thus Qn, Q

′
n fulfill the requirements of the problem statement.

To solve the problem for any point An on line Oω, and any line Dn perpen-
dicular to Oω, we first translate An to coincide with A (the intersection of Σ and
Oω. The same translation will take line Dn onto some line D, perpendicular to
Oω. We then solve the problem for A, D, and use the inverse of the translation we
had applied to get a solution for An, Dn.

3◦. Show that there exist two points at which the segment PP ′ subtends a
constant angle (preceding exercise).

Solution. We will use the results of exercises 404, 405 to show that the limit
points of circle s and line D satisfy the conditions of the problem.

First note that if we had known where points Q, Q′ lie (for any circle C), then
we could determine from them points P, P ′ by using the construction described in
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the statement of exercise 404. That is, P, P ′ are the intersections with D of the
lines joining fixed points Q, Q′ to a variable point T on circle s.

Now by assumption, circles Σ and S do not intersect. Therefore circle s and
line D, their images under a certain inversion, also do not intersect . So we can
apply the result of exercise 405 to s, D, and the limit points of this circle and line
satisfy the conditions of the problem.

4◦. Consider a position C1 of the circle C, intersecting Σ in M, M ′, then a
second position C2 intersecting Σ in M ′ and a third point M ′′, then C3 intersecting
Σ in M ′′,M ′′′, etc. Find a condition for the circle Cn+1 to coincide with C1. (If d is
the distance Oω, the right triangle whose hypotenuse is d2−R2−ρ2 (or R2+ρ2−d2)
and a leg equal to 2Rρ, must have an acute angle equal to half the central angle of a
regular (convex or star) polygon whose number of sides is n or a divisor of n.) If the
circles S,Σ have a common point,the limiting position of points M, M ′, M ′′, M ′′′

will be their points of intersection.

Figure t406c

Solution. We assume that Cn+1 coincides with C1 for some n, and continue
to assume that circles S, Σ do not intersect. Under these conditions, the result of
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exercise 248 assures us that there is an inversion taking S, Σ onto two concentric
circles. Figure t406c shows the result of this inversion. The image of S is labeled
S, the image of Σ is labeled Σ, and so on.

We saw, in part (a) of this exercise, that if we invert S in circle Σ, we obtain
a circle S′ which is tangent to all the circles Ci. It follows from exercise 250 that
the image S′ of S′ in figure t406c will be a circle inverse to S in circle Σ. Thus
S′ will be concentric with S and Σ. And since inversions preserve tangency, (219,
corollary) S′ will be tangent to all the circles Ci. From this it follows that the
circles Ci, which are tangent to two concentric circles, must all have equal radii.
And certainly each Ci is tangent to Ci+1.

Let O be the common center of S, Σ, S′, let M, M ′ be the intersections of

C1 with circle Σ, and let m be the center of C1. Angle M̂OM ′ is equal to the
corresponding angles subtended by each circle Ci. Since C1, Cn+1 coincide, this

means that n copies of M̂OM ′ must add up to some integer multiple of 360◦, and so
segment MM ′ is the side of one of the polygons described in the problem statement,

M̂OM ′ is one of its central angles, and M̂Om′ is half its central angle.
Now suppose R is the radius of circle S, and ρ is the radius of circle Σ. We

can compute the radius of S′, the inverse of S′ with respect to Σ, by looking at the
points of tangency of C1 to S and S′. These points are diametrically opposite on
C1, and are endpoints of radii of S, S′. Since they are also inverses of each other,

we have R′ · R = ρ2, where R′ is the radius of circle S′. Hence R′ = ρ2

R
. We can

compute Om as the average of the radii of S, S′, so that Om = 1
2

(
R+ ρ2

R

)
.

Figure t406d
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The rest of the computation required by the problem can be done in several
ways. One way is to note that triangle OMm is right-angled at M , and we have
just computed the lengths of a leg (OM) and a hypotenuse (Om). If we multiply
these quantities by 2R, we get the length of a leg and the hypotenuse of a triangle
similar to OMm. A leg of this triangle (corresponding to OM will have length 2Rρ,

and its hypotenuse will have length R
2

+ρ2. If C1, Cn+1 coincide (as we have been
assuming), an acute angle α of this triangle is half the central angle of a regular
polygon such as mentioned in the diagram.

Now we apply the final result of exercise 396. The statement there implies that

the quantity d2−r2−r′2
rr′ must be invariant under the transformation taking figure

t406b onto figure t406c (where d is the distance between any two circles in one of
the diagrams, and r, r′ are the radii of the two circles). We apply this to figure

t406c and circles S, S′. Here, d = 0, so the invariant quantity is R
2
+ρ2

2Rρ
. For figure

t406b, and circles S, S′, the invariant quantity is ±d
2−R2−ρ2

2Rρ , where d = Oω.

Figure t406e
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Thus we have, from the invariance described in exercise 396, R
2
+ρ2

2Rρ
=±d

2−R2−ρ2
2Rρ .

This means that the angle α mentioned above is the same as an angle of a right
triangle with hypotenuse ±d2 −R2 − ρ2 and a leg equal to 2Rρ. This is exactly
the condition described in the problem statement. And since the argument can be
reversed, this condition is sufficient as well as necessary.

We now examine the situation in which circles S, σ have a point in common.
This case is significantly easier. In figure t406d, circles S, Σ intersect at points
X, Y . As before, the circles Ci are all tangent to circle S′, the inversion of S in
Σ. In this, case circle S′ will also pass through X, Y (since these points are on the
circle of inversion).

We invert figure 406d in any circle centered at point Y , with the result shown in
figure 406e. The three circles S, S′, Σ invert into three lines through X (the image
of point X). Since circles S, S′ make equal angles with Σ, the image Σ bisects the

angle between the lines S, S
′
. Thus circles Ci invert into circles Ci, with centers

on line Σ (the image of Σ) and tangent to lines S, S′ (the images respectively of
S, S′. The circles Ci are also tangent in pairs, at points M, M ′, M ′′, and so on.

If we consider the homothecy with center X which takes point M onto M ′, we
have XM : XM ′ = XM ′ : XM ′′ = XM ′′ : XM ′′ = . . . . From this it is clear that
the sequence of points M, M ′, M ′′ . . . tends towards X, so the s that the sequence
M, M ′, M ′′ . . . tends towards X as a limit.

Problem 407. The perpendicular from the intersection of the diagonals of a
cyclic quadrilateral to the line which joins this point to the center of the circum-
scribed circle is divided into equal parts by the opposite sides of the quadrilateral.
(Apply the remark in no. 211.)

Solution. Figure t407 shows inscribed quadrilateral with diagonals AC, BD.
Point O is the circumcenter, and opposite sides AD, BC intersect at F . Line
KL is perpendicular to OE, and we must show that ME = NE. The result
is unexpectedly difficult to achieve. Our argument is mostly algebraic, and rests
heavily on Menelaus’ Theorem (192).

Our computations, as is usual when using this theorem, will be done using
directed line segments. We first apply Menelaus’ theorem to triangle FMN , with
transversal AEC:

(1)
AF

AM
· EM
EN

· CN
CF

= 1.

Next we apply it to the same triangle (FMN), but with transversal BED:

(2)
DF

DM
· EM
EN

· BN
BF

= 1.

From 131 we have AF ·DF = BF · CF , The plan of the following computation is
to isolate the expression EM

EN and show that its value is equal to 1. That will solve
the problem.

To that end, we multiplying (1) and (2) together (we have rearranged and
grouped various terms):

(3)

(
EM

EN

)2

· AF ·DF
BF · CF

· BN · CN
AM ·DM

= 1.
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Figure t407

Now AF ·DF = BF ·CF , since both are the power of point F with respect to the
circumcircle. So we can ignore this fraction. We examine the product BN ·CN in
some detail. We have BN · CN = NK · NL, since both are the power of N with
respect to the circle. And since OE is the perpendicular bisector of segment KL,
we have EK = EL. Thus BN · CN = NK · NL = (EK + NE)(EL − NE) =
(EK +NE)(EK −NE) = EK2 −NE2.

We perform a similar transformation with the product AM · DM . We have:
AM ·DM = MK ·ML = (EK −ME)(EL+ME) = (EK −ME)(EK +ME) =
EK2−ME2. Substituting these values for the products BN ·CN, AM ·DM into
(3), we find (

EM

EN

)2

=
EK2 − EM2

EK2 − EN2
.

Using properties of proportions (see note), we find that this last equation is equiv-

alent to
(
EM
EN

)2
=
(
EK
EK

)2
= 1, which proves the assertion of the problem.

Note. The last transformation uses the fact that if a : b = c : d, then a : b =
(a + c) : (b + d). Students not familiar with this property of proportions can be
asked to give a quick algebraic proof.

Problem 408. Given two circles C, C ′, and two lines which intersect them,
the circle which passes (Exercise 107b) through the intersections of the chords of
the arcs intercepted on C with the chords of the arcs intercepted on C ′ has the
same radical axis as C, C ′ (use Exercise 149).

Solution. We use the notation of exercise 107b, on which this problem builds.
In figure t408a, the two given circles are C, C ′, the two given lines are AB and CD.
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Circle C cuts off chords AB, CD on the given lines, while circle C ′ cuts off chords
A′B′, C ′D′ . Line A′C ′ intersects lines AC, BD at points P and R respectively.
Line B′D′ intersects lines AC, BD at points Q, S respectively.

Figure t408a

The plan of our proof is to use the result of exercise 149, so we need to compute
the powers of points P, Q, R, S with respect to the two given circles. This is not
easy.

Let U be the intersection of lines PR, QS. We apply Menelaus’ Theorem (192)
twice to triangle PQU . First, from transversal AB, we have:

(1)
AP

AQ
· B
′Q

B′U
· A
′U

A′P
= 1.

Next, from transversal CD, we have:

(2)
CP

CQ
· D
′Q

D′U
· C
′U

C ′P
= 1.

Note that

(3) A′U · C ′U = B′U ·D′U,
since both products are equal to the power of point U with respect to circle C ′.

If we multiply (1) and (2) together, the use (3) to cancel terms, we arrive at:

(4)
PA

PA′
· PC
PC ′

=
QA

QB′
· QC
QD′

.
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(Our reversal of the directions of each line segment doesn’t affect the equation.)
We now repeat the computation, starting with triangleRSU , and using transver-

sals AB, CD, to get:

(5)
RB

RA′
· RD
RC ′

=
SB

SB′
· SD
SD′

.

Finally, we note that triangles PAA′, SDD′ are similar (as we did in the

solution to exercise 107a). Indeed, P̂AA′ = 180◦ − B̂AC = B̂DC = ŜDD′ (from

cyclic quadrilateral BACD), and P̂A′A = B̂′A′C ′ = B̂′D′C ′ = ŜD′D (two of

these angle intercept the same arc B′C ′ on circle C ′.). An analogous examination
of angles also shows that triangles PCC ′, SBB′ are similar.

From these similar triangles we have PA
PA′ = SD

SD′ ;
PC
PC′ = SB

SB′ . Multiplying these
two equations, we have:

(6).
PA · PC
PA′ · PC ′

=
SB · SD
SB′ · SD′

Equations (4), (5 ), and (6) show that the ratio of the powers of each of the
points P, Q, R, S with respect to circles ABCD, A′B′C ′D′ are equal. The result
of exercise 149 then implies that points P, Q, R, S lie on a circle which has a
common radical axis with the two given circles.

Note. The special case in which the two given lines coincide is of interest, and
is simpler. In this case we have the following result (fig. t408b):

Give two circles C, C ′ and a line m intersecting both. The tangents to circle
C at its points of intersection with m meet the tangents to circle C ′ at its points
of intersection with m in four points P, Q, R, S. These four points lie on a circle
having a common radical axis with C and C ′.

Indeed (fig. t408b) if V is the intersection of lines PS, QR, we can apply
Melenaus’ Theorem (192) to triangle PQV and transversal AA′ to get:

AP

AQ
· A
′Q

A′V
· B
′V

B′P
= 1,

or

AP 2

AQ2
· A
′Q2

A′V 2
· B
′V 2

B′P
= 1.

But A′V 2 = B′V 2, so we have AP 2

B′P 2 = AQ2

A′Q2 . Thus the ratio of the power of point

P and Q with respect to circles C, C ′ are equal. Analogously, we can show that
the same is true for any pair of the points P, Q, R, S, and the result follows as
before from exercise 149.

This special case will be used in the solution to exercise 411.

Problem 409. We are given two concentric circles S, C and a third circle C1.
The locus of the centers of the circles orthogonal to C, and such that their radical
axis with C1 is tangent to S, is a circle S1, concentric with C1. Conversely, the
locus of the centers of the circles orthogonal to C1, and such that their radical axis
with C is tangent to S1, is the circle S.



206

Figure t408b

Solution. Suppose we are given (fig. t409) circles C, S with a common center
O, and radii r, R respectively. Let the third circle C1 have center O1 and radius
r1.

Suppose Σ, is a circle centered at some point ω, which is orthogonal to C and
such that its radical axis with C1 is tangent to circle S.

The power of O with respect to Σ is just r2 (135). As figure t409 shows, the
tangent from O to circle C1 is a leg of a right triangle whose other leg is r1 and
whose hypotenuse is OO1. Hence the power of O with respect to C1 is OO2

1 − r21.
By 136, note 3, the difference between the powers of O with respect to circles

Σ, C1 equal to twice the product of the distance O1ω and the distance of point O
from D. That is:

|r2 − (OO2
1 − r21)| = 2R ·O1ω,

or

(1) 2R ·O1ω = |r2 + r21 −OO2
1|.

This equation implies that the distance O1ω is constant (because all the other
quantities in the equation are constant). Thus point ω must lie on a circle with
this radius, concentric to C1.

Conversely, if we choose point ω as the center of a circle orthogonal to C, and
satisfying equation (1), then the distance from O to the radical axis S will be equal
to R. It follows that the locus of ω is a circle S1 with center O1.

Problem 410. Consider the family of those circles which have centers on a
given circle C, whose radius has a given ratio to the distance of this center to a
given point A in the plane (or, more generally, to the tangent from this point to
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Figure t409

another fixed circle). Show that there exists a point P which has the same power
relative to all of these circles. The radical axis of each of these circles with the
circle C is tangent to a fixed circle with center P .

Solution. We first treat the case where the quantity referred to is the distance
to a fixed point A. Suppose (fig. t410) the given circle is C, its center O, and let
k be the given ratio.

Suppose M is any point on circle C, and we draw a circle σ centered at M with
radius k ·MA. We seek a point P whose power with respect to σ is constant as M
move around circle C. In particular, if we reflect M in line OA, P must have the
same power with respect to the reflection of σ as it has to σ. This implies that P
must lie on OA (which is the radical axis of σ and its reflection).

The result of exercise 218 (which refers to 127) then gives us:

(1) MP 2 = MO2 · PA
OA

+MA2 · OP
OA
−OP · PA.
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Figure t410

It is not difficult to see that the power of P with respect to σ is equal to
MP 2 − k2 ·MA2 (this is true whether P is inside, on, or outside σ). Using (1), we
can express this power as

MO2 · PA
OA

+MA2 ·
(
OP

OA
− k2

)
−OP · PA.

For the position of P which we seek, this expression must not depend on the
position of M on the circle. We can arrange for this to happen if we can eliminate
the quantity MA (other quantities which appear in this equation do not vary with
M), and we can eliminate MA by setting OP

OA − k
2 equal to zero, or choosing P so

that OP = k2 ·OA.
We now consider the radical axis of σ and C. In light of 136, remark 3, we

can compute the distance from P to this radical axis by dividing the difference
between the powers of P with respect to the circles by twice the distance between
their centers. But both these quantities remain constant as M moves around circle
C. In other words, this radical axis remains tangent to a fixed circle centered at P
with a fixed radius given by 136, note 3.

Finally, we consider the case where point A is replaced by a circle centered at
A with a fixed radius r. Then the length of a tangent from M to this circle is given
by
√
MA2 − r2, and the computation above still holds, with the quantity k ·MA

replaced by k ·
√
MA2 − r2. In particular, the relation OP = k2 ·OA still holds.

Note. Students can fill in the details omitted in the last paragraph, and also
check that the argument holds even if point A lies inside circle C.
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Problem 411. Through an arbitrary point of a circle C, draw tangents to a
circle C ′. Show that the line joining the new intersections of these tangents with
the circle C is tangent to a fixed circle (this reduces to the preceding exercise). This
circle has a common same radical axis with C, C ′. Calculate the radius of this new
circle, and the distance from its center to the center of C, knowing the radii of the
given circles, and the distance between their centers. Deduce from here a solution
of Exercise 377.

Solution. Suppose (fig. t411a) points O, O′ are the centers of circles C, C ′

respectively, and suppose r, r′ are their radii. Let L be the given point on circle
C, and let the tangents from L to circle C ′ intersect C again at M, N . Finally, let

line LO′ intersect circle C ′ at point P . Note that LO′ bisects angle M̂LN , so arcs

PN, PM are equal, and PM = PN . We draw OQ ⊥ NP and O′n ⊥ LM , and
note that n is the point of contact of tangent LM to circle C ′.

Figure t411a

We first show that triangles POQ, O′Ln are similar. Indeed, they are both

right triangles, and M̂LP = 1
2 · P̂ON , since the former is an inscribed angle and

the latter is a central angle intercepting arc PN . And certainly 1
2 · P̂ON = P̂OQ,

so M̂LP = P̂OQ.

From these similar triangles we have 1
2 ·NP : r = r′ : LO′, so NP = 2rr′

LO′ . Now

from 134, the power of O′ with respect to circle C is r2 −OO′2. But this power is
also equal to the product LO′ · PO′. It follows that

(1)
NP

PO′
=

2rr′

LO′ · PO′
=

2rr′

r2 −OO′2
Following the hint in the problem, we would like to recreate the situation in

exercise 410. If we draw a circle σ with center P and radius PM = PN , it will do
this for us. Indeed, k = PN : PO′ does not depend on the point of choice L. The
radical axis of C and σ is simply line MN , so it follows from that exercise that
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MN is tangent to some fixed circle C ′′, regardless of the position of point L. The
center O′′ of circle C ′′ lies on line OO′.

Now we consider two points L, L′ on circle C, both external to circle C ′

(the statement of the problem implies that such points exist). These determine
triangles LMN, L′M ′N ′ as described in the problem statement (see figure t411b).
Let m, n, m′, n′ be the points of contact of tangents LN, LM, L′N ′, L′M ′

respectively with circle C ′.
Let line nn′ intersects LL′, MM ′ at points p, q respectively. We will prove that

there exists a circle Γ which is tangent to lines LL′, MM ′ at points p, q respectively.

Indeed, we have p̂Ln = L̂′LM = 1
2 M ′L, and q̂M ′n = M̂M ′L′ = 1

2 M ′l, so

p̂Ln = q̂M ′n′.

Now if T is the intersection of ML and M ′L′, then Tn = Tn′, so T̂ nn′ = T̂ n′n
(that is, triangle Tnn′ isosceles), which implies that the angles vertical to them

are also equal, or p̂nL = q̂n′M ′. Thus triangles Lnp, M ′n′q agree in two pairs of

angles, so their third pair of angles are also equal, or L̂pn = M̂ ′qn′.
The equality of these angles implies the existence of our circle Γ. Indeed,

lines LL′, MM ′ (but not necessarily those line segments) are symmetric in the
perpendicular bisector of pq. Hence a perpendicular at p to LL′ will intersect a
perpendicular at q to MM ′ in a point on this perpendicular bisector, which is the
center of circle Γ (tangent to LL′ at p and to MM ′ at q).

We now apply the remark from the note to exercise 408 to circles C ′, Γ and
line nn′. The tangents to C ′ at n, n′ intersect the tangents to Γ at p, q in points
L, L′, M, M ′, all on circle C. Therefore, circles C, C ′, Γ have a common radical
axis.

To summarize: we have shown the existence of a circle Γ which is tangent
to LL′, MM ′ at their points of intersection p, q with line nn′, and which has a
common radical axis with circles C, C ′. In particular, the center of Γ lies on line
OO′.

In just the same way, we can show that there exists a circle Γ′ which is tangent
to LL′, NN ′ at their points of intersection with line mm′, and which has a common
radical axis with circles C, C ′. In particular, the center of Γ′ lies on line OO′.

We now apply the second proposition of exercise 239 to quadrilateral mm′nn′.
It follows from this proposition that lines mm′, nn′ intersect at point p on line LL′.
But this means that circles Γ, Γ′ coincide, since they are both tangent to LL′ at
point p and their centers both lie on line OO′.

That is, circle Γ has a common radical axis with C, C ′, and is tangent to lines
LL′, MM ′, NN ′ at points p, q, s, (where s is the intersection of mm′ and NN ′)
which are also the intersections of these lines with lines mm′, nn′.

Segment qs joins the points of contact of two tangents to circle Γ, so line qs

makes equal angles with MM ′ and NN ′. And M̂M ′N ′ = M̂NN ′, since they both

intercept (major) arc MN ′ on circle C. Thus in triangles M ′`′q, N`s, two pairs
of angles are equal, and so the third pair of angles must also be equal; that is,

M̂ ′`′q = N̂`s. Therefore (for reasons analogous to the argument establishing the
existence of circle Γ) there exists a circle C which is tangent to MN and M ′N ′ at
points `, `′ respectively. (Circle C is not shown in figure t411a). And we can show
that circle C has a common radical axis with circles C, Γ, by using just the same
argument we used above for circles C, C ′,Γ.
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Figure t411b

Both circles C and C ′′ are tangent to lines MN, M ′N ′, and their centers both
lie on line OO′. It is also not hard to see that both their centers lie on the same
bisector of one of the angles formed by lines MN, M ′N ′. It follows that C coincides
with C ′′.

More rigorously, we can note that circle C has a common radical axis with C ′

and Γ, and is tangent to line MN . In 311 it was noted that there are only two
such circles, so C must be one of these. But if we move L′ continuously around the
circle, line M ′N ′ also moves continuously, and hence circle C moves continuously.
But this is not possible if C moves at all, because it can only assume one of two
positions. So C does not move along with M ′N ′; that is, C is fixed, and is tangent
to any position of M ′N ′, and hence coincides with C ′′.

Thus circles C, Γ have a common radical axis with circle C ′, and also with C;
that is, with C ′′. It follows that C, C ′, C ′′ have a common radical axis.

Now we let r, r′ be the radii of C, C ′ respectively (fig. t411c) and let d = OO′.
As shown in the solution to exercise 410, the distance from center O′′ of circle
C ′′ to the center O of circle C is given by OO′′ = k2 · OO′, where (from (1) )

k = NP
PO′ = 2rr′

r2−d2 . Therefore

(2) OO′′ =
4r2r′2d

(r2 − d2)2
.

We now compute the radius r′′ of circle C ′′. Let L0 be the intersection of C
with the common centerline of C, C ′. Then O′L0 = r+ d. (See figure t411c.) The
wording of the problem implies that circle C does not lie inside circle C ′, so L0 lies
outside circle C ′. Let M0, N0 be the second intersections with C of the tangents
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Figure t411c

from L0 to C ′, and let `0 be the point of contact of tangent M0N0 with circle C ′′.
Let n0 be the point of contact of tangent L0M0 with circle C ′, and let P0 be the
point diametrically opposite L0 on circle C.

Triangles L0O
′n0, L0P0M0 are similar, so M0P0

L0P0
= n0O

′

L0O′ . It follows that

M0P0 = 2rr′

r+d . Now in right triangle L0P0M0, M0`0 is the altitude to the hy-

potenuse, so (see 123) `0P0 =
M0P

2
0

L0P0
= 2rr′2

(r+d)2 . It follows that

r′′ = O′′`0 = OP0 −OO′′ − `0P0 = r − 4r2r′2d

(r2 − d2)2
− 2rr′2

(r + d)2

= r
(r2 − d2)2 − 2r′2(r2 + d2)

(r2 − d2)2
.

Circles C ′, C ′′ will coincide (that is, C ′′ will be an inscribed or escribed circle
of triangle LMN) if point O′′ coincides with point O′; that is, if OO′′ = d. This
will happen, as we can see from (2) when d2 − r2 = ±2rr′. This is the result of
exercise 377.

Problem 412. We are given an angle ÂOB and a point P .

1◦. Find a point M on the side OA such that the two circles C,C ′ tangent to
OB and passing through the points M,P intersect at a given angle; .

2◦. Study the variation of the angle between C and C ′ as M moves on OA;

3◦. Let Q, Q′ be the points (other than M) where these circles intersect the
side OA. Show that circle through P, Q, and Q′ is tangent to a fixed line as M
moves on OA (this reduces to the preceding exercise).
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Solution. We take the original figure, shown as figure t412a, and invert it
around pole P by any power. To make things simpler, we choose the power to be
OP 2, so that the circle of inversion has radius OP . The result of the inversion is
shown in figure t412b, where corresponding elements are labeled with the subscript
1. The points O, P are their own images, so we will sometimes refer to O as O1

and to P as P1.

Figure t412a

1◦. Circles C, C ′ invert into two lines C1, C
′
1, both tangent to circle O1B1P1

and passing through point M1 on circle O1A1P1. The two angles at which circles
C and C ′ meet are equal to the two angles formed by lines C1, C

′
1. In particular,

the angle lying outside both circles, in the region of the plane containing line OB,
is equal to the angle in the region of the plane containing circle OB1P . So we
have reduced the problem to that of finding a point on circle OA1P at which the
tangents to circle OB1P meet at a given angle.

The locus of points whose tangents to a given circle meet at a given angle is
itself a circle, concentric to the given circle. Therefore point M1 is the intersection
of circle OA1P and some circle S1, the locus of points such that the tangents from
those points to circle OB1P meet at an angle equal to that at which circles C, C ′

meet. Then M is the intersection of line OA with circle S, the inverse image of S1.

2◦. As point M1 moves along arc OA1P , point M moves along side OA of

angle ÔAB. the angle between C and C ′ decreases from 180◦ to some minimum
determined by the greatest distance from M1 to the center of circle OB1P , then
increases to 180◦.

3◦. Circle PQQ′ inverts into line Q1Q
′
1, which joins the second points of in-

tersection of tangents from M1 to circle OB1P with circle OA1P . But, by exercise
411, line Q1Q

′
1 remains tangent to a certain circle, which has a common radical
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Figure t412b

axis with circles OA1P, OB1P . Therefore this circle passes through points O and
P . Thus, circle PQQ′ which is the inversion of line Q1Q

′
1, must remain tangent to

some line through point O.

Figure t413a
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Problem 413. We are given two parallel lines, and a common perpendicular
which intersects them in A, B. Points C, D are taken on these lines so that trape-
zoid ABCD has an area equal to that of a given square. Let H be the projection on
CD of the midpoint of AB. Find the locus of H. (One must distinguish two cases,
according as the points C, D are on the same or opposite sides of the common
perpendicular.)

Solution. One key to this problem is the observation that because the area
and the height of the trapezoid are both constant, the sum AC + BD of its bases
is also constant (252b).

1◦. Suppose segments AC, BD are on the same side of the common perpendic-
ular, as in figure t413a. Then if we join the midpoints E, F of AB, CD respectively,
then EF = 1

2 (AC + BD), which is also constant. Thus point F is fixed as C and
D vary. If we drop perpendicular EH to line CD, then as CD moves, H lies on
a circle with (fixed) diameter EF (78f). Thus the locus of point H is the part of
this circle lying outside triangle AFB.

Note that this solution depends on the length of EF being fixed.

Figure t413b

2◦. Suppose segments AC, BD are on opposite sides of the common perpendic-
ular, as in figure t413b. Then we can still find a segment of fixed length, if we drop a
perpendicular CC0 from C to line BD. Then AC = BC0, so C0B+BD = AC+BD,
which is again constant. Thus as C and D vary, the legs CC0, C0D of right triangle
CC0D do not vary, so the triangle retains its shape (24, 2◦). This means that angle

ĈDB has the same measure, and diagonal CD is merely translated parallel to itself.
If we drop perpendicular EH onto any position of CD, then the locus of H is a
segment of the perpendicular line (EK in figure t413b). Because A is the limiting
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position of point C, and B is the limiting position of point D, the endpoints of this
segment are the intersections M, N of line EK with the parallels to CD through
points A and B.

Problem 413b. If four circles are inscribed in the same angle, or in the corre-
sponding vertical angle, and they are also tangent to a fifth circle, then their radii
r1, r2, r3, r4 form a proportion. (One observes that these circles can be arranged
in pairs which correspond to each other in the same inversion.)

Lemma. If two tangent circles are inverted around a point P , the mode of
tangency (internal or external) is preserved whenever P is outside both circles, and
is reversed if P is inside one of the circles.

We leave this proof for the reader. Observe that if P is on one of the circles
(neither outside nor inside), then the image of that circle is a line tangent to the
image of the other circle, and the mode of tangency is not well-defined. Another
special case occurs if P is at the point of tangency of the two original circles.

Solution. Suppose (fig. t413bi) that the four circles are C1, C2, C3, C4, and
that they are all tangent to a fifth circle D as well as to two lines m1, m2, which
intersect at point P . Let k be the power of point P with respect to circle D. We
invert around P with power k. (The red circle in figure t413bi is the circle of
inversion.) Then clearly lines m1, m2 are their own image (220, remark), and it is
not hard to see that circle D is also its own image.

Figure t413bi
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Then what is the image of circle C1? It must remain tangent to the two lines,
and also to circle D, so it must be one of the other three given circles. In figure
413bi, it is clear from our lemma that C1 inverts onto C4, and C2 inverts onto C3.
This implies that the points of tangency are images: T1 inverts into T4 and T2 into
T3. Then, if t1, t2, t3, t4 denote the segments PT1, PT2, PT3, PT4 respectively,
we have

(1) t1t4 = t2t3 = k.

Now these circles are all homothetic with respect to point P , so we have r1 : r2 :
r3 : r4 = t1 : t2 : t3 : t4. Using this relationship, we can rewrite (1) as r1r4 = r2r3 ,
so that r1 : r2 = r3 : r4, which is what we wanted to prove.

Figure t413bii

Note. Figure t413bii shows a situation where some of the circles are inscribed
in the vertically opposite angle, so that their centers are on opposite sides of the
bisector of the angle formed by m1, m2. In this case, the proof must be reworded
a bit. We can again invert around P so that circle D is its own image, but we must
use a negative power of inversion (i.e. inverting in the red circle in figure 413bii,
then reflecting in point P ).

In this case, our lemma tells us that circle C1 inverts onto circle C2, and circle
C3 onto circle C4. The proof follows as before, but the roles of the circles are
changed, and the proportion is now r1 : r4 = r2 : r3. Details are left to the reader.
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Problem 414. Another solution to Exercise 329: to draw through a given
point inside an angle a secant which forms, with the sides of the angle, a triangle
with given area. Construct first the parallelogram with a vertex at the given point,
and two sides on the sides of the angle. This parallelogram cuts from the required
triangle two partial triangles whose sum is known. Reduce then to the question in
Exercise 216.

Solution. Suppose (fig. t414) we must draw secant MON through point O

inside angle X̂SY , such that (using absolute value for area) |MNS| is equal to some
value ∆. We first construct parallelogram AOBS. Then, if we drop perpendiculars
OP, OQ from O to SY, SX respectively, we have AM · OP + BN · OQ = 2(∆−
|AOBS|.

Figure t414

We now construct segment BB′ such that |BOB′| = ∆ − |AOBS|. Then we
have AM · OP + BN · OQ = BB′ · OQ, or (subtracting 2|BON | from both sides)
AM ·OP = NB′ ·OQ.

So we are led to the situation where we are given points A, B′, and we must
construct a secant MON such that AM : B′N = OQ : OP . This is the situation
of exercise 216.

Note. Actually, we do not need AOBS to be a parallelogram. It can be any
quadrilateral such that ∆−2|AOBS| is non-negative, and the argument still holds.

Problem 415. Construct a triangle knowing an angle, the perimeter, and
the area (Exercises 90b, 299). Among all triangles with a given angle and given
perimeter, which one has largest area?

Solution. Suppose we know the measure of angle Â of triangle ABC, as well
as its perimeter 2s. Then, if E1, F1 are the points of contact of the escribed
circle opposite vertex A (fig. t415), then the result of exercise 90b tells us that
AE1 = AF1 = s. This allows us to construct points E1 and F1. We can then get
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excenter I1 (by erecting perpendiculars to AF1, AE1 at F1, E1 respectively), and
construct the escribed circle itself.

Figure t415

We know (254) that the inradius r of the triangle is equal to K
s , where k

is its area. This circumstance allows us to construct the length r. If we then

draw a parallel to AE1 at a distance r, it will intersect the bisector of angle Â
at the incenter I of triangle ABC. We can then construct the incircle, and side
BC is simply the common internal tangent of circles I and I1. This procedure
accomplishes the construction required by the problem.

We next determine the triangle of largest area among those with a given angle
and given perimeter. We know that rs = K, so if the perimeter is fixed, so is s
(the semiperimeter), and to maximize K we must maximize r. It is not hard to
see, from the figure, that this will occur when circles I and I1 are tangent; that is,
when triangle ABC is isosceles.

Note. The original problem leaves ambiguous exactly how we are ‘given’ the
area of the triangle. The easiest way to fill in this gap is to assume that a triangle
with the same area is given. Then the construction of r involves drawing a triangle
with a given base (s) equal in area to a given triangle. Students can solve this
sub-problem themselves.
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Problem 416. Construct a triangle knowing a side, the perimeter, and the
area (construct the figure formed by the inscribed circle and an escribed circle).
Among all triangles with a given side and given area, which has the smallest perime-
ter? Among all triangles with a given side and given perimeter, which has the largest
area?

Solution. The solution to this problem is only slightly different from the solu-
tion to exercise 415, so we will use the same diagram (fig. t415). In that diagram,
suppose ABC is the required triangle. We are given BC = a, the perimeter of
ABC, which we will denote as 2s, and its area k. Suppose I is the incenter of
ABC, r its radius, and E its point of tangency with side AC. Further, let I1 be the
excenter opposite vertex A, let r1 be the radius of the corresponding escribed circle,
and let E1 be the point of contact of the escribed circle with side AC (extended).

From the result of exercise 90b, we have AE = s− a, and EE1 = AE1−AE =
s− (s− a) = a. From the result of exercise 299, we have:

(1) r =
k

s
; r1 =

k

s− a
.

Thus we can construct point E1, then segment EE1 = a, then the radii r, r1 (but
see the note to exercise 415), and finally circles I, I1 (the inscribed and escribed
circles of the triangle). The construction is completed by drawing the common
internal tangent of the two circles, and another common external tangent.

Next we investigate the possibility of performing the construction. We need
circles I, I1 to be outside each other, or at worst tangent to each other. That is,
we need I1I

2 = a2 + (r1 − r)2 ≥ (r1 + r)2, which simplifies to a2 ≥ 4rr1.
We now determine the triangle with smallest perimeter, among those with a

given side and area. For given values of a and k the equations (1) above show that
radii r, r1 both increase as s decreases. The smallest perimeter thus corresponds
to the extreme situation where a2 = 4rr1; that is, when II1 = r + r1. This means
that triangle ABC will be isosceles.

Finally, we look at the question of finding the triangle with largest area, if a
side and the perimeter are fixed. We again use (1) to note that if a and s are fixed,
then r and r1 increase as k increases. So the largest value of k corresponds to the
same situation, when a2 = 4rr1, which is again when ABC is isosceles.

Notes (i). We are not given r, r1: students can use (1) to rephrase this
condition for existence of triangle ABC in terms of the quantities which are given.

(ii). We can also find the triangle of largest area of those with a given perimeter
and given side by using the results of 251. The formula derived there can be written
as k2 = 1

4s(s − a)[a2 − (b − c)2]. Thus for fixed s and a, the area will increase as
|b− c| decreases. Thus the area will be largest when b = c.

(iii). We can use another argument to find the triangle of smallest perimeter,
when the area k and a side a are fixed. Suppose ∆ is an isosceles triangle with area
k, perimeter 2s, and base a. Suppose ∆′ is any non-isosceles triangle with area k,
perimeter 2s′, and base a. We will show that s < s′.

Indeed, we can construct isosceles triangle ∆1 with base a and perimeter 2s′,
and let k1 be its area. We then compare triangles ∆′ and ∆1. They have the same
base, and the same perimeter 2s′, so from result (ii) above we know that k1 > k.
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Let h be the common altitude to side a of ∆, ∆′, and let h1 be the corresponding
altitude of ∆1. Then h1 > h, and comparing triangles ∆,∆1, it follows that s′ > s.
(We use the fact that the larger projection corresponds to the larger declination,
so that in isosceles triangles with equal bases the larger altitude corresponds to the
larger leg.)

Problem 417. Construct a quadrilateral knowing its four sides and its area.
(Let ABCD be the required quadrilateral, so that AB = a, BC = b, CD = c,
DA = d. Let ABC1 be a triangle exterior to this quadrilateral, equivalent to ADC,

and with an angle Ĉ1BA = ÂDC. We can find each of the following quantities:
(i) side BC1; (ii) the difference of the squares of AC and AC1; (iii) the projection
of CC1 on AB. Finally (iv) with the help of the known area we will know the
projection of CC1 on a perpendicular to AB. Once the segment AB = a is placed
anywhere, this will allow us to construct a segment equal and parallel to CC1,
and therefore to complete the required construction.) The problem, if possible,
generally has two solutions. For these two quadrilaterals, the triangle considered in
Exercise 270b has the same shape, and consequently (by Part 5 of that exercise),
these quadrilaterals can be considered inverse to each other. Given a quadrilateral,
construct another, not equal to the first, but with equal corresponding sides and
equal area. Among all the quadrilaterals with given sides, the largest in area is
cyclic.

Solution. We first separate the various statements in the given problem. Using
the notation of the problem statement:

(i) Find side BC1.
(ii) Find the difference of the squares of AC and AC1.
(iii) Find the projection of CC1 on AB.
(iv) Find the projection of CC1 onto a line perpendicular to AB.
(v) Complete the required construction.
(vi) The problem, if possible, generally has two solutions. For these two quadri-

laterals, the triangle considered in Exercise 270b has the same shape, and conse-
quently (by Part 5 of that exercise), these quadrilaterals can be considered inverse
to each other.

(vii) Given a quadrilateral, construct another, not congruent to the first, but
with equal corresponding sides and equal area.

(viii)Among all the quadrilaterals with given sides, the largest is the cyclic one.

Lemma. In any quadrilateral, the difference between the sums of the squares of
pairs of opposite sides is equal to twice the product of a diagonal and the projection
on it of the other diagonal.

Proof of Lemma. The statement of the lemma assumes that we are subtract-
ing the smaller product from the larger. In figure t417a, in which ÂEB is obtuse

and B̂EC is acute, this means that we subtract BC2 +AD2 from AB2 + CD2.
Let L, M be the projections of vertices B, D of quadrilateral ABCD onto

diagonal BD. We must prove that

(1) (AB2 + CD2)− (BC2 +AD2) = 2AC ·ML.

We have (126):
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Figure t417a

AB2 = AE2 +BE2 + 2AE · EL;

BC2 = BE2 + EC2 − 2EC · EL;

CD2 = CE2 +DE2 + 2EC ·ME;

AD2 = AE2 +DE2 − 2AE ·ME.

It follows that (AB2 +CD2)− (BC2 +AD2) = 2AE ·EL+ 2EC ·ME+ 2EC ·
EL+ 2AE ·ME = 2(AE +EC)(ME +EL) = 2AC ·ML. This proves our lemma.

(i). Figure t417b shows the construction of point C1 as described in the prob-
lem statement. Using absolute value for area, this means that we have |ADC| =

|ABC1| and ÂBC1 = ÂDC. By 256 we have:

(2) AD · CD = AB · C1B,

If we let C1B = m, we can write this as

(3) m =
cd

a
.

This gives us the length of side BC1.
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Figure t417b

(ii). Let K, L be the feet of altitudes AK, C1L of triangles ACD, ABC1.
Then we have

(4) AC2 = CD2 +DA2 ± 2CD ·DK;

(5) AC2
1 = AB2 +BC2

1 ± 2AB ·BL.

Since ÂDC = ÂBC1, it follows that the signs noted as ambiguous above are
either both positive or both negative. Now triangle ADK, C1BL are similar (they
have equal corresponding angles), so DK : BL = AD : C1B. We can rewrite (2) as
AD : C1B = AB : CD, and thus DK : BL = AB : CD, or

(6) CD ·DK = AB ·BL.
Using (4), (5), and (6), we have:

(7) AC2
1 −AC2 = AB2 +BC2

1 − CD2 −DA2 = a2 +m2 − c2 − d2.
This gives us the difference of the squares of AC and AC1.

(iii). We use (1), applied to quadrilateral AC1BC to compute the length of
projection LM of C1C onto line AB. We have:

(AC2
1 +BC2)− (BC2

1 +AC2) = 2AB · LM.
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Then (7) gives us

2AB · LM = (AC2
1 −AC2) + (BC2 −BC2

1 ) = (a2 +m2 − c2 − d2) + (b2 −m2).

It follows that

(8) LM =
a2 + b2 − c2 − d2

2a

This is the result required by (iii)

(iv). We draw CM ⊥ AB, and let CN be the projection of CC1 onto line AB.
Then we have (again using absolute value for area) |ABCD| = |ABC|+ |ACD| =
|ABC|+ |ABC1| = 1

2AB(CM + C1L) = 1
2AB · CN . Thus:

(9) CN =
2|ABCD|

a
.

This is the result of (iv)

(v). We know the length of C1N = LM from (8), and the length of CN from
(9), so we can construct segment CC1 as the hypotenuse of a right triangle with
these two legs. Then we use (3) to construct BC1. Now we know all three sides
of triangle BCC1, so we can construct it (24, 3◦). We next locate vertex A by
drawing BA ‖ C1N through B, and laying off segment BA = a, which is given.
Finally, we locate the position of vertex D by constructing triangle ACD knowing
its sides.

(vi). If the construction is possible, then it will generally have two solutions.
Indeed, having drawn segment CC1, we can construct triangle BCC1 (from its
three sides) in two different ways: the locations of point B will be symmetric in
line CC1. These two positions are labeled B, B1 in figure 417b, and the resulting
quadrilaterals (both of which include vertex C) are labeled ABCD, A1B1CD1.

To investigate the situation of exercise 270b, we invert points A, B, C in
point D using any power of inversion to obtain points A′, B′, C ′. Then, from

217, quadrilaterals AA′BB′, BB′CC ′ are cyclic, so we have Â′B′B = B̂AA′ and

B̂B′C ′ = B̂CC ′. It follows that:

(10) Â′B′C = Â′B′B + B̂B′C = 360◦ − B̂AD − B̂CD =

= ÂDC + ÂBC = Ĉ1BA+ ÂBC = Ĉ1BC.

As in the solution to exercise 270 (part 1◦), we have:

(11) A′B′ : B′C ′ = (AB · CD) : (BC ·AD) = ac : bd.

In the same way, we can invert A1, B1, C in D1 (using the same power of
inversion) to obtain points A′1, B

′
1, C

′
1. Arguing analogously, we will find:

(12) Â′1B
′
1C
′
1 = Ĉ1B1C;

(13) A′1B
′
1 : B′1C

′
1 = ac : bd.
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An examination of (10), (11), (12), and (13) leads to the conclusion that the
triangles obtained by the construction of exercise 270 from quadrilaterals ABCD,
A1B1CD1 have the same shape, as asserted by (vi).

(vii, solution 1). Suppose we are given quadrilateral ABCD. We must con-
struct a second quadrilateral, not congruent to the first, but with the same sides
and area. We can do this by following the steps above: construct point C1, then
point B1, symmetric to B in line CC1, and complete the construction of quadrilat-
eral A1B1CD1 as indicated above. This quadrilateral will have the same area as
ABCD, and the same sides, but will not be congruent to ABCD.

(vii, solution 2). Suppose the given quadrilateral is ABCD, and the required
quadrilateral is A0B0C0D0. We will find an inversion that takes the given quadri-
lateral onto the required one, by determining its pole and its power. If O is the
pole, and k the power, we must have A0B0 = k·AB

OA·OB = AB (218), with similar
relationships for the other corresponding vertices. It follows that k = OA · OB =
OB · OC = OC · OD = OD · OA, so that we have OA = OC and OB = OD.
Also, OA0 = k

OA = OA·OB
OA = OB, and similarly OA0 = OC0 = OB = OD and

OB0 = OD0 = OA = OC.
From this inversion we have the following construction. We take for point O

the intersection of the perpendicular bisectors of the diagonals of ABCD. Then
OA = OC and OB = OD. On rays OA, OC we lay off segments OA0, OC0,
both equal to OB. Then on rays OB, OD we lay off segments OB0, OD0, both
equal to OA (fig. t417c). It is clear that (using absolute value for area) |OAB| =
|OB0A0|; |OBC| = |OC0B0|, and so on, so that |ABCD| = |A0B0C0D0|. This
observation provides a second solution for (vii).

Note. If quadrilateral ABCD turns out to be cyclic, then points B, B1 coin-
cide (on segment CC1), and there is only one quadrilateral satisfying the conditions
of the problem.

(viii). From (9) we have |ABCD| = 1
2a · CN . If sides a, b, c, d of ABCD

are fixed, the largest value of its area thus corresponds to the largest value of CN .
But in right triangle C1NC, side C1N = LM is determined by (8) from the lengths
of the sides. So the length of leg CN depends only on the length of hypotenuse
CC1. But as B varies in position, side BC is fixed, and (3) shows that the length
of BC1 is also fixed. So, applying 26 to triangle CC1B, CC1 ≤ CB + BC1. Since
the segments on the right of this inequality have fixed length, CC1 is largest when

C, C1, B are collinear. This means that ĈBC1 = B̂+ D̂ = 180◦, and quadrilateral
ABCD with the largest possible area is cyclic.

Problem 417b. Given a quadrilateral with sides a, b, c, d, diagonals e, f , and
area S, we have

4e2f2 = (a2 + c2 − b2 − d2)2 + 16S2.

The angle V of the diagonals is given by

tanV =
4S

a2 + c2 − b2 − d2
.

Deduce from this a solution of the preceding exercise. (Having fixed the position of
one side, each of the remaining two vertices will be the intersection of two circles.)
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Figure t417c

Solution. We use figure t417a, letting AB = a, BC = b, CD = c, DA =
d, AC = e, BD = f . Let E be the intersection of the diagonals, and let L, M
be the projections of vertices B, D on line AC. Finally, let N be the projection of
vertex B on line DM .

From right triangle BDN we have f2 = BN2 + DN2 = ML2 + DN2. We
multiply the left side by 4e2, and the right side by 4AC2, which are two equal
expressions, to get:

(1a) 4e2f2 = (2AC ·ML)2 + (2AC ·DN)2.

We work on the right hand side of this equation term by term. From equation
(1) in the solution to exercise 417, we have 2AC ·ML = AB2+CD2−BC2−AD2 =
a2+c2−b2−d2. Also, 2AC ·DN = 2AC ·DM+2AC ·BL = 4|ACD|+4|ABC| = 4S
(using absolute value to denote areas). Substituting these expressions into (1a), we
get:

(2a) 4e2f2 = (a2 + c2 − b2 − d2)2 + 16S2,

as required.

We next compute tan V̂ , where V̂ is the (acute) angle between the two diagonals

of the quadrilateral. We have: tan V̂ = tan D̂BN = DN
NB = DN

ML = 2AC·DN
2AC·ML . Re-

placing the numerator and denominator of this fraction by the expressions derived
above, we have:

tan V̂ =
4S

a2 + c2 − b2 − d2
,
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as required.
We now address the task of exercise 417: to construct a quadrilateral, knowing

its four sides and its area. In figure t417bi, point P is chosen so that triangle ABP
is similar to triangle ADC. Then we have: BP = ac

d ; AC : AP = AD : AB =

d : a. Also, ĈAD = B̂AP , which implies that ĈAP = D̂AB. Therefore triangles
ACP, ADB are also similar (118, 2◦), and CP = ef

d .

Figure t417bi

We now can compute CP from the given sides and area of the quadrilateral.
Indeed, if we divide both members of (2a) by 4d2, we find:

(3a)

(
ef

d

)2

=
1

4

(
a2

d
+
c2

d
− b2

d
− d
)2

+

(
2S

d

)2

.

Let us fix the position of side BC (whose length is given) on the plane. Then
from our discussion, we know the distances from point P to B and to C: BP =
ac
d ; CP = ef

d , and the last is given by (3a). These two pieces of information
determine point P . We can determine point A by finding the intersection of two
circles: (i) the circle which is the locus of points A such that AC : AP = d : a
(116), and (ii) the circle with center B and radius a. Finally, we can locate vertex
D because we know its distance c from point C and its distance d from point A.
This allows us to construct the required quadrilateral.

Problem 418. Construct a cyclic quadrilateral knowing its sides.

Solution. Suppose (fig. t418) ABCD is the required quadrilateral, and let P
be a point on the plane such that triangle ABP is similar to triangle ADC.



228

Figure t418

First note that points P, B, C are collinear, because ÂBP + ÂBC = ÂDC +

ÂBC = 180◦. Also, from similar triangles ABP, ADC, we have BP = AB·CD
AD . If

we fix side BC, this gives us the length of BP in terms of the given sides, and thus
allows us to locate point P .

From the same similar triangles, we have AC : AP = AD : AB. Thus point
A lies on the intersection of two circles: (i) the locus of points whose distances
to C and P are in the ratio AD : AB (116), and (ii) a circle centered at B with
radius AB (which is given). Finally, we can locate vertex D from its given distances
CD, AD from vertices C and A.

Problem 418b. Among all polygons with the same number of sides and the
same perimeter, the largest is the regular polygon. (Assuming that a polygon of
maximum area exists, we can use the preceding exercises and Exercise 331 to show
that this polygon must be regular.) The result can be restated as follows: If S
is the area of a polygon, and p its perimeter, the ratio S

p2 is larger for a regular

polygon than for an irregular polygon with the same number of sides.

Solution. Suppose ABCDE... is the polygon referred to, with a given number
of sides and a given perimeter, and with the largest possible area. (We assume that
such a polygon exists.) We have solved this problem completely for triangles in
exercise 416, so we can assume that our polygon has at least four sides.

Take four consecutive vertices A, B, C, D of our polygon. If these four vertices
did not lie on the same circle, then we could increase the area of our polygon by
replacing quadrilateral ABCD with cyclic quadrilateral AB′C ′D (keeping vertices
A and D fixed), by the last result of exercise 417. We can repeat this argument for
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any four consecutive vertices of the polygon, so the polygon of largest area must be
cyclic.

Now suppose that two adjacent sides of the polygon, say AB and BC, are not
equal. Then we can replace triangle ABC with an isosceles triangle with the same
perimeter, but having a larger area (by the result of exercise 416).

Since the quadrilateral of largest area is cyclic, and has equal sides, it must be
regular.

We can phrase this result in terms of the ratio S : p2. If we compare a regular
polygon with a non-regular polygon with the same number of sides and the same
perimeter, this ratio will be larger for the regular polygon, since its area will be
larger. And since all regular polygons with the same number of sides are similar,
this ratio will not depend on the size of the regular polygon.

Note. In more advanced work, we can obtain this result even without assuming
that the polgyon of largest area exists.

Problem 419. Among all the closed curves of same length, the circle is the one
whose interior has the largest area. (Consider the ratio S

p2 for a polygon inscribed in

a circle and a polygon inscribed in a curve of the same length, the number of sides
being the same in the two cases, and let the number of sides increase indefinitely.)

Solution. We consider a circle with circumference C, and a closed curve with
the same length. In the circle, we inscribe a regular polygon with n sides, and let
Sn, Pn denote its area and perimeter respectively. In the closed curve we inscribe
another polygon with n sides, and let sn, pn denote its area and perimeter. The
result of exercise 418b tells us that

(1)
Sn
P 2
n

≥ sn
p2n

for any n.
Now let n increase without bound. Then we can choose the vertices of the

polygon inscribed in the closed curve in such a way that the length of each of
the sides approaches 0. Thus Pn approaches C, and pn approaches c. Also, Sn
approaches S and sn approaches s, where S and s denote the area bounded by the
circle and the other closed curve, respectively. From (1), it follows that S

C2 ≥ s
c2 ,

so that S ≥ s.
Thus, of all closed curves with a given length, none can enclose a larger area

than that of the circle with the given length as circumference.

Note. It remains to prove that no closed curve other than the circle can also
enclose the largest possible area, of all curves with a given length. Indeed, it is
possible, in light of the inequality S ≥ s that there is some other closed curve, not
a circle, with length C and area S (that is, s = S for this curve). In fact, a more
advanced investigation would show that there is no such curve.

Problem 419b. Let O be the intersection of the diagonals of a quadrilateral
ABCD, and let O1, O2, O3, O4 be the centers of the circles OAB, OBC, OCD,
ODA; these four centers are the vertices of a parallelogram P .

1◦. When this parallelogram is known, then the area and the diagonals of the
quadrilateral are determined;
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2◦. If points O1, O2, O3, O4 are fixed, and point O moves along a line ∆,
the vertices of the quadrilateral move about the sides of a parallelogram P ′. Study
the changes in this parallelogram as the line ∆ varies. Find the positions of ∆ for
which its area is maximum;

3◦. Construct a quadrilateral ABCD knowing two of its angles and the paral-
lelogram P ; or, knowing P and the ratios AB

AD ,
CB
CD . Discuss.

Solution. We separate the various assertions of the problem:
(0) points OAB, OBC, OCD, ODA are the vertices of a parallelogram P ;
(1) when parallelogram P is known, then the area and the lengths of the diag-

onals of the quadrilateral are determined;
(2a) if points O1, O2, O3, O4 are fixed, and point O moves along a line ∆, the

vertices of the quadrilateral move about the sides of a parallelogram P ′;
(2b) study the changes in this parallelogram as the line ∆ varies.
(2c) find the positions of ∆ for which its area is maximum;
(3a) Construct a quadrilateral ABCD knowing two of its angles and the asso-

ciated parallelogram P .
(3b) Construct a quadrilateral ABCD knowing P and the ratios AB

AD ,
CB
CD .

We give solutions to these problems separately and in order.

(0). In figure t419bi, line O1O4 is the perpendicular bisector of AO (68), and
in particular O1O4 ⊥ AO. Similarly, O2O3 ⊥ OC. But OC and OA lie along the
same line, so O1O4 ‖ O2O3. In the same way, we can show that O1O2 ‖ O3O4, so
that O1O2O3O4 is a parallelogram.

(1). First we show that each diagonal of quadrilateral ABCD is twice one of
the altitudes of P . Indeed, point A is the reflection of O in line O1O4 (68), and
point C is the reflection of O in O2O3. Thus the portion of segment AC that lies
inside P is half the length of AC, and this portion is also equal to an altitude of
P . Similarly, BD is half the other altitude of P . This observation shows that if we
know P , then the lengths of the diagonals of ABCD are determined.

Now we determine the area |ABCD|, given P . We construct BH ⊥ AC and
DH ‖ AC (that is, these two lines determine the position of point H). Then
BH is equal in length to the sum of the altitude to AC in triangle ABC and the
altitude to AC in triangle ADC. It follows (using absolute value for area) that
|ABCD| = 1

2BH · AC. We know that P determines AC, so we must now show
that P also determines BH.

To this end, we draw altitude O4K of P . Then O4K ‖ BD (they are both
perpendicular to O1O2, and O1O4 ‖ BH (they are both perpendicular to AC),

so Ô1O4K = D̂BH (43), and right triangles O1O4K, DBH are similar. Thus
BH = O4K·BD

O4O1
, and since each segment in this last fraction is determined by P , so

is BH, and therefore so is |ABCD|.

Note. We have actually proved a bit more about the diagonals of ABCD. Not
only their lengths, but their directions are determined by P . For example, since
O is the reflection of A in O1O4, we know that line AO, along which diagonal AC
lies, is perpendicular to side O1O4 of P . Likewise, BD ⊥ O1O2. We will use this
fact in our discussion of statement (3a).
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Figure t419bi

2a. The key observation here is that points A and O are symmetric with respect
to line O1O4. Thus if O1 and O4 remain fixed, and O moves along a line ∆, then
A will describe a line a, symmetric to ∆ in O1O4. Analogously, C will describe a
line b, symmetric to ∆ in O2O3. Now if we reflect line a in O1O4, we get ∆, and if
we reflect ∆ in O2O3 we get line c. Hence c is the image of a in the composition
of reflections in two parallel lines. Such a composition is a translation (102b), so
a ‖ c.

In the same way, we can show that B and D move along two parallel lines b
and d, as O moves along ∆. Thus ABCD moves along a parallelogram P ′.

Note. In fact, as O slides along ∆, the vertices of ABCD are not confined to
the sides of P ′, but vary along the lines containing those sides. A dynamic sketch,
starting with fixed points O1, O2, O3, O4 will confirm this.

2b. We can make ∆ coincide with any given line by applying to it a translation
and a rotation (in either order). We study the effects of each separately. Our
discussion is illustrated by figure t419bii.

First we move ∆ so that it remains parallel to its former position. In this case
it is clear that lines a, b, c, d retain their direction. Now c is obtained from a by
a translation in a direction perpendicular to that of O1O4 and O2O3, and through
a distance equal to twice the distance between these two lines. But this distance
does not vary with ∆, so as ∆ is translated parallel to itself, a and c remain the
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Figure t419bii

same distance apart. In the same way, we can show that b and d remain the same
distance apart. It follows that parallelogram P ′ is simply translated.

Now suppose we rotate ∆ about a fixed point through some angle. Then lines
a and b will be changed by the same rotation, and so the angle between them will
not vary. The same is true of lines b and c, of lines c and d, and of lines d and a. It
follows that if we rotate ∆ about a fixed point, parallelogram P ′ will change into
another parallelogram with the same angles.

Lemma for part (2c). Given parallelogram αβγδ, construct a parallelogram
with given angles, whose sides pass through the vertices of αβγδ, and which has
the largest possible area.

Solution. Suppose that TUVW is a parallelogram whose sides pass through
the vertices of αβγδ (fig. t419biii). We note in passing that the choice of any one
of its vertices, say U , determines the others.

Now α and γ are symmetric with respect to point M , so it is not hard to
see (using absolute value for area) that |αγV U | = 1

2 |UVWT |. From the result of
exercise 297, it follows that |αγUV | = αγ ·SL, where SL is the perpendicular from
the midpoint S of UV to line αγ. Thus |UVWT | = 2 · αγ · SL, and we need to
maximize SL.
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Figure t419biii

Angle U is fixed, so vertex U lies on an arc of a circle through α and β. Let
the center of this circle be OU . Likewise, V moves along a circle through β and γ,
whose center we will call OV . We will show that S moves along a circle as well.

Let J be the second point of intersection of circles OU , OV . Note that α̂Jβ, γ̂Jβ

are supplementary (they are each supplementary to the angles Û , V̂ , which are
certainly supplementary. So J lies on diagonal αγ of αβγδ.

By the result of exercise 69, angle ÛJV = ÔUJOV , which does not vary with

U . It is also not hard to see that ĴOUV = 1
2 Jβ (where the arc is taken in circle

OU ), which also does not vary with U . Hence triangle UJV retains its shape as U
moves along its circle. Since S is always the midpoint of UV , triangle JUS also
retains its shape as U varies. That is, the ratio JS : JU remains constant. This

means that S is obtained from U by a rotation about J through a fixed angle ĴUβ
followed by a dilation centered at J with ratio JS : JU . So the locus of S is a circle
Σ, obtained from OU by this combination of rotation and dilation.

But in fact we can characterize Σ more easily by looking at limiting positions
of U and V . There is one position of U where S must coincide with β: the cor-
responding position of V is obtained by reflecting circle OU in β and finding the
intersection of the image with circle OV . And when U and V coincide at point J ,
this is also a limiting position of S. Thus Σ passes through β and J . Finally, it is
not hard to see that there are two positions for U, V where parallelogram TUVW
degenerates to a segment lying along the diagonals of αβγδ. For these positions, S
coincides with point M , the intersection of the diagonals of αβγδ. Thus Σ is the
circle passing through β, J , and M .

Now we can find the parallelogram of maximal area, by locating the point on
Σ furthest away from line αγ. This is the intersection of the perpendicular bisector
of JM with circle Σ. This concludes the discussion of our lemma.
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Solution for part (2c). Since a translation of ∆ will not affect the area of
P ′, we look for the largest area of P ′ that we can obtain by rotating ∆ about some
point. Without loss of generality, we can take this point to be M , the center of P
(fig. t419biv).

Figure t419biv

Now ∆ is a line rotating about M , and a is the reflection of this line in the
fixed line O1O4. Thus if α is the reflection of M in O1O4, then a must always
pass through point α; that is, a rotates about point α. Similarly, b, c, d rotate
about points β, γ, δ, the reflections of M in the other sides of P . Opposite sides of
quadrilateral αβγδ are reflections of M in the parallel sides of P , so αβγδ must be
a parallelogram, which we will call Q. The intersections of a, b, c, and d determine
P ′, whose area we must maximize. Note that we have already proved that the
angles of this parallelogram P ′ do not vary with ∆.

That is, we have reduced the problem to the situation of our lemma. Using
the discussion there, we can determine the position of U for which the area of P ′

is largest, and then determine from it the required position of line ∆, since ∆ is
symmetric to a (that is, to line Uα) in line O1O4.

3a. There are two cases to consider: we could be given two adjacent angles of
the quadrilateral, or two opposite angles.

First suppose we are given two opposite angles, say Â and Ĉ. We have seen, in
(1), that knowing P gives us the lengths and directions of the diagonals of ABCD.

Thus we can lay of a segment with the length and direction of BD anywhere
on the plane. Vertex A is located on an arc of a circle through B and D, and vertex
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C is located on another such arc. So we are led to the situation of exercise 75, and
the solution to that exercise completes this solution.

Now suppose we are given parallelogram P and angles A and B. The length
and direction of diagonals AC, BD are again determined by P . Thus we can
construct the parallelogram whose vertices are the midpoints of the sides of the
required quadrilateral: its sides are equal to half of the diagonals, and are parallel
to them. Then vertex A lies on an arc of a circle through two of the vertices of
the parallelogram, and vertex B lies on another arc of a circle through two of its
vertices.

So we need to draw a line through a vertex of this parallelogram such that the
segments of it contained between the circles of these two arcs is bisected by the
chosen vertex. This task is essentially completed in the solution to exercise 165.
We reflect one of the arcs in the vertex mentioned, and find the intersection of
the reflected arc with the second arc. This will locate one of the endpoints of the
required segment.

3b. Suppose we are given the ratios AB : AD and CB : CD (in figure t419bi).
Then we can determine the length and direction of diagonal BD as before. Since
we know the ratio of the distances from A to B and from A to D, it follows that A
must lie on a circle (116). Similarly C must lie on a different circle, and we again
are in the situation of exercise 75.

Problem 420. The radii of the circles circumscribing (Exercise 66) the quadri-
laterals determined by the bisectors of the interior (or exterior) angles of a quadrilat-
eral are in the ratio a+c−b−d

a+c+b+d , where a, b, c, d are the sides of the given quadrilateral,
taken in their natural order.

Solution. Suppose the given quadrilateral is MNPQ, and suppose the quadri-
laterals formed by its internal and external angle bisectors areABCD andA′B′C ′D′

respectively (fig. t420).
Lemma: Quadrilaterals ABCD, A′B′C ′D′ have the same interior angles.

Proof: Since AM, A′M bisect Q̂MT , Q̂MN respectively, and since the last
two angles are supplementary, we have A′M ⊥ AM . Likewise, A′Q ⊥ AQ, so

quadrilateral AQA′M is cyclic. This means that angles Q̂AM, Q̂A′M are sup-

plementary (80), and therefore Q̂AM, B̂′A′D′ are supplementary. But we know,

from exercise 66, that quadrilateral A′B′C ′D′ is also cyclic, so B̂′A′D′ supplements

B̂′C ′D′, and Q̂AM = B̂′C ′D′. We can show that the other three angles are equal
in pairs in just the same way.

Note. Students can be reminded that this does not make the quadrilaterals
similar. Any two rectangles have pairs of equal angles, but may not be similar.

Note also that the angles are not in ‘corresponding’ positions in figure t420:

angles Â, Â′ are supplementary, not equal.
We turn now to the assertion itself.
We know from exercise 66 that ABCD is cyclic. And it is clear from the

construction of ABCD by intersecting exterior angle bisectors, that MNPQ is the
quadrilateral investigated in exercise 362b: it has the minimal perimeter of any
quadrilateral inscribed in ABCD, and in particular, its sides make equal angles
with those of ABCD. So we can use various relations derived in the solution to
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Figure t420

exercise 362b. (We note that these relationships are far from obvious: the solution
to that exercise involved some difficult computation.)

We have, from that discussion:

(1) R · (MN +NP + PQ+QM) = AB · CD +AD ·BC,

in which R is the radius of the circle circumscribing quadrilateral ABCD.
Also drawing on the arguments in the solution to exercise 362b, we have (from

equation (2) and others following it, in that solution):

2R′ ·MN = B′M · C ′D′ +B′N ·D′A′

2R′ ·NP = C ′N ·D′A′ + C ′P ·A′B′

2R′ · PQ = D′P ·A′B′ +D′Q ·B′C ′

2R′ ·QM = A′Q ·B′C ′ +A′M · C ′D′,
where R′ is the circumradius of quadrilateral A′B′C ′D′.

From these relationships, and Ptolemy’s theorem 237 we have
2R′(MN − NP + PQ − QM) = A′B′(D′P − C ′P ) + B′C ′(D′Q − A′Q) +

C ′D′(B′M−A′M)+D′A′(B′N−C ′N) = 2(A′B′·C ′D′+B′C ′·D′A′) = 2A′C ′·B′D′
Combining this with (1) gives us
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(1)
R(MN +NP + PQ+QM)

R′(MN −NP + PQ−QM)
=

AC ·BD
A′C ′ ·B′D′

We now relate the product on the right hand side of this equation to R, R′.
From the note in 251 we have (using absolute value for area),

4R · |ABD| = AB ·BD ·DA;

4R′ · |A′B′D′| = A′B′ ·B′D′ ·D′A′,
so that

(2)
R

R′
· |ABD|
|A′B′D′|

=
AB ·BD ·AD

A′B′ ·B′D′ ·D′A′
.

Then 256, together with our lemma, gives us |ABD|
|A′B′D′| = AB·AD

A′B′·A′D′ . Comparing

this with (2), we see that

R

R′
· AB ·AD
A′B′ ·A′D′

=
AB ·BD ·AD

A′B′ ·B′D′ ·D′A′
,

or

R

R′
=

BD

B′D′
.

Reasoning analogously from triangles ACD, A′C ′D′, we find that R
R′ = AC

A′C′ .
Combining these results with the result in (1), we have:

R(MN +NP + PQ+QM)

R′(MN −NP + PQ−QM)
=
R2

R′2
.

and a bit of algebra shows that this last equation is equivalent to the announced
result.

Problem 420b. The opposite sides of a cyclic quadrilateral are extended to
their intersections E, F , and we draw the bisectors of the angles they formed.

1◦. Show that these bisectors intersect on the line joining the midpoints of the
diagonals of the quadrilateral, and divide this segment into a ratio equal to the
ratio of the diagonals.

Solution. Suppose opposite sides AB, CD of cyclic quadrilateral intersect at
point E (fig. t420bi), and sides AD, BC intersect at F . Let M, N be the
respective midpoints of diagonals AC, BD. Let EQ, FS be the bisectors of angles

ÂED, ÂFB, as in the diagram. We will show that EQ and FS divide segment MN
in the same ratio, which will prove that they intersect at a point on the segment.

To this end, note that triangles AEC, DEB are similar: they share angle ÂED,

and ÊAC = ÊDB because they both intercept arc BC on the circumscribing circle.
Now EM, EN are corresponding medians in these similar triangles, so we have:

(1) EM : EN = AC : BD,

and
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(2) ÂEM = D̂EN.

(This last from the same similar triangles.) It follows from (2) that EQ is also

the bisector of angle M̂EN , so from (115) we have:

(3) EM : EN = MO : ON.

From (1) and (3) we have:

(4) MO : ON = AC : BD,

so that EQ, the bisector of angle ÂED, divides segment MN in the ratio of
the diagonals of the quadrilateral.

In just the same way, we can show that the bisector FS of angle D̂FC divides
MN in the same ratio. It follows that these two angle bisectors intersect at point
O on MN , dividing it into the ratio indicated.

2◦. These lines also bisect the angles which this segment subtends at E and F .

Solution. The result was achieved in solving part 1◦.

3◦. These bisectors intersect the sides of the quadrilateral in four points (other
than E,F ) which are the vertices of a rhombus. The sides of the rhombus are paral-
lel to the diagonals of the quadrilateral, and their length is the fourth proportional
to the lengths of these diagonals, and their sum.
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Solution. Suppose (fig. t420bii) the bisector of angle ÂED intersects BC, AD

in points P, Q respectively, and the bisector of angle D̂FC intersects AB, CD in
points R, S respectively. We again use similar triangles AEC, DEB, to find
that EC : EB = AC : BD. Now EP is an angle bisector in triangle EBC, so
EC : EB = CP : PB. It follows that

(5) CP : PB = AC : BD.

In the same way, we can show that BS : SA = DB : AC. Thus in triangle
ABC, line PS divides BC, BA in the same ratio. It follows (114) that PS ‖ AC.

We can use the proportions already noted to express the length of PS in terms
of the diagonals of the quadrilateral. Indeed, from (5), we have BP

CP = BD
AC , or, using

106, BP
BP+CP = BD

BD+AC . But, from 114 PS
AC = BP

BC = BP
BP+CP = BD

BD+AC , so that

PS =
AC ·BD
AC +BD

.

Analogously, we can express the lengths of segments SQ, QR, RP in terms of the
lengths of the diagonals, and we will get just the same expression. It follows that
PQRS is a rhombus whose sides are parallel to the diagonals of the quadrilateral,
and have the length indicated in the problem statement.

4◦. Analogous statements for the bisectors of the supplements of the angles at
E and F .

Solution. We here list some statements whose proofs are analogous to the
arguments in (1) and (3), and which lead to the required analogous results.
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(a) Let O′ be the point where the bisector of angle D̂EY , supplementary to

ÂED intersects line MN (extended; see figure t420biii). Then MO′ : O′N = EM :
EN (from 115; the last two segments are not shown in the figure), and as in (1),
EM : EN = AC : BD. Hence

(6) MO′ : O′N = AC : BD

.
Analogously, the bisector of ĈFX, supplementary to ĈFD intersects line MN

in a point dividing segment MN externally into the same ratio. Hence the two angle
bisectors pass through the same point O′, which divides segment MN externally
in the ratio of the diagonals.

(b) Line EO′ bisects the angle supplementary to M̂EN , and FO′ bisects the

angle supplementary to M̂FN . For clarity, these angles are not shown in figure
t420biii.

(c) Let the bisector of the angle supplementary to ÂED meet AD (extended)
at Q′, BC (extended) at P ′ (fig. t420biv). Likewise, let the bisector of the angle

supplementary to B̂FA intersect CD, AB in points S′, R′. Then P ′R′Q′S′ is a
rhombus.

To show this, note that EQ′ is an exterior angle bisector in triangle EAD, so
Q′D : Q′A = ED : EA. From similar triangles AEC, BED, we have ED : EA =
BD : AC. So Q′D : Q′A = BD : AC.

And FS′ is an exterior angle bisector in triangle FDC, so S′D : S′C = FD :
FC. From similar triangles BFD, AFC we have FD : FC = BD : AC, the same
ratio as above. So Q′D : Q′A = S′D : S′C, which shows that Q′S′ ‖ AC. In the
same way, we can show that P ′R′ ‖ AC, and that Q′R′ ‖ BD ‖ P ′S′.
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We can now use the same argument as in (3) to compute the lengths of
P ′S′, S′Q′, Q′R′, R′P ′ in terms of the diagonals of the quadrilateral. The com-
putation shows these segments to be equal, so P ′Q′R′S′ is a rhombus with sides
parallel to the diagonals of ABCD.

5◦. Show that the ratio of EF to the segment joining the midpoints of the
diagonals is the same as the ratio of twice the product of these diagonals and the
difference of their squares. Calculate EF knowing the sides of the quadrilateral.

Solution. A glance at figure t420bii shows that EO, FO lie along two di-
agonals of rhombus PSQR, so EO ⊥ FO. And since (fig.t420bv) EO, EQ′ are
angle bisectors of two supplementary angles, EO ⊥ EQ′. For the same reason,
FO ⊥ FO′, and FOEO′ is a rectangle. Thus EF = OO′ (48).

From (4) we have ON
MN = BD

AC+BD , and from (6), NO′

MN = BD
AC−BD (106). Thus

EF
MN = OO′

MN = ON+NO′

MN = ON
MN + NO′

MN
BD

BD+AC + BD
AC−BD = 2AC·BD

AC2−BD2 . That is, the
ratio of segment EF to MN , the segment joining the midpoints of the diagonals,
is equal to the ratio of twice the product of the diagonals to the difference of their
squares. This is what the problem requires.

We now calculate the length of EF in terms of the lengths of the sides of
the quadrilateral. We can do this directly, from the last relationship we derived.
Indeed, 240b gives expressions for diagonals AC and BD in terms of the sides, and
exercise 139 gives us a similar expression for MN .

Alternatively, we can use results from the theory of poles and polars. Note that
E and F are conjugate points with respect to the circumcircle, in the sense of 205:
the result of the first paragraph of 211 shows that the polar of E passes through
F and vice-versa. Thus, from the first result proved in the solution to exercise 237,
the square of EF is equal to the sum of the powers of E and F with respect to the
circle, or
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(7) EF 2 = EA · EB + FA · FD.
Let AB = a, BC = b, CD = c,DA = d. Then from similar triangles

EAD, ECB we have:

EA : EC = ED : EB = AD : BC = d : b.

Also,

EA− EB = a;

ED − EC = b.

We can eliminate EC and ED from these three equations, to get expressions
for EA and EB in terms of the sides:

EA =
d(ad+ bc)

d2 − b2
;

EB =
b(ab+ cd)

d2 − b2
.

Multiplying, we have
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EA · EB =
bd(ab+ cd)(ad+ bc)

(b2 − d2)2
.

In the same way, we can get

FA · FD =
ac(ab+ cd)(ad+ bc)

(a2 − c2)2
.

If we substitute these values of EA · EB and FA · FD into equation (6), we
find:

EF 2 = (ab+ cd)(ad+ bc)

(
ac

(a2 − c2)2
+

bd

(b2 − d2)2

)
.

Problem 421. Let O be an interior point of triangle A1A2A3, and let (k′1),
(k′2), (k′3) be the circles inscribed in the triangles A2A3O,A3A1O,A1A2O.

Note. Throughout the solution of this problem we will use the notation (P )
of the original problem for the circle with center at point P , except where this
notation is ambiguous.

1◦. If (k1) is a circle concentric with (k′1), one can find (k2) concentric with
(k′2) and (k3) concentric with (k′3) such that (k2), (k3) intersect in a point N1 on
A1O, (k3), (k1) intersect in a point N2 on A2O, and (k3), (k1) in a point N2 on
A3O.

Figure t421a
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Solution. Suppose (fig. t421a) (k1) is some circle concentric to (k′1), and (k1)
intersects OA2, OA3 at N2, N3 respectively. Let O1 be the common center of
(k′1), (k1), and let α2, α3 be the points of contact of (k′1) with OA2, OA3. Then
(92)

(1) Oα2 = Oα3.

Now O1α2 = O1α3 (they are both radii of (k′1)), and O1N2 = O1N3 (they are both
radii of (k1). Hence right triangles O1α2N2, O1α3N3 are congruent (34, case 2),
and

(2) α2N2 = α3N3.

Adding (1) and (2), we have ON2 = ON3.
We now construct circle (k2), concentric to (k′2) and passing through N3. Let

O2 be the center of (k′2). Then if N1 is the intersection of (k2) with segment OA1,
we can use an argument analogous to the one above to show that ON1 = ON3. We
have solved the problem if we can show that circle (k3), with center O3 and radius
O3N1, passes through N2.

This is not difficult. Triangles O3N1O, O3N2O are congruent (they are not
drawn in figure t421a). Indeed, ON1 = ON3 = ON2, they share a common side

OO3, and N̂2ON1 is formed by two tangents to (k′3), and so is bisected by OO3

(92), so the triangles are congruent by SAS (24, SAS). This concludes the proof.

2◦. Circle (k1) intersects A2A3 in two points m1, n1 such that A2m1 = A2N2,
A3n1 = A3N3. In the same way, (k2) intersects A1A3 in two points `2, n2 such that
A1`2 = A1N1, A3n2 = A3N3, and (k3) intersects A1A2 in two points `3, m3 such
that A1`3 = A1N1, A2m3 = A2N2.

Solution. Let α1 (fig. t421b) be the point of contact of circle (k′1) with A2A3.
Then A2α1 = A2α2 (92, or simply note that the figure formed by concentric circles
(k1), (k′1) and two tangents to (k′1) from point A2 is symmetric in line A2O1). From
the same symmetry (or using congruent triangles, not shown in the figure), we see
that α2N2 = α1m1. Subtracting, we have A2m1 = A2N2.

The proofs of the other results are completely analogous.

3◦. As the radius of (k1) varies, the radii of (k2), (k3) vary so that the properties
in 1◦ remain true. The points P1, P2, P3, other than N1, N2, N3, where pairs of these
circles intersect, move along the common tangents (t1), (t2), (t3) to the pairs of
circles (k′2), (k′3); (k′3), (k′1); (k′1), (k′2) respectively. These three lines are concurrent
in a point obtained from O by the construction indicated in Exercise 197, the
triangle ABC in that exercise being replaced by the triangle formed by the centers
of (k′1), (k′2), (k′3).

Solution. The first sentence of the problem statement is simply a statement
of fact: the arguments in (1) and (2) do not refer to any properties of the radius of
(k1).

A nice symmetry argument will show that P2, for instance, lies on the common
internal tangent of (k′1) and (k′3) (fig. t431c). Indeed, P2 is the reflection of N2 in
O1O3, their common centerline. Now N2 lies on OA2, which is a common internal
tangent of (k′1) and (k′3). Hence its reflection P2 must lie on the other common
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Figure t421c

internal tangent of (k′1) and (k′3), since the common internal tangents of two non-
intersecting circles are symmetric in the common centerline. Analogous arguments
hold, of course, for P1 and P3.
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Next we prove the concurrence of lines t1, t2, t3. This is more difficult to
show. Figure t421d shows the parts of the diagram essential to the argument. In
it, the three original common tangents to the three circles (k′1), (k′2), (k′3), called
ON1, ON2, ON3 in previous diagrams, are here labeled v1, v2, v3.

We let O′ be the intersection of t2 and t3, which are the new common internal
tangents to (k′1), (k′3) and (k′1), (k′2) respectively. Let U1 be the tangent from O′

to circle (k′2). Our strategy will be to show that U1 is also tangent to (k′3), so that
it is actually none other than line t1, which must therefore pass through O′.

To this end, we let S2 be the intersection of t2 and v2, let S3 be the intersection
of t3 and v3, and let S1 be the intersection of U1 and v1.

We consider quadrilateral OS2O
′S3. It is circumscribed about circle (k′1) in

the sense of exercise 87: the lines along which its four sides lie are all tangent
to (k′1). So the result of that exercise applies, or OS2 + O′S2 = OS3 + O′S3.
Similarly, quadrilateralOS3O

′S1 is circumscribed about circle (k′2), soOS3+O′S3 =
OS1 + O′S1. From these equations we find that OS2 + O′S2 = OS1 + O′S1. But,
again from the result of exercise 87, this means that OS1O

′S2 is circumscribed
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about a circle, and this circle can only be (k′3), which we know is tangent to three
of the sides of the quadrilateral. (Note that in figure t421d this last quadrilateral
turns out to be re-entrant. Students can check that the result of exercise 87 still
holds.) That is, since three sides of OS1O

′S2 are tangent to (k′3), the fourth side
must also be tangent to this circle. But this means that U1 is tangent to (k′3), and
U1 must coincide with t1.

We have proved that t1, t2, t3 all pass through the same point O′. It remains
to show that O and O′ are related as in exercise 197. That is, we must show that if
we reflect lines OO1, OO2, OO3 in the bisectors of the angles of triangle O1O2O3,
we get three lines which are concurrent at O′.

To do this, we consider circle (k′1) and tangents v2, t2 to it, applying to these
the result of exercise 89. This result tells us that the segments intercepted on any
other tangents to (k′1) by these two fixed tangents subtend equal angles at O1.
That is, segments OS3, O

′S2 subtend equal angles at O1. We can express this fact

in various ways. Most simply, ÔO1S3 = Ô′O1S2. Or we can say that lines O1O
and O1O

′ make equal angles with sides O1O2, O1O3 of triangle O1O2O3. Most
importantly, because an angle is symmetric in its bisector, we can say that lines

OO1, O
′O1 make equal angles with the bisector of angle ̂O2O1O3 (which is shown

as the dotted blue line in figure t421d).
Analogously, we can show that lines OO2, O

′O2 make equal angles with the

bisector of angle ̂O1O2O3, and lines OO3, O
′O3 make equal angles with the bisector

of angle ̂O1O2O3. Thus point O′ is the point of concurrence of three lines which
are the reflections in the angle bisectors of triangle O1O2O3 of three other lines,
concurrent at O, and this is the construction described in exercise 197.

4◦. Quadrilateral P2P3`2`3 is cyclic (Exercise 345) and the circumscribed circle
(x′1) intersects the sides A2A1, A1A3 and the lines (t2), (t3) at equal angles; likewise,
P3, P1,m3,m1 are on a circle (x′2) intersecting at equal angles A2A3, A2A1, (t3), (t1),
and P1, P2, n1, n2 on a circle (x′3) intersecting at equal angles A3A1, A3A2, (t1), (t2).
The center of (x′1) remains fixed as the radii of (k1), (k2), (k3) vary as in (3); the line
which joins it with the center of (k′1) passes through the intersection of (t1), (t2), (t3).
Similar statements for the centers of (x′2), (x′3). There exists a circle (x1) tangent to
A2A1, A1A3, (t2), (t3), a circle (x2) tangent to A2A3, A2A1, (t3), (t1), and a circle
(x3) tangent to A3A1, A3A2, (t1), (t2).

Solution. We separate the various statements in this part of the exericise:
4a. Quadrilateral P2P3`2`3 is cyclic.
Proof: From 2◦, we know that points `2, `3, N1 are equidistant from A1 (fig.

421e), so let (A1) be the circle through those three points with center A1. From 1◦

we know that ON1 = ON2 = ON3, so the circle (O) through N1, N2, N3 has its
center at O. Now N1 is on both circles, and also on their common centerline, so
circles (A1) and (O) must be tangent at N1.

To apply the result of exercise 345, we must start with a cyclic quadrilateral.
Here, it is convenient to think of triangle N1N2N3 as a ”quadrilateral” with a
”double point” at N1. As a ”quadrilateral”, it is certainly cyclic (it is circumscribed
by circle (O)), and circles (k1), (k2), (k3), (A1) pass through its vertices. If we
take the second intersections of pairs of these circles, we get points P2 (for N2),
P3 (for N3), `2 (for N1 as a point on circles (k2) and (A1)), and `3 (for N1 as a
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point on circles (k3) and (A1)). The result of exercise 345 then guarantees that
quadrilateral P2P3`2`3 is cyclic.

4b. Circle (x′1) intersects sides A2A1, A1A3 and lines (t2), (t3) at equal angles;
Proof: Let ω1 be the center of circle (x′1). We know from 1◦ that A1`2 = A1`3.

If we draw ω1`2, ω1`3, we find that triangles A1ω1`2, A1ω1`3 are congruent (SSS,

24). Hence ̂`2A1ω1 = ̂`3A1ω1, so lines A1A2, A1A3 are symmetric with respect to

A1ω1. It follows that angles ω̂1`2A3 = ω̂1`3A2. Finally, it is not hard to see that if
the radii to two secants make equal angles at a point of contact, then the same is
true of the two tangents at those points of contact. This proves the equality of the
first pair of angles mentioned.

Note. Students might see this result more easily by noting that because A1`2 =
A1`3, lines A1A2 and A1A3 are symmetric with respect to line A1ω1.

To prove that circle (x′1) makes equal angles with lines t2 and t3, we let β, β′

be the points of contact of circle (k′2) with lines A1A3 and t3 respectively. If K is
the intersection of lines A1A3 and t3, then Kβ, Kβ′ are the tangents to circle (k′2)
from K, so Kβ = Kβ′.

We next show that β`2 = β′P3. Indeed, from circle (k′2), we know that O2β =

O2β
′, and from (concentric) circle (k2) we know that O2`2 = O2P3. Also, Ô2β`2 =

Ô2β′P3 = 90◦ (58), so right triangle O2β`2, O2β
′P3 are congruent, and β`2 = β′P3.

Now the angles at which (x′1) intersect A1A3 and t3 are equal if angles ω̂1`2K,

ω̂1P3K are equal, and this last assertion is easily seen to be true, either by symmetry
about line Kω1 or from congruent triangles ω1`2K, ω1P3K.

Similarly, (x′1) intersects lines A1A2 and t2 at equal angles. Thus the four
angles mentioned in the problem statement are all equal.
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4c. The center ω1 of x′1 remains fixed as (k1), (k2), (k3) vary. The line joining
ω1 with the center of (k′1) passes through the intersection of (t1), (t2), (t3). Similar
statements for the centers of (x′2), (x′3).

Lemma: If a circle makes equal angles with two lines, then its center is equidis-
tant from the lines.

Proof of lemma: It is not hard to see that the figure formed by the two lines
and the circle is symmetric in the line joining the circle’s center to the intersection
of the lines. This observation leads to the desired conclusion, or motivates an easy
proof by congruent triangles.

Proof of statement 4c: From our lemma and 4b, it follows that ω1 is equidistant
from lines A1A2, A1A3, t2 and t3, and thus lies on the intersection of the bisectors

of angle Â2A1A3 and of the angle between t2 and t3; that is, the line O′O1. Since
the location of lines t2, t3 do not depend on the radii of (k1), (k2), (k3), it follows
that the position of ω1 does not depend on the choice of these radii, so that line
O1ω1 passes through O′.

The proofs of similar statements for the centers of (x′2), (x′3) are analogous.
4d. There exists a circle (x1) tangent to A1A2, A1A3, (t2), (t3), a circle (x2)

tangent to A2A3, A2A1, (t3), (t1), and a circle (x3) tangent to A3A1, A3A2, (t1), (t2).
Proof: We have seen that center ω1 of circle (x′1) is equidistant from lines

A2A3, A2A1, (t3), (t1). Thus there is a circle (x1) centered at ω1 which is tangent
to these four lines.

The result for the other sets of lines is proved analogously.

5◦. The intersection of m1P3, n1P2 is on the radical axis of (x′2), (x′3).
Proof: Line m1P3 (fig. t421h) contains the common chord of circles (k1), (x′2),

so it is the radical axis of these two circles. Similarly, line n1P2 is the radical
axis of circles (k1), (x′3). Therefore the intersection M of these two lines is the
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radical center of circles (k1), (x′2), (x′3) (see 139), and so lies on the radical axis of
(x′2), (x′3). This proves the assertion.

6◦. As the radii of (k1), (k2), (k3) vary, the intersection of m1P3 and n1P2

describes the line joining the intersection of (t1), (t2), (t3) with the point of contact
of (k′1) with A2A3.

Proof: Let α be the point of contact of circle (k′1) with line A2A3. Let T2, T3
be the intersections of lines t2, t3 respectively with line A2A3, and let M ′ be the
intersection of lines n1P2 and O′α. We will show that M ′ coincides with M (the
point described in 5◦).

We do this by showing that lines m1P3, n1P2 divide segment O′α externally
in the same ratio, and so their point of intersection is on line O′α, and M coincides
with M ′.

To do this, we first apply Menelaus’ Theorem 192 to triangle αO′T2 and
transversal n1P2, to get

P2O
′

P2T2
· n1T2
n1α

· M
′α

M ′O′
= 1.

But we can show that P2T2 = n1T2. Indeed, both lines are tangent to circle
(k′1), and so are equidistant from point O1. Since this point is also the center of
circle (k1), segments T2P2, T2n1 are chords of this circle equidistant from its center,
and so are equal.

Thus M ′α
M ′O′ = n1α

P2O′ ; that is, line n1M
′ divides segment O1α externally in the

ratio n1α
P2O′ .

the same theorem to triangle αO′T3, with transversal m1P3. Following the
same line of reasoning, we find
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P3O
′

P3T3
· m1T3
m1α

· M
′α

M ′O′
= 1.

As before, we can show that m1T3 = P3T3, so we find that M ′α
M ′O′ = m1α

P3O′ . This

says that that line m1P3 divides segment αO′ externally in the ratio m1α : P3O
′.

But we can show that m1α = n1α. Indeed, triangles O1n1α, O1m1α (not show
in figure t421k) are both right-angled at α (since O1α ⊥ m1n1), they have leg O1α
in common, and O1m1 = O1n1, as radii of circle (k1). This proves that m1α = n1α.

We can also show that O′P2 = O′P3, repeating an argument used above. In-
deed lines O′P2, O

′P3 (that is, t2, t3) are tangent to circle (k′1) and are therefore
equidistant from the center O1 of circle (k1). Hence, as chords equidistant for the
center of (k1), we have O′P2 = O′P3.

Thus lines m1P3 and n1P2 divide segment αO′ in the same ratio, and so must
intersect at point M ′ on line αO′. But it was shown, in 5◦, that their point of
intersection was M , as defined in that section. This means that points M , M ′

coincide.
That is, the intersection M of lines m1P3 and n1P2 lies on the line joining

the point of contact α of circle (k′1) with line A2A3 to the intersection O′ of lines
t1, t2, t3, no matter how the radii of circles (k1), (k2), (k3) are chosen.

7◦. A condition for (x2), (x3) to be tangent is that line O1α coincide with line
t1.
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Proof: Suppose circles (x2), (x3) are tangent. Then line t1, which is tangent
to both of them, must be their common (internal) tangent.

Since one of the intersection points P1 of circles (x′2(, (x′3) – which are concentric
with (x2), (x3) – lies on line t1, it follows that the second point of intersection of
the two circles lies on line t1. Indeed, the common centerline of (x′2), (x′3) (which is
also the common centerline of (x2), (x3)) is perpendicular to the common internal
tangent t1. So t1 is the (unique) perpendicular from P1 to the common centerline.
Thus the common chord of (x′2), (x′3) lies along t1, as does their second point of
intersection.

Since t1 is the radical axis of circles (x′2), (x′3), it passes through the radical
center M of circles (k1), (x′2), (x′3). And since it also passes through point O′, it
must coincide with O′M , which (from 6◦) is the same line as O′α.

Conversely, if line t1 coincides with O′M , then it passes through the radical
center M of circles (k1), (x′2), (x′3). Since this line also passes through one of the
points P1 of intersection of circles (x′2) and (x′3), it must in fact be their radical
axis, and so it passes through their second point of intersection as well. Circles
(x2), (x3) are therefore tangent to line t1 on the line of centers of circles (x′2), (x′3),
and therefeore are tangent to each other.

Problem 421b. Through a given point A in the plane, construct a line on
which two given circles C, C ′ intercept equal chords MN, M ′N ′. (The notation
being such that these segments are in the same sense, one should look for the
common midpoint of MN ′ and NM ′.) More generally, draw a line through A such
that the chords intercepted by C, C ′ have a given ratio k. (Use Exercise 149.) Is
the maximum number of solutions the same for k 6= 1 as it is for k = 1?
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Figure t421m

Solution. (This solution is due to Behzad Mehrdad.) Suppose (fig. t421bi)
the given circles C, C ′ (we use this notation both for the circles and for their
centers) intercept equal chords MN, M ′N ′ along line AS. Following the hint in
the problem statement, we first note that if D is the midpoint of segment MN ′,
then it is also the midpoint of segment M ′N . Next we note that D must be on d,
the radical axis of circles C, C ′. Indeed, we have DM ′ = DN, DM = DN ′, so
that DM ·DN = DM ′ ·DN ′. That is, the powers of D with respected to the two
given circles are equal, and D lies on their radical axis.

Let the midpoints of MN, M ′N ′ be U and V respectively. Then both CU
and C ′V are perpendicular to AS. If we draw the perpendicular bisector DT of
segment MN ′ (where T is on line CC ′), then DT will be parallel to CU and C ′V ,
and by 113, T is the midpoint of CC ′. That is, point D must be located at the
intersection of the radical axis of circles C, C ′ with the perpendicular bisector of
MN ′. The argument is also reversible: if we locate point D as described, then AD
will satisfy the conditions of the problem.

Thus we have the following construction. We find the midpoint of T of segment
CC ′, and draw a circle with diameter AT . If the intersection of this circle with the
radical axis of circles C, C ′ is D, then AD is the required line.

The number of solutions depends on the number of intersections of the radical
axis with the circle on diameter AT . There can be 0, 1, or 2 solutions.

Notes. Students can investigate when these cases occur, for example, by look-
ing at the relative positions of point A and the common tangents to the given



254

Figure t421bi

circles. They can also look at the (easy) special case when A is on the radical axis
of the two circles. In that case, they need only reflect one of the given circles in P ,
and the common chord of the reflected circle and the other circle gives the required
line.

We now turn to the generalization, where the chords MN, M ′N ′ are in a given
ratio k. The proof given above generalizes immediately. This time, assuming the
construction completed, we find point D on segment NM ′ such that DN : DM ′ =
k. Then it is not hard to see that the ratio of the powers of D with respect to
circles C, C ′ is also k, so by the result of exercise 149, D must lie on a circle P
with the same radical axis as C and C ′. Circle P plays the role of the radical axis
in the case k = 1.

Next we draw UC, V C ′ from the centers of the circles perpendicular to MN ,
M ′N ′ respectively. If the required line is AS, then, again by 113, a perpendicular
from D to CC ′ will intersect CC ′ at a point T such that CT : TC ′ = k, a point we
can easily construct. This point lies on a circle Q which is the locus of points the
ratio of whose distances to C, C ′ is k. Point D can be either of the intersections of
circles P and Q. A reversal of this argument will show that if point D is constructed
as described, then AD will satisfy the conditions of the problem.

Problem 422. (Morley’s theorem) Divide each angle of a triangle ABC into

three equal parts by lines AS,AT (ĈAS = ŜAT = T̂AB); BT, BR(ÂBT =

T̂BR = R̂BC); CR, CS (B̂CR = R̂CS = ŜCA). The lines through B, C and
closest to BC intersect in R; the ones from C, A and closest to CA intersect in S,
and the ones from A, B and closest to AB intersect in T . The three points R S, T
obtained this way are the vertices of an equilateral triangle. (Extending BT, CS
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to their intersection I we form in R with RI and on each side of RI, angles of 30◦

until their intersections in T ′, S′ with BT, CS, respectively. The triangle RT ′S′ is

equilateral: it suffices to show that the lines AT ′, AS′ divide B̂AC into three equal
parts. For this, denote by B′, C ′ the symmetric points of R relative to BT, CS,
respectively, and show that C ′T ′S′B′ is a regular broken line (160), and that the
circumscribed circle passes through A.)

Solution. (This solution is due to Behzad Mehrdad.) The wording of the hint
is a bit confusing. What is meant is that we first construct a certain triangle, which
turns out to be equilateral, then show that its vertices lie at the intersection points
of pairs of angle trisectors.

More specifically (fig. t422), we first construct point R, the intersection of the

trisectors of angles B̂, Ĉ nearest side BC. This will be one vertex of our equilateral
triangle. Then we take the other two trisectors of these angles (those that are not
nearest side BC), and find their point I of intersection. Finally, we construct angles

ÎRT ′, ÎRS′, both equal to 30◦, with T ′ and S′ on the BI, CI respectively.

Figure t422

We will prove (a) that triangle RS′T ′ is equilateral, and (b) that points S′, T ′

are actually the points S, T mentioned in the problem statement, by showing that

triangle AS′, AT ′ trisect angle Â.
Proof of (a): In triangle BIC, point R is the intersection of two angle bisectors,

so it lies on the third angle bisector as well (54). That is, R̂IT ′ = R̂IS′. Then
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triangle RIT ′, RIS′ are congruent (SAS, 24, case 2), so RT ′ = RS′, and RS′T ′ is

isosceles. Since T̂ ′RS′ = 60◦, triangle RT ′S′ is in fact equilateral.
Proof of (b): We reflect point R in line BI to get point B′. Since BI bisects

angle ÂBR, it follows that B′ lies on line AB. Similarly, the reflection C ′ of R in
line CI lies on line AC.

Clearly (from the equilateral triangle and properties of reflection), B′T ′ =
T ′R = RS′ = S′C ′. Following the hint in the problem, we now show that

B̂′T ′S′ = Ĉ ′S′T ′. We do this by comparing the angles around points S′ and

T ′. Note that triangles T ′IR, S′IR are congruent (SAS, 24), so IR bisects T̂ ′IS′.

And B̂T ′R, ĈS′R are exterior angles for the same two triangles, so they are both
sums of equal pairs of remote interior angles and are thus equal. Finally, angles

B̂′T ′B, Ĉ ′S′C are reflections of the last pair of equal angles, and so are equal.
Then we note that since all the other angles around S′, T ′ are equal in pairs,

B̂′T ′S′ and T̂ ′S′C ′ must also be equal. Thus B′T ′S′C ′ is a ‘regular’ broken line,
as the hint indicates.

Finally, we will show that the circle through B′T ′S′C ′ also passes through A,
by computing various angles.

Let B̂′BT ′ = T̂ ′BR = R̂BC = β, Ĉ ′CS′ = Ŝ′CR = R̂CB = γ. Also let

B̂AC = 3α (note that we must not assume that AS′, AT ′ trisect B̂AC). From

triangle ABC, we have α + β + γ = 60◦. From triangle BIC, we have T̂ ′IS′ =
180◦ − (2β + 2γ) = 180◦ − (120◦ − 2α) = 60◦ + 2α.

Next we note that triangles RT ′I, RS′I are congruent (SAS, 24), so T̂ ′IR =

Ŝ′IR = 1
2 B̂IC = 30◦ + α. Finally, RI ⊥ S′T ′. (It is an angle bisector in isosceles

triangle T ′IS′, and so is also an altitude in that triangle.) Thus Ŝ′T ′I = 90◦ −
(30◦ + α) = 60◦ − α, which is also the measure of T̂ ′S′I.

(We note in passing that many of these angle measure depend on the measure

of B̂AC, and not on the other two angles of the original triangle.)

Finally, from triangle RIT ′, we see that exterior angle B̂T ′R = T̂ ′IR+ ÎRT ′ =

30◦ + α+ 30◦ = 60◦ + α. By reflection, this is also the measure of B̂′T ′B.
We now add up the angles around point T ′:

360◦ = B̂′T ′S′ + Ŝ′T ′R+ R̂T ′B + B̂T ′B′ =

= B̂′TS′ + 60◦ + 2(60 + α) = B̂′TS′ + 180 + 2α.

It follows that B̂′T ′S′ = 180◦ − 2α.
We can do the same computation for Ĉ ′S′T ′, but in fact we really don’t need

to. The angles about S′ are easily seen to be equal in pairs to the angles about T ′,

so Ĉ ′S′T ′ = B̂′T ′S′ = 180◦ − 2α as well.
That is, broken path B′T ′S′C ′ is in fact ‘regular’: it is composed of equal

segments intersecting at equal angles. This means that the vertices lie on a circle.

Indeed, if we let the bisectors of Ĉ ′S′T ′ and B̂′T ′S′ intersect at point O, then
triangles B′OT ′, T ′OS′, S′OC ′ are all congruent (by SAS, 24), and since TO′S′ is
isosceles, they are all isosceles. Then O is the center of a circle through B′, T ′, S′, C ′.

Furthermore, by direct computation, ÔT ′S′ = 1
2B
′T ′S′ = 90◦−α, so T̂ ′OS′ =

180◦ − 2ÔT ′S′ = 180◦ − 180◦ + 2α = 2α. In other words, arc S′T ′ has a central
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angle of 2α. So arc B′T ′S′C ′ has a central angle of 6α, and any point at which
chord B′C ′ subtends an angle 3α lies on this circle. Point A is such a point. Then

B̂′AT ′, T̂ ′AS′, Ŝ′AC ′ are all inscribed angles subtending equal arcs, the angles are

themselves equal, and AT ′, AS′ trisect B̂AC. This completes the proof.
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