Define a ring homomorphism φ form $\mathbb{Q}[x]$ to the filed \mathbb{C} of complex numbers as follows:

$$\begin{array}{rccc} \varphi : \mathbb{Q} & \to & \mathbb{C} \\ f(x) & \mapsto & f(i), \end{array}$$

where *i* is the imaginary unit $i^2 = -1$. Then we have Ker $\varphi = (x^2+1)$. Similarly, for $\overline{\varphi}$, defined by $\overline{\varphi} : \mathbb{O} \to \mathbb{C}$

$$\begin{array}{rcl} \overline{\varphi} : \mathbb{Q} & \to & \mathbb{C} \\ f(x) & \mapsto & f(-i), \end{array}$$

we have Ker $\overline{\varphi} = (x^2 + 1)$. Hence the ideal $(x^2 + 1)$ does not describe a difference between φ and $\overline{\varphi}$.