The Ultimate Companion to A Comprehensive Course in Analysis

A five-volume reference set by Barry Simon

This booklet includes:

- Preface to the Series
- Tables of Contents and Prefaces (Parts 1, 2A, 2B, 3, and 4)
- Sample Section: Classical Fourier Series (Section 3.5 from Part 1)
- Subject Index
- Author Index
- Combined Index of Capsule Biographies

The Ultimate Companion to A Comprehensive Course in Analysis

A five-volume reference set by Barry Simon

Contents

Preface to the Series (1)
Contents to Part 1 7
Contents to Part 2A 11
Contents to Part 2B 15
Contents to Part 3 17
Contents to Part 4 21
Preface to Part 1 25
Preface to Part 2 29
Preface to Part 3 31
Preface to Part 4 33
Sample section: Classical Fourier Series (Section 3.5 in Part 1) 35
Subject Index 67
Author Index 105
Index of Capsule Biographies 131

Preface to the Series

Young men should prove theorems, old men should write books.
—Freeman Dyson, quoting G. H. Hardy ${ }^{1}$

Reed-Simon ${ }^{2}$ starts with "Mathematics has its roots in numerology, geometry, and physics." This puts into context the division of mathematics into algebra, geometry/topology, and analysis. There are, of course, other areas of mathematics, and a division between parts of mathematics can be artificial. But almost universally, we require our graduate students to take courses in these three areas.

This five-volume series began and, to some extent, remains a set of texts for a basic graduate analysis course. In part it reflects Caltech's three-terms-per-year schedule and the actual courses I've taught in the past. Much of the contents of Parts 1 and 2 (Part 2 is in two volumes, Part 2A and Part 2B) are common to virtually all such courses: point set topology, measure spaces, Hilbert and Banach spaces, distribution theory, and the Fourier transform, complex analysis including the Riemann mapping and Hadamard product theorems. Parts 3 and 4 are made up of material that you'll find in some, but not all, courses - on the one hand, Part 3 on maximal functions and H^{p}-spaces; on the other hand, Part 4 on the spectral theorem for bounded self-adjoint operators on a Hilbert space and det and trace, again for Hilbert space operators. Parts 3 and 4 reflect the two halves of the third term of Caltech's course.

[^0]While there is, of course, overlap between these books and other texts, there are some places where we differ, at least from many:
(a) By having a unified approach to both real and complex analysis, we are able to use notions like contour integrals as Stietljes integrals that cross the barrier.
(b) We include some topics that are not standard, although I am surprised they are not. For example, while discussing maximal functions, I present Garcia's proof of the maximal (and so, Birkhoff) ergodic theorem.
(c) These books are written to be keepers-the idea is that, for many students, this may be the last analysis course they take, so I've tried to write in a way that these books will be useful as a reference. For this reason, I've included "bonus" chapters and sections-material that I do not expect to be included in the course. This has several advantages. First, in a slightly longer course, the instructor has an option of extra topics to include. Second, there is some flexibility-for an instructor who can't imagine a complex analysis course without a proof of the prime number theorem, it is possible to replace all or part of the (nonbonus) chapter on elliptic functions with the last four sections of the bonus chapter on analytic number theory. Third, it is certainly possible to take all the material in, say, Part 2, to turn it into a two-term course. Most importantly, the bonus material is there for the reader to peruse long after the formal course is over.
(d) I have long collected "best" proofs and over the years learned a number of ones that are not the standard textbook proofs. In this regard, modern technology has been a boon. Thanks to Google books and the Caltech library, I've been able to discover some proofs that I hadn't learned before. Examples of things that I'm especially fond of are Bernstein polynomials to get the classical Weierstrass approximation theorem, von Neumann's proof of the Lebesgue decomposition and Radon-Nikodym theorems, the Hermite expansion treatment of Fourier transform, Landau's proof of the Hadamard factorization theorem, Wielandt's theorem on the functional equation for $\Gamma(z)$, and Newman's proof of the prime number theorem. Each of these appears in at least some monographs, but they are not nearly as widespread as they deserve to be.
(e) I've tried to distinguish between central results and interesting asides and to indicate when an interesting aside is going to come up again later. In particular, all chapters, except those on preliminaries, have a listing of "Big Notions and Theorems" at their start. I wish that this attempt to differentiate between the essential and the less essential
didn't make this book different, but alas, too many texts are monotone listings of theorems and proofs.
(f) I've included copious "Notes and Historical Remarks" at the end of each section. These notes illuminate and extend, and they (and the Problems) allow us to cover more material than would otherwise be possible. The history is there to enliven the discussion and to emphasize to students that mathematicians are real people and that "may you live in interesting times" is truly a curse. Any discussion of the history of real analysis is depressing because of the number of lives ended by the Nazis. Any discussion of nineteenth-century mathematics makes one appreciate medical progress, contemplating Abel, Riemann, and Stieltjes. I feel knowing that Picard was Hermite's son-in-law spices up the study of his theorem.

On the subject of history, there are three cautions. First, I am not a professional historian and almost none of the history discussed here is based on original sources. I have relied at times-horrors!-on information on the Internet. I have tried for accuracy but I'm sure there are errors, some that would make a real historian wince.

A second caution concerns looking at the history assuming the mathematics we now know. Especially when concepts are new, they may be poorly understood or viewed from a perspective quite different from the one here. Looking at the wonderful history of nineteenth-century complex analysis by Bottazzini-Grey 3^{3} will illustrate this more clearly than these brief notes can.

The third caution concerns naming theorems. Here, the reader needs to bear in mind Arnol'd's principle 4 If a notion bears a personal name, then that name is not the name of the discoverer (and the related Berry principle: The Arnol'd principle is applicable to itself). To see the applicability of Berry's principle, I note that in the wider world, Arnol'd's principle is called "Stigler's law of eponymy." Stigler 5 named this in 1980, pointing out it was really discovered by Merton. In 1972, Kennedy $\sqrt{6}$ named Boyer's law Mathematical formulas and theorems are usually not named after their original discoverers after Boyer's book ${ }^{7}$ Already in 1956, Newman 8 quoted the early twentieth-century philosopher and logician A. N. Whitehead as saying: "Everything of importance has been said before by somebody who

[^1]did not discover it." The main reason to give a name to a theorem is to have a convenient way to refer to that theorem. I usually try to follow common usage (even when I know Arnol'd's principle applies).

I have resisted the temptation of some text writers to rename things to set the record straight. For example, there is a small group who have attempted to replace "WKB approximation" by "Liouville-Green approximation", with valid historical justification (see the Notes to Section 15.5 of Part 2B). But if I gave a talk and said I was about to use the Liouville-Green approximation, I'd get blank stares from many who would instantly know what I meant by the WKB approximation. And, of course, those who try to change the name also know what WKB is! Names are mainly for shorthand, not history.

These books have a wide variety of problems, in line with a multiplicity of uses. The serious reader should at least skim them since there is often interesting supplementary material covered there.

Similarly, these books have a much larger bibliography than is standard, partly because of the historical references (many of which are available online and a pleasure to read) and partly because the Notes introduce lots of peripheral topics and places for further reading. But the reader shouldn't consider for a moment that these are intended to be comprehensive - that would be impossible in a subject as broad as that considered in these volumes.

These books differ from many modern texts by focusing a little more on special functions than is standard. In much of the nineteenth century, the theory of special functions was considered a central pillar of analysis. They are now out of favor-too much so-although one can see some signs of the pendulum swinging back. They are still mainly peripheral but appear often in Part 2 and a few times in Parts 1, 3, and 4.

These books are intended for a second course in analysis, but in most places, it is really previous exposure being helpful rather than required. Beyond the basic calculus, the one topic that the reader is expected to have seen is metric space theory and the construction of the reals as completion of the rationals (or by some other means, such as Dedekind cuts).

Initially, I picked "A Course in Analysis" as the title for this series as an homage to Goursat's Cours d'Analyse 9 a classic text (also translated into English) of the early twentieth century (a literal translation would be

[^2]"of Analysis" but "in" sounds better). As I studied the history, I learned that this was a standard French title, especially associated with École Polytechnique. There are nineteenth-century versions by Cauchy and Jordan and twentieth-century versions by de la Vallée Poussin and Choquet. So this is a well-used title. The publisher suggested adding "Comprehensive", which seems appropriate.

It is a pleasure to thank many people who helped improve these texts. About 80% was $T_{E} X e d$ by my superb secretary of almost 25 years, Cherie Galvez. Cherie was an extraordinary person-the secret weapon to my productivity. Not only was she technically strong and able to keep my tasks organized but also her people skills made coping with bureaucracy of all kinds easier. She managed to wind up a confidant and counselor for many of Caltech's mathematics students. Unfortunately, in May 2012, she was diagnosed with lung cancer, which she and chemotherapy valiantly fought. In July 2013, she passed away. I am dedicating these books to her memory.

During the second half of the preparation of this series of books, we also lost Arthur Wightman and Ed Nelson. Arthur was my advisor and was responsible for the topic of my first major paper - perturbation theory for the anharmonic oscillator. Ed had an enormous influence on me, both via the techniques I use and in how I approach being a mathematician. In particular, he taught me all about closed quadratic forms, motivating the methodology of my thesis. I am also dedicating these works to their memory.

After Cherie entered hospice, Sergei Gel'fand, the AMS publisher, helped me find Alice Peters to complete the $\mathrm{T}_{\mathrm{E}} \mathrm{Xing}$ of the manuscript. Her experience in mathematical publishing (she is the "A" of A K Peters Publishing) meant she did much more, for which I am grateful.

This set of books has about 150 figures which I think considerably add to their usefulness. About half were produced by Mamikon Mnatsakanian, a talented astrophysicist and wizard with Adobe Illustrator. The other half, mainly function plots, were produced by my former Ph.D. student and teacher extraordinaire Mihai Stoiciu (used with permission) using Mathematica. There are a few additional figures from Wikipedia (mainly under WikiCommons license) and a hyperbolic tiling of Douglas Dunham, used with permission. I appreciate the help I got with these figures.

Over the five-year period that I wrote this book and, in particular, during its beta-testing as a text in over a half-dozen institutions, I received feedback and corrections from many people. In particular, I should like to thank (with apologies to those who were inadvertently left off): Tom Alberts, Michael Barany, Jacob Christiansen, Percy Deift, Tal Einav, German Enciso, Alexander Eremenko, Rupert Frank, Fritz Gesztesy, Jeremy Gray,

Leonard Gross, Chris Heil, Mourad Ismail, Svetlana Jitomirskaya, Bill Johnson, Rowan Killip, John Klauder, Seung Yeop Lee, Milivoje Lukic, Andre Martinez-Finkelshtein, Chris Marx, Alex Poltoratski, Eric Rains, Lorenzo Sadun, Ed Saff, Misha Sodin, Dan Stroock, Benji Weiss, Valentin Zagrebnov, and Maxim Zinchenko.

Much of these books was written at the tables of the Hebrew University Mathematics Library. I'd like to thank Yoram Last for his invitation and Naavah Levin for the hospitality of the library and for her invaluable help.

This series has a Facebook page. I welcome feedback, questions, and comments. The page is at www.facebook.com/simon.analysis.

Even if these books have later editions, I will try to keep theorem and equation numbers constant in case readers use them in their papers.

Finally, analysis is a wonderful and beautiful subject. I hope the reader has as much fun using these books as I had writing them.

Contents to Part 1

Preface to the Series xi
Preface to Part 1 xvii
Chapter 1. Preliminaries 1
§1.1. Notation and Terminology 1
§1.2. Metric Spaces 3
§1.3. The Real Numbers 6
§1.4. Orders 9
§1.5. The Axiom of Choice and Zorn's Lemma 11
§1.6. Countability 14
§1.7. Some Linear Algebra 18
§1.8. Some Calculus 30
Chapter 2. Topological Spaces 35
§2.1. Lots of Definitions 37
§2.2. Countability and Separation Properties 51
§2.3. Compact Spaces 63
§2.4. The Weierstrass Approximation Theorem and Bernstein Polynomials 76
§2.5. The Stone-Weierstrass Theorem 88
§2.6. Nets 93
§2.7. Product Topologies and Tychonoff's Theorem 99
§2.8. Quotient Topologies 103
Chapter 3. A First Look at Hilbert Spaces and Fourier Series 107
§3.1. Basic Inequalities 109
§3.2. Convex Sets, Minima, and Orthogonal Complements 119
§3.3. Dual Spaces and the Riesz Representation Theorem 122
§3.4. Orthonormal Bases, Abstract Fourier Expansions, and Gram-Schmidt 131
§3.5. Classical Fourier Series 137
§3.6. The Weak Topology 168
§3.7. A First Look at Operators 174
§3.8. Direct Sums and Tensor Products of Hilbert Spaces 176
Chapter 4. Measure Theory 185
§4.1. Riemann-Stieltjes Integrals 187
§4.2. The Cantor Set, Function, and Measure 198
§4.3. Bad Sets and Good Sets 205
§4.4. Positive Functionals and Measures via $L^{1}(X)$ 212
§4.5. The Riesz-Markov Theorem 233
§4.6. Convergence Theorems; L^{p} Spaces 240
§4.7. Comparison of Measures 252
§4.8. Duality for Banach Lattices; Hahn and Jordan Decomposition 259
§4.9. Duality for L^{p} 270
§4.10. Measures on Locally Compact and σ-Compact Spaces 275
§4.11. Product Measures and Fubini's Theorem 281
§4.12. Infinite Product Measures and Gaussian Processes 292
§4.13. General Measure Theory 300
§4.14. Measures on Polish Spaces 306
§4.15. Another Look at Functions of Bounded Variation 314
§4.16. Bonus Section: Brownian Motion 319
§4.17. Bonus Section: The Hausdorff Moment Problem 329
§4.18. Bonus Section: Integration of Banach Space-Valued Functions 337
§4.19. Bonus Section: Haar Measure on σ-Compact Groups 342
Chapter 5. Convexity and Banach Spaces 355
§5.1. Some Preliminaries 357
§5.2. Hölder's and Minkowski's Inequalities: A Lightning Look 367
§5.3. Convex Functions and Inequalities 373
§5.4. The Baire Category Theorem and Applications 394
§5.5. The Hahn-Banach Theorem 414
§5.6. Bonus Section: The Hamburger Moment Problem 428
§5.7. Weak Topologies and Locally Convex Spaces 436
§5.8. The Banach-Alaoglu Theorem 446
§5.9. Bonus Section: Minimizers in Potential Theory 447
§5.10. Separating Hyperplane Theorems 454
§5.11. The Krein-Milman Theorem 458
$\S 5.12$. Bonus Section: Fixed Point Theorems and Applications 468
Chapter 6. Tempered Distributions and the Fourier Transform 493
§6.1. Countably Normed and Fréchet Spaces 496
§6.2. Schwartz Space and Tempered Distributions 502
§6.3. Periodic Distributions 520
§6.4. Hermite Expansions 523
§6.5. The Fourier Transform and Its Basic Properties 540
§6.6. More Properties of Fourier Transform 548
§6.7. Bonus Section: Riesz Products 576
§6.8. Fourier Transforms of Powers and Uniqueness of Minimizers in Potential Theory 583
§6.9. Constant Coefficient Partial Differential Equations 588
Chapter 7. Bonus Chapter: Probability Basics 615
§7.1. The Language of Probability 617
§7.2. Borel-Cantelli Lemmas and the Laws of Large Numbers and of the Iterated Logarithm 632
§7.3. Characteristic Functions and the Central Limit Theorem 648
§7.4. Poisson Limits and Processes 660
§7.5. Markov Chains 667
Chapter 8. Bonus Chapter: Hausdorff Measure and Dimension 679
§8.1. The Carathéodory Construction 680
§8.2. Hausdorff Measure and Dimension 687
Chapter 9. Bonus Chapter: Inductive Limits and Ordinary Distributions 705
§9.1. \quad Strict Inductive Limits 706
§9.2. Ordinary Distributions and Other Examples of Strict Inductive Limits 711
Bibliography 713
Symbol Index 765
Subject Index 769
Author Index 779
Index of Capsule Biographies 789

Contents to Part 2A

Preface to the Series xi
Preface to Part 2 xvii
Chapter 1. Preliminaries 1
§1.1. Notation and Terminology 1
§1.2. Complex Numbers 3
§1.3. Some Algebra, Mainly Linear 5
§1.4. Calculus on \mathbb{R} and \mathbb{R}^{n} 8
§1.5. Differentiable Manifolds 12
§1.6. Riemann Metrics 18
§1.7. Homotopy and Covering Spaces 21
§1.8. Homology 24
§1.9. Some Results from Real Analysis 26
Chapter 2. The Cauchy Integral Theorem: Basics 29
§2.1. Holomorphic Functions 30
§2.2. Contour Integrals 40
§2.3. Analytic Functions 49
§2.4. The Goursat Argument 66
§2.5. The CIT for Star-Shaped Regions 69
§2.6. Holomorphically Simply Connected Regions, Logs, and Fractional Powers 71
§2.7. The Cauchy Integral Formula for Disks and Annuli 76
Chapter 3. Consequences of the Cauchy Integral Formula 79
§3.1. Analyticity and Cauchy Estimates 80
§3.2. An Improved Cauchy Estimate 93
§3.3. The Argument Principle and Winding Numbers 95
§3.4. Local Behavior at Noncritical Points 104
§3.5. Local Behavior at Critical Points 108
§3.6. The Open Mapping and Maximum Principle 114
§3.7. Laurent Series 120
§3.8. The Classification of Isolated Singularities; Casorati-Weierstrass Theorem 124
§3.9. Meromorphic Functions 128
§3.10. Periodic Analytic Functions 132
Chapter 4. Chains and the Ultimate Cauchy Integral Theorem 137
§4.1. Homologous Chains 139
§4.2. Dixon's Proof of the Ultimate CIT 142
§4.3. The Ultimate Argument Principle 143
§4.4. Mesh-Defined Chains 145
§4.5. Simply Connected and Multiply Connected Regions 150
§4.6. The Ultra Cauchy Integral Theorem and Formula 151
§4.7. Runge's Theorems 153
§4.8. The Jordan Curve Theorem for Smooth Jordan Curves 161
Chapter 5. More Consequences of the CIT 167
§5.1. The Phragmén-Lindelöf Method 168
§5.2. The Three-Line Theorem and the Riesz-Thorin Theorem 174
§5.3. Poisson Representations 177
§5.4. Harmonic Functions 183
§5.5. The Reflection Principle 189
§5.6. Reflection in Analytic Arcs; Continuity at Analytic Corners 196
§5.7. Calculation of Definite Integrals 201
Chapter 6. Spaces of Analytic Functions 227
§6.1. Analytic Functions as a Fréchet Space 228
§6.2. Montel's and Vitali's Theorems 234
§6.3. Restatement of Runge's Theorems 244
§6.4. Hurwitz's Theorem 245
§6.5. Bonus Section: Normal Convergence of Meromorphic Functions and Marty's Theorem 247
Chapter 7. Fractional Linear Transformations 255
§7.1. The Concept of a Riemann Surface 256
§7.2. The Riemann Sphere as a Complex Projective Space 267
§7.3. $\quad \mathbb{P S L}(2, \mathbb{C})$ 273
§7.4. Self-Maps of the Disk 289
§7.5. Bonus Section: Introduction to Continued Fractions and the Schur Algorithm 295
Chapter 8. Conformal Maps 309
§8.1. The Riemann Mapping Theorem 310
§8.2. Boundary Behavior of Riemann Maps 319
§8.3. First Construction of the Elliptic Modular Function 325
§8.4. Some Explicit Conformal Maps 336
§8.5. Bonus Section: Covering Map for General Regions 353
§8.6. Doubly Connected Regions 357
§8.7. Bonus Section: The Uniformization Theorem 362
§8.8. Ahlfors' Function, Analytic Capacity and the Painlevé Problem 371
Chapter 9. Zeros of Analytic Functions and Product Formulae 381
§9.1. Infinite Products 383
§9.2. A Warmup: The Euler Product Formula 387
§9.3. The Mittag-Leffler Theorem 399
§9.4. The Weierstrass Product Theorem 401
§9.5. General Regions 406
§9.6. The Gamma Function: Basics 410
§9.7. The Euler-Maclaurin Series and Stirling's Approximation 430
§9.8. Jensen's Formula 448
§9.9. Blaschke Products 451
§9.10. Entire Functions of Finite Order and the Hadamard Product Formula 459
Chapter 10. Elliptic Functions 475
§10.1. A Warmup: Meromorphic Functions on $\widehat{\mathbb{C}}$ 480
§10.2. Lattices and $\mathbb{S L}(2, \mathbb{Z})$ 481
§10.3. Liouville's Theorems, Abel's Theorem, and Jacobi's Construction 491
§10.4. Weierstrass Elliptic Functions 501
§10.5. Bonus Section: Jacobi Elliptic Functions 522
§10.6. The Elliptic Modular Function 542
§10.7. The Equivalence Problem for Complex Tori 552
Chapter 11. Selected Additional Topics 555
§11.1. The Paley-Wiener Strategy 557
§11.2. Global Analytic Functions 564
§11.3. Picard's Theorem via the Elliptic Modular Function 570
§11.4. Bonus Section: Zalcman's Lemma and Picard's Theorem 575
§11.5. Two Results in Several Complex Variables: Hartogs' Theorem and a Theorem of Poincaré 580
§11.6. Bonus Section: A First Glance at Compact Riemann Surfaces 586
Bibliography 591
Symbol Index 623
Subject Index 625
Author Index 633
Index of Capsule Biographies 641

Contents to Part 2B

Preface to the Series ix
Preface to Part 2 XV
Chapter 12. Riemannian Metrics and Complex Analysis 1
§12.1. Conformal Metrics and Curvature 3
§12.2. The Poincaré Metric 6
§12.3. The Ahlfors-Schwarz Lemma 14
§12.4. Robinson's Proof of Picard's Theorems 16
§12.5. The Bergman Kernel and Metric 18
§12.6. The Bergman Projection and Painlevé's Conformal Mapping Theorem 27
Chapter 13. Some Topics in Analytic Number Theory 37
§13.1. Jacobi's Two- and Four-Square Theorems 46
§13.2. Dirichlet Series 56
§13.3. The Riemann Zeta and Dirichlet L-Function 72
§13.4. Dirichlet's Prime Progression Theorem 80
§13.5. The Prime Number Theorem 87
Chapter 14. Ordinary Differential Equations in the Complex Domain 95
§14.1. Monodromy and Linear ODEs 99
§14.2. Monodromy in Punctured Disks 101
§14.3. ODEs in Punctured Disks 106
§14.4. Hypergeometric Functions 116
§14.5. Bessel and Airy Functions 139
§14.6. Nonlinear ODEs: Some Remarks 150
§14.7. Integral Representation 152
Chapter 15. Asymptotic Methods 161
§15.1. Asymptotic Series 163
§15.2. Laplace's Method: Gaussian Approximation and Watson's Lemma 171
§15.3. The Method of Stationary Phase 183
§15.4. The Method of Steepest Descent 194
§15.5. The WKB Approximation 213
Chapter 16. Univalent Functions and Loewner Evolution 231
§16.1. Fundamentals of Univalent Function Theory 233
§16.2. Slit Domains and Loewner Evolution 241
§16.3. SLE: A First Glimpse 251
Chapter 17. Nevanlinna Theory 257
§17.1. The First Main Theorem of Nevanlinna Theory 262
§17.2. Cartan's Identity 268
§17.3. The Second Main Theorem and Its Consequences 271
§17.4. Ahlfors' Proof of the SMT 278
Bibliography 285
Symbol Index 309
Subject Index 311
Author Index 315
Index of Capsule Biographies 321

Contents to Part 3

Preface to the Series xi
Preface to Part 3 xvii
Chapter 1. Preliminaries 1
§1.1. Notation and Terminology 1
§1.2. Some Results for Real Analysis 3
§1.3. \quad Some Results from Complex Analysis 12
§1.4. Green's Theorem 16
Chapter 2. Pointwise Convergence Almost Everywhere 19
§2.1. The Magic of Maximal Functions 22
§2.2. Distribution Functions, Weak- L^{1}, and Interpolation 26
§2.3. The Hardy-Littlewood Maximal Inequality 41
§2.4. Differentiation and Convolution 52
§2.5. Comparison of Measures 60
§2.6. The Maximal and Birkhoff Ergodic Theorems 65
§2.7. Applications of the Ergodic Theorems 92
§2.8. Bonus Section: More Applications of the Ergodic Theorems 102
§2.9. Bonus Section: Subadditive Ergodic Theorem and Lyapunov Behavior 133
§2.10. Martingale Inequalities and Convergence 147
§2.11. The Christ-Kiselev Maximal Inequality and Pointwise Convergence of Fourier Transforms 168
Chapter 3. Harmonic and Subharmonic Functions 173
§3.1. Harmonic Functions 177
§3.2. Subharmonic Functions 202
§3.3. Bonus Section: The Eremenko-Sodin Proof of Picard's Theorem 213
§3.4. Perron's Method, Barriers, and Solution of the Dirichlet Problem 220
§3.5. Spherical Harmonics 232
§3.6. Potential Theory 252
§3.7. Bonus Section: Polynomials and Potential Theory 278
§3.8. Harmonic Function Theory of Riemann Surfaces 298
Chapter 4. Bonus Chapter: Phase Space Analysis 319
§4.1. The Uncertainty Principle 320
§4.2. The Wavefront Sets and Products of Distributions 345
§4.3. Microlocal Analysis: A First Glimpse 352
§4.4. Coherent States 373
§4.5. Gabor Lattices 390
§4.6. Wavelets 407
Chapter 5. $\quad H^{p}$ Spaces and Boundary Values of Analytic Functions on the Unit Disk 437
§5.1. Basic Properties of H^{p} 439
§5.2. H^{2} 444
§5.3. First Factorization (Riesz) and H^{p} 450
§5.4. Carathéodory Functions, h^{1}, and the Herglotz Representation 459
§5.5. Boundary Value Measures 464
§5.6. Second Factorization (Inner and Outer Functions) 468
§5.7. Conjugate Functions and M. Riesz's Theorem 472
$\S 5.8$. Homogeneous Spaces and Convergence of Fourier Series 493
§5.9. Boundary Values of Analytic Functions in the Upper Half-Plane 498
§5.10. Beurling's Theorem 515
§5.11. H^{p}-Duality and BMO 517
§5.12. Cotlar's Theorem on Ergodic Hilbert Transforms 539
Chapter 6. Bonus Chapter: More Inequalities 543
§6.1. Lorentz Spaces and Real Interpolation 547
§6.2. Hardy-Littlewood-Sobolev and Stein-Weiss Inequalities 559
§6.3. Sobolev Spaces; Sobolev and Rellich-Kondrachov Embedding Theorems 565
§6.4. The Calderón-Zygmund Method 588
§6.5. Pseudodifferential Operators on Sobolev Spaces and the Calderón-Vaillancourt Theorem 604
$\S 6.6$. Hypercontractivity and Logarithmic Sobolev Inequalities 615
§6.7. Lieb-Thirring and Cwikel-Lieb-Rosenblum Inequalities 657
§6.8. Restriction to Submanifolds 671
§6.9. Tauberian Theorems 686
Bibliography 691
Symbol Index 737
Subject Index 739
Author Index 751
Index of Capsule Biographies 759

Contents to Part 4

Preface to the Series xi
Preface to Part 4 xvii
Chapter 1. Preliminaries 1
§1.1. Notation and Terminology 1
§1.2. Some Complex Analysis 3
§1.3. Some Linear Algebra 6
§1.4. Finite-Dimensional Eigenvalue Perturbation Theory 21
§1.5. \quad Some Results from Real Analysis 28
Chapter 2. Operator Basics 33
§2.1. Topologies and Special Classes of Operators 34
§2.2. The Spectrum 46
§2.3. The Analytic Functional Calculus 58
§2.4. The Square Root Lemma and the Polar Decomposition 71
Chapter 3. Compact Operators, Mainly on a Hilbert Space 89
§3.1. Compact Operator Basics 91
§3.2. The Hilbert-Schmidt Theorem 102
§3.3. The Riesz-Schauder Theorem 111
§3.4. Ringrose Structure Theorems 120
§3.5. Singular Values and the Canonical Decomposition 132
§3.6. The Trace and Trace Class 136
§3.7. Bonus Section: Trace Ideals 145
§3.8. Hilbert-Schmidt Operators 154
§3.9. Schur Bases and the Schur-Lalesco-Weyl Inequality 161
§3.10. Determinants and Fredholm Theory 164
§3.11. Operators with Continuous Integral Kernels 174
§3.12. Lidskii's Theorem 184
§3.13. Bonus Section: Regularized Determinants 187
§3.14. Bonus Section: Weyl's Invariance Theorem 192
§3.15. Bonus Section: Fredholm Operators and Their Index 201
§3.16. Bonus Section: M. Riesz's Criterion 223
Chapter 4. Orthogonal Polynomials 229
§4.1. Orthogonal Polynomials on the Real Line and Favard's Theorem 231
§4.2. The Bochner-Brenke Theorem 242
$\S 4.3$. L^{2} - and L^{∞}-Variational Principles: Chebyshev Polynomials 256
§4.4. Orthogonal Polynomials on the Unit Circle: Verblunsky's and Szegő's Theorems 268
Chapter 5. The Spectral Theorem 287
§5.1. Three Versions of the Spectral Theorem: Resolutions of the Identity, the Functional Calculus, and Spectral Measures 289
§5.2. Cyclic Vectors 301
§5.3. A Proof of the Spectral Theorem 301
§5.4. Bonus Section: Multiplicity Theory 303
§5.5. Bonus Section: The Spectral Theorem for Unitary Operators 316
§5.6. Commuting Self-adjoint and Normal Operators 323
§5.7. Bonus Section: Other Proofs of the Spectral Theorem 328
§5.8. Rank-One Perturbations 333
§5.9. Trace Class and Hilbert-Schmidt Perturbations 345
Chapter 6. Banach Algebras 355
§6.1. Banach Algebra: Basics and Examples 357
§6.2. The Gel'fand Spectrum and Gel'fand Transform 370
§6.3. Symmetric Involutions 392
§6.4. Commutative Gel'fand-Naimark Theorem and the Spectral Theorem for Bounded Normal Operators 400
§6.5. Compactifications 407
§6.6. Almost Periodic Functions 413
§6.7. The GNS Construction and the Noncommutative Gel'fand-Naimark Theorem 421
§6.8. Bonus Section: Representations of Locally Compact Groups 430
§6.9. Bonus Section: Fourier Analysis on LCA Groups 448
$\S 6.10$. Bonus Section: Introduction to Function Algebras 469
§6.11. Bonus Section: The $L^{1}(\mathbb{R})$ Wiener and Ingham Tauberian Theorems 493
§6.12. The Prime Number Theorem via Tauberian Theorems 510
Chapter 7. Bonus Chapter: Unbounded Self-adjoint Operators 515
§7.1. Basic Definitions and the Fundamental Criterion for Self-adjointness 518
§7.2. The Spectral Theorem for Unbounded Operators 541
§7.3. Stone's Theorem 549
§7.4. von Neumann's Theory of Self-adjoint Extensions 554
§7.5. Quadratic Form Methods 572
§7.6. Pointwise Positivity and Semigroup Methods 610
§7.7. Self-adjointness and the Moment Problem 633
§7.8. Compact, Rank-One and Trace Class Perturbations 660
§7.9. The Birman-Schwinger Principle 668
Bibliography 687
Symbol Index 727
Subject Index 729
Author Index 741
Index of Capsule Biographies 749

Preface to Part 1

I warn you in advance that all the principles ... that I'll now tell you
about, are a little false. Counterexamples can be found to each one-but
as directional guides the principles still serve a useful purpose.

- Paul Halmo: ${ }^{1}$

Analysis is the infinitesimal calculus writ large. Calculus as taught to most high school students and college freshmen is the subject as it existed about 1750 - I've no doubt that Euler could have gotten a perfect score on the Calculus BC advanced placement exam. Even "rigorous" calculus courses that talk about $\varepsilon-\delta$ proofs and the intermediate value theorem only bring the subject up to about 1890 after the impact of Cauchy and Weierstrass on real variable calculus was felt.

This volume can be thought of as the infinitesimal calculus of the twentieth century. From that point of view, the key chapters are Chapter 4, which covers measure theory-the consummate integral calculus-and the first part of Chapter 6 on distribution theory - the ultimate differential calculus.

But from another point of view, this volume is about the triumph of abstraction. Abstraction is such a central part of modern mathematics that one forgets that it wasn't until Fréchet's 1906 thesis that sets of points with no a priori underlying structure (not assumed points in or functions on \mathbb{R}^{n}) are considered and given a structure a posteriori (Fréchet first defined abstract metric spaces). And after its success in analysis, abstraction took over significant parts of algebra, geometry, topology, and logic.

[^3]Abstract spaces are a distinct thread here, starting with topological spaces in Chapter 2, Banach spaces in Chapter 5 (and its special case, Hilbert spaces, in Chapter 3), and locally convex spaces in the later parts of Chapters 5 and 6 and in Chapter 9.

Of course, abstract spaces occur to set up the language we need for measure theory (which we do initially on compact Hausdorff spaces and where we use Banach lattices as a tool) and for distributions which are defined as duals of some locally convex spaces.

Besides the main threads of measure theory, distributions, and abstract spaces, several leitmotifs can be seen: Fourier analysis (Sections 3.5, 6.2, and 6.4-6.6 are a minicourse), probability (Bonus Chapter 7 has the basics, but it is implicit in much of the basic measure theory), convexity (a key notion in Chapter 5), and at least bits and pieces of the theory of ordinary and partial differential equations.

The role of pivotal figures in real analysis is somewhat different from complex analysis, where three figures - Cauchy, Riemann, and Weierstrassdominated not only in introducing the key concepts, but many of the most significant theorems. Of course, Lebesgue and Schwartz invented measure theory and distributions, respectively, but after ten years, Lebesgue moved on mainly to pedagogy and Hörmander did much more to cement the theory of distributions than Schwartz. On the abstract side, F. Riesz was a key figure for the 30 years following 1906, with important results well into his fifties, but he doesn't rise to the dominance of the complex analytic three.

In understanding one part of the rather distinct tone of some of this volume, the reader needs to bear in mind "Simon's three kvetches" 2

1. Every interesting topological space is a metric space.
2. Every interesting Banach space is separable.
3. Every interesting real-valued function is Baire/Borel measurable.

Of course, the principles are well-described by the Halmos quote at the start - they aren't completely true but capture important ideas for the reader to bear in mind. As a mathematician, I cringe at using the phrase "not completely true." I was in a seminar whose audience included Ed Nelson, one of my teachers. When the speaker said the proof he was giving was almost rigorous, Ed said: "To say something is almost rigorous makes as much sense as saying a woman is almost pregnant." On the other hand, Neils Bohr, the founding father of quantum mechanics, said: "It is the hallmark of any deep truth that its negation is also a deep truth., 3

[^4]We'll see that weak topologies on infinite-dimensional Banach spaces are never metrizable (see Theorem 5.7.2) nor is the natural topology on $C_{0}^{\infty}\left(\mathbb{R}^{\nu}\right)$ (see Theorem 9.1.5), so Kvetch 1 has counterexamples, but neither case is so far from metrizable: If X^{*} is separable, the weak topology restricted to the unit ball of X is metrizable (see Theorem 5.7.2). While $C_{0}^{\infty}\left(\mathbb{R}^{\nu}\right)$ is not metrizable, that is because we allow ordinary distributions of arbitrary growth. If we restrict ourselves to distributions of any growth restriction, the test function space will be metrizable (see Sections 6.1 and 6.2). But the real point of Kvetch 1 is that the reason for studying topological spaces is not (merely) to be able to discuss nonmetrizable spaces-it is because metrics have more structure than is needed- $(0,1)$ is not complete with its usual metric while \mathbb{R} is, but they are the same as topological spaces. Topological spaces provide the proper language for parts of analysis.
$L^{\infty}([0,1], d x)$ and $\mathcal{L}(\mathcal{H})$, the bounded operators on a Hilbert space, \mathcal{H}, are two very interesting spaces which are not separable, so Kvetch 2 isn't strictly true. But again, there is a point to Kvetch 2. In many cases, the most important members of a class of spaces are separable and one has to do considerable gymnastics in the general case, which is never, or at most very rarely, used. Of course, the gymnastics can be fun, but they don't belong in a first course. We illustrate this by including separability as an axiom for Hilbert spaces. Von Neumann did also in his initial work, but over the years, this has been dropped in most books. We choose to avoid the complications and mainly restrict ourselves to the separable case.

Two caveats: First, the consideration of the nonseparable case can provide more elegant proofs! For example, the projection lemma of Theorem 3.2.3 was proven initially for the separable case using a variant of GramSchmidt. The elegant proof we use that exploits convex minimization was only discovered because of a need to handle the nonseparable case. Second, we abuse the English language. A "red book" is a "book." We include separability and complex field in our definition of Hilbert space. We'll use the terms "nonseparable Hilbert space" and "real Hilbert space," which are not Hilbert spaces!

In one sense, Kvetch 3 isn't true, but except for one caveat, it is. Every set, A, has its characteristic function associated with it. If the only interesting functions are Borel functions, the only interesting sets are Borel sets. While it is a more advanced topic that we won't consider, there are sets constructed from Borel sets, called analytic sets and Souslin sets which may not be Borel 4 The kvetch is there to eliminate Lebesgue measurable sets and functions, that is, sets $A=B \triangle C$, where B is Borel, and $C \subset D$, a Borel set of Lebesgue measure zero. The end of Section 4.3 discusses why it is not

[^5]a good idea to consider such sets (and functions) even though many books do and it's what the Carathéodory construction of Section 8.1 leads to.

The last issue we mention in this preface is that our approach to measure theory is different from the standard one - it follows an approach in the appendix of Lax $\sqrt{5}$ that starts with a positive functional, ℓ, on $C(X)$, completes $C(X)$ in the $\ell(|f|)$-norm, and shows that the elements of the completion are equivalence classes of Borel functions. For those who prefer more traditional approaches, Section 4.13 discusses general measure spaces and Section 8.1 discusses the Carathéodory outer measure construction.

[^6]
Preface to Part 2

Part 2 of this five-volume series is devoted to complex analysis. We've split Part 2 into two pieces (Part 2A and Part 2B), partly because of the total length of the current material, but also because of the fact that we've left out several topics and so Part 2B has some room for expansion. To indicate the view that these two volumes are two halves of one part, chapter numbers are cumulative. Chapters 1-11 are in Part 2A, and Part 2B starts with Chapter 12.

The flavor of Part 2 is quite different from Part 1-abstract spaces are less central (although hardly absent) - the content is more classical and more geometrical. The classical flavor is understandable. Most of the material in this part dates from 1820-1895, while Parts 1, 3, and 4 largely date from 1885-1940.

While real analysis has important figures, especially F. Riesz, it is hard to single out a small number of "fathers." On the other hand, it is clear that the founding fathers of complex analysis are Cauchy, Weierstrass, and Riemann. It is useful to associate each of these three with separate threads which weave together to the amazing tapestry of this volume. While useful, it is a bit of an exaggeration in that one can identify some of the other threads in the work of each of them. That said, they clearly did have distinct focuses, and it is useful to separate the three points of view.

To Cauchy, the central aspect is the differential and integral calculus of complex-valued functions of a complex variable. Here the fundamentals are the Cauchy integral theorem and Cauchy integral formula. These are the basics behind Chapters 2-5.

For Weierstrass, sums and products and especially power series are the central object. These appear first peeking through in the Cauchy chapters (especially Section 2.3) and dominate in Chapters 6, 9, 10, and parts of Chapter 11, Chapter 13, and Chapter 14.

For Riemann, it is the view as conformal maps and associated geometry. The central chapters for this are Chapters 7, 8, and 12, but also parts of Chapters 10 and 11.

In fact, these three strands recur all over and are interrelated, but it is useful to bear in mind the three points of view.

I've made the decision to restrict some results to C^{1} or piecewise C^{1} curves - for example, we only prove the Jordan curve theorem for that case.

We don't discuss, in this part, boundary values of analytic functions in the unit disk, especially the theory of the Hardy spaces, $H^{p}(\mathbb{D})$. This is a topic in Part 3. Potential theory has important links to complex analysis, but we've also put it in Part 3 because of the close connection to harmonic functions.

Unlike real analysis, where some basic courses might leave out point set topology or distribution theory, there has been for over 100 years an acknowledged common core of any complex analysis text: the Cauchy integral theorem and its consequences (Chapters 2 and 3), some discussion of harmonic functions on \mathbb{R}^{2} and of the calculation of indefinite integrals (Chapter 5), some discussion of fractional linear transformations and of conformal maps (Chapters 7 and 8). It is also common to discuss at least Weierstrass product formulas (Chapter 9) and Montel's and/or Vitali's theorems (Chapter 6).

I also feel strongly that global analytic functions belong in a basic course. There are several topics that will be in one or another course, notably the Hadamard product formula (Chapter 9), elliptic functions (Chapter 10), analytic number theory (Chapter 13), and some combination of hypergeometric functions (Chapter 14) and asymptotics (Chapter 15). Nevanlinna theory (Chapter 17) and univalents functions (Chapter 16) are almost always in advanced courses. The break between Parts 2A and 2B is based mainly on what material is covered in Caltech's course, but the material is an integrated whole. I think it unfortunate that asymptotics doesn't seem to have made the cut in courses for pure mathematicians (although the material in Chapters 14 and 15 will be in complex variable courses for applied mathematicians).

Preface to Part 3

I don't have a succinct definition of harmonic analysis or perhaps I have too many. One possibility is that harmonic analysis is what harmonic analysts do. There is an active group of mathematicians, many of them students of or grandstudents of Calderón or Zygmund, who have come to be called harmonic analysts and much of this volume concerns their work or the precursors to that work. One problem with this definition is that, in recent years, this group has branched out to cover certain parts of nonlinear PDE's and combinatorial number theory.

Another approach to a definition is to associate harmonic analysis with "hard analysis," a term introduced by Hardy, who also used "soft analysis" as a pejorative for analysis as the study of abstract infinite-dimensional spaces. There is a dividing line between the use of abstraction, which dominated the analysis of the first half of the twentieth century, and analysis which relies more on inequalities, which regained control in the second half. And there is some truth to the idea that Part 1 in this series of books is more on soft analysis and Part 3 on hard, but, in the end, both parts have many elements of both abstraction and estimates.

Perhaps the best description of this part is that it should really be called "More Real Analysis." With the exception of Chapter 5 on H^{p}-spaces, any chapter would fit with Part 1—indeed, Chapter 4, which could be called "More Fourier Analysis," started out in Part 1 until I decided to move it here.

The topics that should be in any graduate analysis course and often are, are the results on Hardy-Littlewood maximal functions and the Lebesgue
differentiation theorem in Chapter 2, the very basics of harmonic and subharmonic functions, something about H^{p}-spaces and about Sobolev inequalities.

The other topics are exceedingly useful but are less often in courses, including those at Caltech. Especially in light of Calderón's discovery of its essential equivalence to the Hardy-Littlewood theorem, the maximal ergodic theorem should be taught. And wavelets have earned a place, as well. In any event, there are lots of useful devices to add to our students' toolkits.

Preface to Part 4

The subject of this part is "operator theory." Unlike Parts 1 and 2, where there is general agreement about what we should expect graduate students to know, that is not true of this part.

Putting aside for now Chapters 4 and 6, which go beyond "operator theory" in a narrow sense, one can easily imagine a book titled Operator Theory having little overlap with Chapters 2, 3, 5, and 7: almost all of that material studies Hilbert space operators. We do discuss in Chapter 2 the analytic functional calculus on general Banach spaces, and parts of our study of compact operators in Chapter 3 cover some basics and the RieszSchauder theory on general Banach spaces. We cover Fredholm operators and the Ringrose structure theory in normed spaces. But the thrust is definitely toward Hilbert space.

Moreover, a book like Harmonic Analysis of Operators on Hilbert Spac\& ${ }^{1}$ or any of several books with "non-self-adjoint" in their titles have little overlap with this volume. So from our point of view, a more accurate title for this part might be Operator Theory-Mainly Self-Adjoint and/or Compact Operators on a Hilbert Space.

That said, much of the material concerning those other topics, undoubtedly important, doesn't belong in "what every mathematician should at least be exposed to in analysis." But, I believe the spectral theorem, at least for bounded operators, the notions of trace and determinant on a Hilbert space, and the basics of the Gel'fand theory of commutative Banach spaces do belong on that list.

[^7]Before saying a little more about the detailed contents, I should mention that many books with a similar thrust to this book have the name Functional Analysis. I still find it remarkable and a little strange that the parts of a graduate analysis course that deal with operator theory are often given this name (since functions are more central to real and complex analysis), but they are, even by me2.

One change from the other parts in this series of five books is that in them all the material called "Preliminaries" is either from other parts of the series or from prior courses that the student is assumed to have had (e.g., linear algebra or the theory of metric spaces). Here, Chapter 1 includes a section on perturbation theory for eigenvalues of finite matrices because it fits in with a review of linear algebra, not because we imagine many readers are familiar with it.

Chapters 4 and 6 are here as material that I believe all students should see while learning analysis (at least the initial sections), but they are connected to, though rather distinct from, "operator theory." Chapter 4 deals with a subject dear to my heart-orthogonal polynomials-it's officially here because the formal proof we give of the spectral theorem reduces it to the result for Jacobi matrices which we treat by approximation theory for orthogonal polynomials (it should be emphasized that this is only one of seven proofs we sketch). I arranged this, in part, because I felt any first-year graduate student should know the way to derive these from recurrence relations for orthogonal polynomials on the real line. We fill out the chapter with bonus sections on some fascinating aspects of the theory.

Chapter 6 involves another subject that should be on the required list of any mathematician, the Gel'fand theory of commutative Banach algebras. Again, there is a connection to the spectral theorem, justifying the chapter being placed here, but the in-depth look at applications of this theory, while undoubtedly a part of a comprehensive look at analysis, doesn't fit very well under the rubric of operator theory.

[^8]
3.5. Classical Fourier Series

I turn away with fear and horror from this lamentable plague of continuous functions that do not have a derivative.
-Charles Hermite (1822-1901)
in a letter to Thomas Stieltjes, 1893

Fourier series involve expanding functions periodic with period L in terms of $\left\{\sin \left(\frac{2 \pi k x}{L}\right)\right\}_{k=1}^{\infty}$ and $\left\{\cos \left(\frac{2 \pi k x}{L}\right)\right\}_{k=0}^{\infty}$. Without loss, we can take $L=2 \pi$ and so consider functions on $\partial \mathbb{D}=\left\{e^{i \theta} \mid \theta \in \mathbb{R}\right\}$. The modern approach uses $e^{ \pm 2 \pi i k x / L}$ rather than sin and cos. The essence of analysis in classical Fourier series is thus $\left(L^{2}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)\right.$ is for now defined as in Example 3.1 .9 by completion)

Theorem 3.5.1. $\left\{e^{i k \theta}\right\}_{k=-\infty}^{\infty}$ is an orthonormal basis for $L^{2}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$.
Accepting this for a moment, we have, by Theorem 3.4.1, that
Theorem 3.5.2. For f a continuous function on $\partial \mathbb{D}$, define

$$
\begin{equation*}
f_{k}^{\sharp}=\int_{0}^{2 \pi} e^{-i k \theta} f\left(e^{i \theta}\right) \frac{d \theta}{2 \pi} \tag{3.5.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
f\left(e^{i \theta}\right)=\sum_{k=-\infty}^{\infty} f_{k}^{\sharp} e^{i k \theta} \tag{3.5.2}
\end{equation*}
$$

in the sense that

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)-\sum_{k=-K}^{K} f_{k}^{\sharp} e^{i k \theta}\right|^{2} \frac{d \theta}{2 \pi}=0 \tag{3.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left|f_{k}^{\sharp}\right|^{2}=\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi} \tag{3.5.4}
\end{equation*}
$$

Remark. Since $\partial \mathbb{D}$ is compact, f is bounded so all the integrals converge.
This result is sometimes called the Riesz-Fischer theorem. It is not hard to extend this to piecewise continuous functions (Problem 1) and then for a proper choice of f to prove a celebrated formula of Euler (see the Notes) that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \tag{3.5.5}
\end{equation*}
$$

(Problem 21).

We will prove Theorem 3.5.1 as a corollary of
Theorem 3.5.3 (Weierstrass Trigonometric Density Theorem). $\left\{\sum_{k=-K}^{K} a_{k} e^{i k \theta} \mid\left\{a_{k}\right\}_{k=-K}^{K} \in \mathbb{C}^{2 K+1}, K \in \mathbb{N}\right\}$ is $\|\cdot\|_{\infty}$-dense in $C(\partial \mathbb{D})$.

Proof that Theorem 3.5.3 \Rightarrow Theorem 3.5.1. It is easy to see that if $\varphi_{k}\left(e^{i \theta}\right)=e^{i k \theta}$, then $\left\langle\varphi_{k}, \varphi_{\ell}\right\rangle=\delta_{k \ell}$. If $\varphi \in L^{2}$ obeys $\left\langle\varphi_{k}, \varphi\right\rangle=0$ for all k and $f \in C(X)$ is given, find $\sum_{k=-K}^{K} a_{k}^{(K)} e^{i k \theta}$ converging in $\|\cdot\|_{\infty}$ to $f . \mathrm{A}$ posteriori, it converges in L^{2}, so $\langle f, \varphi\rangle=0$. By construction of $L^{2}, C(\partial \mathbb{D})$ is dense, so $\langle\varphi, \varphi\rangle=0$, that is, $\left\{\varphi_{k}\right\}_{k=-\infty}^{\infty}$ is a maximal orthonormal set.

Theorem 3.5.3 is a restatement of the second density theorem of Weierstrass (Theorem 2.4.2). We'll first prove it using the Stone-Weierstrass theorem. Then we'll find more concrete proofs involving convergence of the Fourier series. We'll give two proofs in the text. In the Problems (see Problems 10, 12, and 3; see also Theorem 3.5.18), we'll provide other results on convergence of Fourier series.

Proof of Theorem 3.5.3 using Stone-Weierstrass. Let \mathcal{A} be the set of finite series of the form $\sum_{k=-K}^{K} a_{k} e^{i k \theta}$. Since $e^{i k \theta} e^{i \ell \theta}=e^{i(k+\ell) \theta}, \mathcal{A}$ is an algebra. Since $\overline{e^{i k \theta}}=e^{-i k \theta}, \mathcal{A}$ is closed under conjugation. Since $e^{i \theta}$ separates points on $\partial \mathbb{D}$ and $\left.e^{i k \theta}\right|_{k=0}=1, \mathcal{A}$ obeys all the hypotheses of the complex Stone-Weierstrass theorem (see Theorem 2.5.7), so \mathcal{A} is $\|\cdot\|_{\infty}$-dense in $C(\partial \mathbb{D})$.

In the remainder of this section, we'll study three aspects of Fourier series: pointwise or uniform convergence, and so alternate proofs of Theorem 3.5.1; the use of Fourier series to construct nowhere differentiable function; and convergence near discontinuities (an overshoot known as the Gibbs phenomenon).

Given a continuous function, f, on $\partial \mathbb{D}$, define f_{k}^{\sharp} by (3.5.1) and the partial sums and Cesàro averages by

$$
\begin{align*}
S_{N}(f)\left(e^{i \theta}\right) & =\sum_{k=-N}^{N} f_{k}^{\sharp} e^{i k \theta} \tag{3.5.6}\\
C_{N}(f)\left(e^{i \theta}\right) & =\frac{1}{N} \sum_{n=0}^{N-1} S_{n}(f)\left(e^{i \theta}\right) \tag{3.5.7}
\end{align*}
$$

We will prove the following three results about convergence of Fourier series.
Theorem 3.5.4 (Dini's Test). Let f be a continuous function on $\partial \mathbb{D}$ and let θ_{0} be such that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\left|f\left(e^{i \theta}\right)-f\left(e^{i \theta_{0}}\right)\right|}{\left|\theta-\theta_{0}\right|} \frac{d \theta}{2 \pi}<\infty \tag{3.5.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} S_{N}(f)\left(e^{i \theta_{0}}\right)=f\left(e^{i \theta_{0}}\right) \tag{3.5.9}
\end{equation*}
$$

Remark. See Problem 5 for versions that allow jump discontinuities and don't require f to be continuous away from $e^{i \theta_{0}}$.

Definition. Let (X, ρ) be a metric space. $f: X \rightarrow V$, a normed linear space, is called Hölder continous of order $\alpha \in(0,1]$ if and only if for some $C>0$ and all $x, y \in X$ with $\rho(x, y)<1$, we have that

$$
\begin{equation*}
\|f(x)-f(y)\| \leq C \rho(x, y)^{\alpha} \tag{3.5.10}
\end{equation*}
$$

If $\alpha=1, f$ is called Lipschitz continuous.
For example, if X is a compact manifold and f is real-valued and differentiable, f is Lipschitz continuous. If (3.5.10) holds for a fixed y and all x with $\rho(x, y)<1$, we say that f is Hölder (or Lipschitz) continuous at y.

Theorem 3.5.5. Suppose f on $\partial \mathbb{D}$ is complex-valued and Hölder continuous of some order $\alpha>0$. Then $S_{N}(f) \rightarrow f$ uniformly in $C(\partial \mathbb{D})$.

Remark. The proof shows that it suffices that the modulus of continuity, $\Delta_{f}(\theta)$, defined by

$$
\begin{equation*}
\Delta_{f}(\theta)=\sup _{\substack{e^{i \eta}, e^{i \psi} \in \partial \mathbb{D} \\|\eta-\psi| \leq \theta}}\left|f\left(e^{i \eta}\right)-f\left(e^{i \psi}\right)\right| \tag{3.5.11}
\end{equation*}
$$

obeys a Dini-type condition,

$$
\begin{equation*}
\int_{0}^{1} \frac{\Delta_{f}(\theta) d \theta}{\theta}<\infty \tag{3.5.12}
\end{equation*}
$$

Hölder continuity says $\left|\Delta_{f}(\theta)\right| \leq C|\theta|^{\alpha}$ obeys (3.5.12), but so does the weaker condition $\left|\Delta_{f}(\theta)\right| \leq\left(\log \left(\theta^{-1}\right)\right)^{-\beta}$ for any $\beta>1$.

Since $C^{\infty}(\partial \mathbb{D})$ is $\|\cdot\|_{\infty}$-dense in $C(\partial \mathbb{D})$ (see Problem 6) and any C^{1} function is Hölder continuous, this proves Theorem 3.5.3, and so Theorem 3.5.1. The following also proves Theorems 3.5.3, and so Theorem 3.5.1. It is not true that $S_{N}(f)$ converges uniformly to f for all $f \in C(\partial \mathbb{D})$. Indeed, there exist $f \in C(\partial \mathbb{D})$ with $\sup _{N}\left\|S_{N} f\right\|_{\infty}=\infty$ (see Problem 10 of Section 5.4). But for C_{N}, the situation is different.

Theorem 3.5.6 (Fejér's Theorem). For any $f \in C(\partial \mathbb{D}), C_{N}(f) \rightarrow f$ uniformly.

We now turn to the proofs of these three theorems. For the first two, we need an "explicit" formula for $S_{N}(f)$.

Figure 3.5.1. The Dirichlet kernel for $\mathrm{N}=3,5,10$.

Theorem 3.5.7 (Dirichlet Kernel). For any continuous function, f, we have

$$
\begin{equation*}
S_{N}(f)\left(e^{i \theta}\right)=\int_{0}^{2 \pi} D_{N}(\theta-\psi) f\left(e^{i \psi}\right) \frac{d \psi}{2 \pi} \tag{3.5.13}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{N}(\eta)=\frac{\sin \left[(2 N+1)\left(\frac{\eta}{2}\right)\right]}{\sin \left(\frac{\eta}{2}\right)} \tag{3.5.14}
\end{equation*}
$$

Remarks. 1. Once we have defined L^{2} and L^{1}, (3.5.13) holds for any $f \in L^{1}$.
2. D_{N} is called the Dirichlet kernel.
3. $D_{N}(\eta)$ must be invariant under $\eta \rightarrow \eta+2 \pi$. While the numerator and denominator of (3.5.14) change sign under this change, the ratio is invariant!
4. See Figure 3.5.1 for plots of D_{N} for $N=3,5,10$ with scaled y-axis.

Proof. By interchanging the finite sum and integral defining f_{k}^{\sharp}, we get (3.5.13) where

$$
\begin{align*}
D_{N}(\eta) & =\sum_{k=-N}^{N} e^{i k \eta} \tag{3.5.15}\\
& =\frac{e^{i(N+1) \eta}-e^{-i N \eta}}{e^{i \eta}-1} \tag{3.5.16}\\
& =\frac{e^{i\left(N+\frac{1}{2}\right) \eta}-e^{-i\left(N+\frac{1}{2}\right) \eta}}{e^{i \eta / 2}-e^{-i \eta / 2}} \tag{3.5.17}\\
& =\frac{\sin \left[(2 N+1)\left(\frac{\eta}{2}\right)\right]}{\sin \left(\frac{\eta}{2}\right)} \tag{3.5.18}
\end{align*}
$$

To get (3.5.16), we summed a geometric series, and to get (3.5.17), we multiplied the numerator and denominator by $e^{-i \eta / 2}$.

Proof of Theorem 3.5.4. By rotation covariance, we can suppose, for notational simplicity, that $\theta_{0}=0$, that is, $e^{i \theta_{0}}=1$. So using

$$
\begin{equation*}
\int_{-\pi}^{\pi} D_{N}(\theta) \frac{d \theta}{2 \pi}=\sum_{k=-N}^{N} \int_{-\pi}^{\pi} e^{i k \theta} \frac{d \theta}{2 \pi}=1 \tag{3.5.19}
\end{equation*}
$$

we have (using $\left.D_{N}(0-\theta)=D_{N}(\theta)\right)$ for all small δ that

$$
\begin{align*}
S_{N}(f)(1)-f(1) & =\int_{-\pi}^{\pi} D_{N}(\theta)\left[f\left(e^{i \theta}\right)-f(1)\right] \frac{d \theta}{2 \pi} \tag{3.5.20}\\
& =a_{N}^{\delta}+b_{N}^{\delta} \tag{3.5.21}
\end{align*}
$$

where a_{N}^{δ} is the integral from $-\delta$ to δ and b_{N}^{δ} the integral from $-\pi$ to $-\delta$ and δ to π. Since we are focusing on $\theta_{0}=0$, it is convenient to take integrals from $-\pi$ to π rather than 0 to 2π.

Let $g^{\delta}\left(e^{i \theta}\right)$ be given by

$$
g^{\delta}\left(e^{i \theta}\right)= \begin{cases}0, & |\theta|<\delta \tag{3.5.22}\\ \frac{f\left(e^{i \theta}\right)-f(1)}{\sin \left(\frac{\theta}{2}\right)}, & \delta \leq|\theta| \leq \pi\end{cases}
$$

Let $g_{ \pm}^{\delta}\left(e^{i \theta}\right)=e^{ \pm i \theta / 2} g^{\delta}\left(e^{i \theta}\right)$, so

$$
\begin{equation*}
b_{N}^{\delta}=\frac{\left(g_{+}^{\delta}\right)_{-N}^{\sharp}-\left(g_{-}^{\delta}\right)_{N}^{\sharp}}{2 i} \tag{3.5.23}
\end{equation*}
$$

Since, for δ fixed, $g_{ \pm}^{\delta}$ are bounded, they are in L^{2}, so $\sum_{N}\left|\left(g_{ \pm}^{\delta}\right)_{N}^{\sharp}\right|^{2}<\infty$ by (3.5.4). Thus, $\lim _{N \rightarrow \infty}\left(g_{ \pm}^{\delta}\right)_{\mp N}^{\sharp}=0$. So, for each fixed $\delta, b_{N}^{\delta} \rightarrow 0$ and

$$
\begin{align*}
\limsup _{N \rightarrow \infty}\left|S_{N}(f)(1)-f(1)\right| & \leq \sup _{N}\left|a_{N}^{\delta}\right| \tag{3.5.24}\\
& \leq \int_{-\delta}^{\delta} \frac{\left|f\left(e^{i \theta}\right)-f(1)\right|}{\left|\sin \left(\frac{\theta}{2}\right)\right|} \frac{d \theta}{2 \pi} \tag{3.5.25}
\end{align*}
$$

since $\left|D_{N}(\theta)\right| \leq\left|\sin \left(\frac{\theta}{2}\right)\right|^{-1}$.
By hypothesis, the integral over all θ is finite, so $\lim _{\delta \downarrow 0}($ RHS of $(3.5 .25))=0$. Since the left side is δ-independent, we conclude that $\lim _{N \rightarrow \infty}\left|S_{N}(f)(1)-f(1)\right|=0$.

Proof of Theorem 3.5.5. We sketch the proof, leaving the details to the reader (Problem 8). One looks at the proof above of Theorem 3.5.4 and restores the θ_{0}-dependence. Since we have a bound on $\sup _{|\theta-\psi| \leq \delta} \mid f\left(e^{i \theta}\right)-$ $f\left(e^{i \psi}\right) \mid \equiv \Delta_{f}(\delta)$ that obeys (3.5.12), the $a_{N}^{\delta}\left(\theta_{0}\right), b_{N}^{\delta}\left(\theta_{0}\right)$ terms obey $\sup _{\theta_{0}, N}\left|a_{N}^{\delta}\left(\theta_{0}\right)\right| \rightarrow 0$ as $\delta \downarrow 0$, so one only needs, for each fixed $\delta>0$, that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(\sup _{\theta_{0}}\left|b_{N}^{\delta}\left(\theta_{0}\right)\right|\right)=0 \tag{3.5.26}
\end{equation*}
$$

One first shows that if $\left\{h_{\alpha}\left(e^{i \theta}\right)\right\}$ is a compact set of h_{α} 's in L^{2}, then $\left(h_{\alpha}^{\sharp}\right)_{n} \rightarrow 0$ uniformly in α, and then that $g_{ \pm, \theta_{0}}^{\delta}$ is continuous in $e^{i \theta_{0}} \in \mathbb{D}$ to get compactness (see Problem 7).

The argument that $b_{N}^{\delta} \rightarrow 0$ in the proof of Theorem 3.5.4 implies a nice localization result going back to Riemann:

Theorem 3.5.8 (Riemann Localization Principle). Assume that f is in $L^{2}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$ and for some θ_{0} and some $\varepsilon>0, f\left(e^{i \theta}\right)=0$ for $\left|\theta-\theta_{0}\right|<\varepsilon$. Then $\left(S_{N} f\right)\left(e^{i \theta_{0}}\right) \rightarrow 0$ as $N \rightarrow \infty$. In particular, if f and g are in L^{2} and equal near $e^{i \theta_{0}}$ and $\left(S_{N} f\right)\left(e^{i \theta_{0}}\right)$ has a limit, then $\left(S_{N} g\right)\left(e^{i \theta}\right)$ has the same limit.

Remark. Once we have L^{1} and the more general Riemann-Lebesgue lemma (Theorem 6.5.3), this extends to L^{1}.

Finally, to prove Fejér's theorem, we need an analog of (3.5.9) for the Cesàro averages, $C_{N}(f)$:

Theorem 3.5.9 (Fejér Kernel). For any continuous function, f, we have

$$
\begin{equation*}
C_{N}(f)\left(e^{i \theta}\right)=\int_{0}^{2 \pi} F_{N}(\theta-\psi) f\left(e^{i \psi}\right) \frac{d \psi}{2 \pi} \tag{3.5.27}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{N}(\eta)=\frac{1}{N}\left[\frac{\sin \left(\frac{N \eta}{2}\right)}{\sin \left(\frac{\eta}{2}\right)}\right]^{2} \tag{3.5.28}
\end{equation*}
$$

Remark. See Figure 3.5.2 for plots of C_{N} for $N=3,5,10$.

Proof. By Theorem 3.5.7, we have (3.5.27) where

$$
\begin{align*}
F_{N}(\eta) & =\frac{1}{N} \sum_{j=0}^{N-1} D_{j}(\eta) \tag{3.5.29}\\
& =\frac{1}{N \sin \left(\frac{\eta}{2}\right)} \operatorname{Im}\left(\sum_{j=0}^{N-1} e^{i\left(j+\frac{1}{2}\right) \eta}\right) \tag{3.5.30}
\end{align*}
$$

Figure 3.5.2. The Fejér kernel for $\mathrm{N}=3,5,10$.

$$
\begin{align*}
& =\frac{1}{N \sin \left(\frac{\eta}{2}\right)} \operatorname{Im}\left[\frac{e^{i\left(N+\frac{1}{2}\right) \eta}-e^{i \eta / 2}}{e^{i \eta}-1}\right] \tag{3.5.31}\\
& =\frac{1}{N \sin \left(\frac{\eta}{2}\right)} \operatorname{Im}\left[\frac{e^{i N \eta}-1}{e^{i \eta / 2}-e^{-i \eta / 2}}\right] \tag{3.5.32}\\
& =\frac{(-1)}{N \sin ^{2}\left(\frac{\eta}{2}\right)} \frac{1}{2} \operatorname{Re}\left[e^{i N \eta}-1\right] \tag{3.5.33}\\
& =\frac{(-1)}{N \sin ^{2}\left(\frac{\eta}{2}\right)} \frac{1}{2} \operatorname{Re}\left[2 i \sin \left(\frac{N \eta}{2}\right) e^{i N \eta / 2}\right] \tag{3.5.34}\\
& =\frac{1}{N \sin ^{2}\left(\frac{\eta}{2}\right)} \sin ^{2}\left(\frac{N \eta}{2}\right) \tag{3.5.35}\\
& =\operatorname{RHS} \text { of }(3.5 .28) \tag{3.5.36}
\end{align*}
$$

We get (3.5.31) by summing a geometric series, (3.5.32) by multiplying numerator and denominator by $e^{-i \eta / 2}$, 3.5.33) from $e^{i \eta / 2}-e^{-i \eta / 2}=$ $2 i \sin \left(\frac{\eta}{2}\right)$, (3.5.34) by $\left(x^{2}-1\right)=\left(x-x^{-1}\right) x$, and (3.5.35) by $\operatorname{Re}\left[i e^{i a}\right]=$ $-\sin (a)$.

Proposition 3.5.10. $g_{N}(\eta) \equiv F_{N}(\eta)$ obeys
(i)

$$
\begin{equation*}
g_{N}(\eta) \geq 0 \tag{3.5.37}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{0}^{2 \pi} g_{N}(\eta) \frac{d \eta}{2 \pi}=1 \tag{3.5.38}
\end{equation*}
$$

(iii) For any $\varepsilon>0$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{\varepsilon<\eta<2 \pi-\varepsilon} g_{N}(\eta) \frac{d \eta}{2 \pi}=0 \tag{3.5.39}
\end{equation*}
$$

Proof. (i) is trivial and (ii) is immediate from (3.5.19) and (3.5.29). Since $\left|\sin \left(\frac{\eta N}{2}\right)\right| \leq 1$ and $\sin ^{2}\left(\frac{\eta}{2}\right)$ is monotone increasing on $[0, \pi]$ and decreasing on $[\pi, 2 \pi]$, we have

$$
\begin{equation*}
F_{N}(\eta) \leq \frac{1}{N \sin ^{2}\left(\frac{\varepsilon}{2}\right)} \quad \text { if } \varepsilon<\eta<2 \pi-\varepsilon \tag{3.5.40}
\end{equation*}
$$

from which (iii) is immediate.
Definition. A sequence of continuous functions $\left\{g_{N}\right\}_{N=1}^{\infty}$ on $\partial \mathbb{D}$ obeying (i)-(iii) of Proposition 3.5.10 is called an approximate identity.

Theorem 3.5.11. If $\left\{g_{N}\right\}_{N=1}^{\infty}$ is an approximate identity and $f \in C(\partial \mathbb{D})$, then

$$
\begin{equation*}
g_{N} * f \rightarrow f \tag{3.5.41}
\end{equation*}
$$

uniformly on $\partial \mathbb{D}$, where

$$
\begin{equation*}
(h * f)\left(e^{i \theta}\right)=\int_{0}^{2 \pi} h(\theta-\psi) f\left(e^{i \psi}\right) \frac{d \psi}{2 \pi} \tag{3.5.42}
\end{equation*}
$$

Remarks. 1. One application of this is to prove that $C^{\infty}(\partial \mathbb{D})$ is $\|\cdot\|_{\infty}$-dense in $C(\partial \mathbb{D})$; see Problem 6.
2. This result is only stated for continuous $\left\{g_{N}\right\}_{N=1}^{\infty}$ because, at this point, we only know how to integrate continuous functions. Once one has L^{1}, one can define L^{1} approximate identities by the above definition with "continuous" replaced by L^{1}. This theorem extends with no change in the proof.

Proof. By periodicity and (3.5.38),

$$
\begin{equation*}
\left(g_{N} * f\right)\left(e^{i \theta}\right)-f\left(e^{i \theta}\right)=\int_{0}^{2 \pi} g_{N}(\psi)\left[f\left(e^{i(\theta-\psi)}\right)-f\left(e^{i \theta}\right)\right] \frac{d \psi}{2 \pi} \tag{3.5.43}
\end{equation*}
$$

so breaking the integral into $0<\psi<\varepsilon$ or $2 \pi-\varepsilon<\psi<2 \pi$ and its complement, we get

$$
\begin{equation*}
\left\|g_{N} * f-f\right\|_{\infty} \leq \sup _{|\psi|<\varepsilon}\left|f\left(e^{i(\theta-\psi)}\right)-f\left(e^{i \theta}\right)\right|+2\|f\|_{\infty} \int_{\varepsilon}^{2 \pi-\varepsilon} g_{N}(\psi) \frac{d \psi}{2 \pi} \tag{3.5.44}
\end{equation*}
$$

using (i) and (ii) of the definition of approximate identity.
By property (iii),

$$
\begin{equation*}
\limsup _{N \rightarrow \infty}\left\|g_{N} * f-f\right\|_{\infty} \leq \sup _{|\psi|<\varepsilon}\left|f\left(e^{i(\theta-\psi)}\right)-f\left(e^{i \theta}\right)\right| \tag{3.5.45}
\end{equation*}
$$

Since f is continuous, it is uniformly continuous (by Theorem 2.3.10), so the sup goes to zero as $\varepsilon \downarrow 0$.

Proof of Theorem 3.5.6. Immediate from Theorems 3.5.9 and 3.5.11 and Proposition 3.5.10,

There is nothing special about $\partial \mathbb{D}$.
Definition. A sequence of functions, $\left\{g_{N}(x)\right\}_{N=1}^{\infty}$ on \mathbb{R}^{ν} is called an approximate identity if and only if
(i) $g_{N}(x) \geq 0$
(ii) $\int g_{N}(x) d^{\nu} x=1$
(iii) For any $\varepsilon>0$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{|x| \geq \varepsilon} g_{N}(x) d^{\nu} x=0 \tag{3.5.48}
\end{equation*}
$$

If h and g are functions on \mathbb{R}^{ν}, one defines their convolution by

$$
\begin{align*}
(h * g)(x) & =\int h(y) g(x-y) d^{\nu} y \tag{3.5.49}\\
& =\int h(x-y) g(y) d^{\nu} y \tag{3.5.50}
\end{align*}
$$

Note that if $\int g(x) d^{\nu} x<\infty$ and $\|h\|_{\infty}<\infty$, then the integrals converge uniformly and absolutely.

The same argument that led to Theorem 3.5.11 implies
Theorem 3.5.12. Let $\left\{g_{N}\right\}_{N=1}^{\infty}$ be an approximate identity. If f is bounded and uniformly continuous on \mathbb{R}^{ν}, then as $N \rightarrow \infty$,

$$
\begin{equation*}
g_{N} * f \xrightarrow{\|\cdot\|_{\infty}} f \tag{3.5.51}
\end{equation*}
$$

If there is a compact set $K \subset \mathbb{R}^{\nu}$ so $\operatorname{supp}\left(g_{N}\right) \subset K$ for all N and f is continuous (but not necessarily bounded or uniformly continuous on all of $\left.\mathbb{R}^{\nu}\right)$, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(g_{N} * f\right)(x)=f(x) \tag{3.5.52}
\end{equation*}
$$

uniformly for x in each compact subset of \mathbb{R}^{ν}.
With the Fejér kernel in hand, we can construct examples of nowhere differentiable continuous functions of the form first studied by Weierstrass. We'll consider

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a^{n} n^{\gamma} \cos \left(b^{n} x\right) \tag{3.5.53}
\end{equation*}
$$

where b is an integer with $b \geq 2, \gamma \in \mathbb{R}$, and $0<a<1$ or $a=1, \gamma<-1$. Since $|a|<1$ (or $a=1, \gamma<-1$), the finite sum converges uniformly, and so f is a continuous periodic function. We'll prove below that if $a b>1, f$ is nowhere differentiable. The key is that the Fourier coefficients have large gaps, so we not only have that $\frac{1}{2} a^{n} n^{\gamma}=\int e^{-i b^{n} x} f(x) d x$, but we can insert $F_{N}(x)$ if $N<b^{n}-b^{n-1}$ in front of f without changing the integral. The key will then be:

Lemma 3.5.13. There exists constant $c_{\alpha}, 0<\alpha \leq 1$, so that for all $N \geq 2$,

$$
(2 \pi)^{-1} \int_{-\pi}^{\pi}|x|^{\alpha} F_{N}(x) d x \leq \begin{cases}c_{\alpha} N^{-\alpha} & 0<\alpha<1 \tag{3.5.54}\\ c_{1} \frac{\log (N)}{N} & \alpha=1\end{cases}
$$

Proof. Clearly, by (3.5.15), $\left|D_{N}(x)\right| \leq D_{N}(0)$, so

$$
\begin{equation*}
\left|F_{N}(x)\right| \leq F_{N}(0)=N \tag{3.5.55}
\end{equation*}
$$

Since $\lim _{\eta \rightarrow 0},|\eta| /|\sin \eta|=1$ and, by computing derivatives, increasing on $(0, \pi / 2),|\sin \eta| \geq(2 / \pi)|\eta|$ for $|\eta| \leq \pi / 2$. It follows that

$$
\begin{equation*}
\left|F_{N}(x)\right| \leq \frac{\pi^{2}}{N x^{2}} \tag{3.5.56}
\end{equation*}
$$

(3.5.54) follows by using (3.5.55) on $\{x||x| \leq 1 / N\}$ and (3.5.56) on $\{x \mid$ $1 / N \leq|x| \leq \pi\}$.

Proposition 3.5.14. Let $f(x)$ be an L^{2} function on $(-\pi, \pi)$ with Fourier coefficients f_{j}^{\sharp}. Suppose that f is extended periodically to \mathbb{R}, and for some $x_{0}, C>0$ and $\alpha \in(0,1]$, we have that for all x,

$$
\begin{equation*}
\left|f(x)-f\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\alpha} \tag{3.5.57}
\end{equation*}
$$

Suppose also that for some $k \neq 0$ and N with $1<N<|k|$, we have that

$$
\begin{equation*}
f_{j}^{\sharp}=0 \quad \text { for } 0<|j-k| \leq N-1 \tag{3.5.58}
\end{equation*}
$$

Then, with c_{α} given by (3.5.54),

$$
\left|f_{k}^{\sharp}\right| \leq \begin{cases}C c_{\alpha} N^{-\alpha}, & 0<\alpha<1 \tag{3.5.59}\\ C c_{1} \frac{\log (N)}{N}, & \alpha=1\end{cases}
$$

Proof. Since shifting x by $-x_{0}$ multiplies f_{j}^{\sharp} by a phase factor, we can suppose $x_{0}=0$. Since replacing f by $f-f(0)$ doesn't change f_{j}^{\sharp} for $j \neq 0$ or (3.5.57), we can suppose $x_{0}=0$ and $f\left(x_{0}\right)=0$.

Let $\varphi_{j}(x)=e^{i j x}$. Then since $F_{N}(x)$ is a linear combination of $\left\{\varphi_{\ell}\right\}_{\ell=-(N-1)}^{N-1}$ with constant term 1,

$$
\varphi_{k} F_{N}=\varphi_{k}+\text { linear combination of }\left\{\varphi_{\ell}\right\}_{1 \leq|\ell-k| \leq N-1}
$$

so

$$
\begin{equation*}
f_{k}^{\sharp}=\left\langle\varphi_{k}, f\right\rangle=\left\langle\varphi_{k} F_{N}, f\right\rangle \tag{3.5.60}
\end{equation*}
$$

so that

$$
\begin{align*}
\left|f_{k}^{\sharp}\right| & \leq(2 \pi)^{-1} \int\left|F_{N}(x)\right||f(x)| d x \tag{3.5.61}\\
& \leq C(2 \pi)^{-1} \int\left|F_{N}(x)\right||x|^{\alpha} d x \tag{3.5.62}
\end{align*}
$$

so (3.5.54) implies (3.5.59).
Write the function in (3.5.53) as $f_{a, b, \gamma}$. Then
Theorem 3.5.15. (a) For $0<a \leq 1, f_{a, b, \gamma}$ is Hölder continuous of order α if $a b^{\alpha}<1$ or $a b^{\alpha}=1, \gamma<-1$. If $\alpha=1$ and these conditions hold, $f_{a, b, \gamma}$ is C^{1}.
(b) For $0<\alpha<1$, if $a b^{\alpha}>1$ or $a b^{\alpha}=1$ and $\gamma>0$, then $f_{a, b, \gamma}$ is nowhere Hölder continuous of order α. If $a b>1$ or $a b=1$ and $\gamma>1$, then f is nowhere Lipschitz and, in particular, nowhere differentiable.

Proof. (a) Since $|\cos x-\cos y| \leq 2$ and

$$
|\cos x-\cos y| \leq\left|\int_{x}^{y} \sin u d u\right| \leq|x-y|
$$

we have for any $\alpha \in[0,1]$ that $|\cos x-\cos y| \leq 2^{1-\alpha}|x-y|^{\alpha}$, so

$$
\begin{equation*}
\left|f_{a, b, \gamma}(x)-f_{a, b, \gamma}(y)\right| \leq 2^{1-\alpha}|x-y|^{\alpha} \sum_{n=1}^{\infty} a^{n} b^{n \alpha} n^{\gamma} \tag{3.5.63}
\end{equation*}
$$

If either $a b^{\alpha}<1$ or $a b^{\alpha}=1$ and $\gamma<-1$, the sum in (3.5.63) converges and we get global Hölder continuity.
(b) We consider the case $\alpha=1 . \alpha<1$ is similar (Problem 16). If $f_{a, b, \gamma}$ is Lipschitz continuous at some x_{0}, by Proposition 3.5.14 and (3.5.59) with $k=b^{n}$ and $N=b^{n}-b^{n-1}=b^{n}\left(1-b^{-1}\right)$, we get that for some constant K,

$$
\begin{equation*}
a^{n} n^{\gamma} \leq K n b^{-n} \tag{3.5.64}
\end{equation*}
$$

or

$$
\begin{equation*}
(a b)^{n} n^{\gamma-1} \leq K \tag{3.5.65}
\end{equation*}
$$

If $a b>1$ or $a b=1$ and $\gamma>1$, this is false for n large, so $f_{a, b, \gamma}$ cannot be Lipschitz at any point.

Example 3.5.16. For $a=\frac{1}{2}, b=2$, and $\gamma=2, f_{a, b, \gamma}$ is nowhere Lipschitz continuous (and so nowhere differentiable) but Hölder continuous for all $\alpha<1$. This result is true also for $\gamma=0$; see the Notes and Problem 17.

Fix α_{0} with $0<\alpha_{0}<1$. For $a=\left(\frac{1}{2}\right)^{\alpha_{0}}, b=2, \gamma=2, f_{a, b, \gamma}$ is Hölder continuous for $\alpha<\alpha_{0}$ and nowhere Hölder continuous for $\alpha \geq \alpha_{0}$. If instead, $\gamma=-2$, one gets Hölder continuity for $\alpha \leq \alpha_{0}$ and nowhere Hölder continuous for $\alpha>\alpha_{0}$.

If $b=2, a=1, \gamma=-2, f_{a, b, \gamma}$ is continuous, but nowhere Hölder continuous for any $\alpha>0$.

Figure 3.5.3. C_{11} for a step function.

Figure 3.5.4. $S_{n}, n=5,12,21,101$ for a step function.

Finally, we turn to an aspect of convergence of Fourier series known as the Gibbs phenomenon. Consider the function on $\partial \mathbb{D}$,

$$
f\left(e^{i \theta}\right)= \begin{cases}1, & 0<\theta<\pi \tag{3.5.66}\\ -1, & \pi<\theta<2 \pi \\ 0, & \theta=0 \text { or } \pi\end{cases}
$$

By Dini's test extended to nonglobally continuous functions (Problem 9), $S_{n}(f)\left(e^{i \theta}\right) \rightarrow f\left(e^{i \theta}\right)$ uniformly on each set $\left\{e^{i \theta} \mid \varepsilon<\theta<\pi-\varepsilon, \pi+\varepsilon<\right.$ $\theta<2 \pi-\varepsilon\}$ for $\varepsilon>0$. Since $f\left(e^{-i \theta}\right)=-f\left(e^{i \theta}\right), f_{-k}^{\sharp}=-\overline{f_{k}^{\sharp}}$, so $S_{n}(f)(1)=$ $S_{n}(f)(-1)=0$. Thus, one might think that $S_{n}(f)$ for n large looks like the graph in Figure 3.5.3, hugging f closely except for a linear piece extending from -1 to 1 or 1 to -1 at $\theta=0, \pi$. Indeed, this is what happens for $C_{n}(f)-$ in fact, Figure 3.5.3 is $C_{11}(f)$ and the reader will prove $\left\|C_{n}(f)\right\|_{\infty} \leq\|f\|_{\infty}$ in Problem 20. However, Figure 3.5.4 plots $S_{n}(f)$ for $n=5,12,21,101$. The Gibbs phenomenon is the systematic overshoots shown in this figure.

Theorem 3.5.17 (Gibbs Phenomenon). For the step function, f, given by (3.5.66),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S_{n} f\right\|_{\infty}=\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin s}{s} d s=1.178979744 \ldots \tag{3.5.67}
\end{equation*}
$$

Moreover, the points where $\left|S_{n} f\right|$ is maximal are given by $\pm\left(\pi / n+O\left(1 / n^{2}\right)\right)$.

Sketch. We'll leave the justifications to the Problems (Problem 21). By a simple calculation, we have

$$
\begin{equation*}
f_{2 n}^{\sharp}=0, \quad f_{2 n+1}^{\sharp}=\frac{2}{i(2 n+1) \pi} \tag{3.5.68}
\end{equation*}
$$

so using the fact that

$$
\begin{equation*}
\frac{1}{i(2 j+1)} e^{(2 j+1) i x}=\int_{0}^{x} e^{(2 j+1) i t} d t+\frac{1}{i(2 j+1)} \tag{3.5.69}
\end{equation*}
$$

and the cancellation of the constants, one finds that, after summing a geometric series,

$$
\begin{align*}
\left(S_{2 n} f\right)(x) & =\left(S_{2 n-1} f\right)(x)=\frac{2}{\pi} \int_{0}^{x} \frac{\sin (2 n t)}{\sin t} d t \tag{3.5.70}\\
& =G(2 n x)+O\left(x^{2}\right) \tag{3.5.71}
\end{align*}
$$

where $O\left(x^{2}\right)$ means an error bounded by $C x^{2}$ uniformly in n, and where

$$
G(y)=\frac{2}{\pi} \int_{0}^{y} \frac{\sin s}{s} d s
$$

This comes from $1 / \sin t-1 / t=O(t)$.
Since $S_{n}(f) \rightarrow f$ uniformly away from $0, \pi$, we see that if $\pm y_{\infty}$ are the points where $|G(y)|$ is maximum, then $\lim _{n \rightarrow \infty}\left\|S_{n} f\right\|_{\infty}$ is $\sup |G(y)|$ and the maximum point is $\pm y_{\infty} / 2 n+O\left(1 / n^{2}\right)$.

Since $G^{\prime}(y)=(2 \sin y) / \pi y$, the relative maxima of $|G|$ occur at multiples of π, and using the oscillations and decay of y^{-1}, one sees that the maximum occurs at $y_{\infty}=\pi$ with $\sup |G(y)|=G(\pi)$.

Notes and Historical Remarks.

Apart from his prefectorial duties Fourier helped organise the "Description of Egypt" . . Fourier's main contribution was the general introduction-a survey of Egyptian history up to modern times. (An Egyptologist with whom I discussed this described the introduction as a masterpiece and a turning point in the subject. He was surprised to hear that Fourier also had a reputation as a mathematician.)
—T. W. Körner [512]
We are hampered in this section by the fact that we only discuss measurable and L^{p} functions in the next chapter. So we've made use of the vague term "function" without descriptive adjectives. For now, we interpret this as continuous functions. But we emphasize, as the reader should check after L^{1} is defined, that Theorems 3.5.11 and 3.5.12 are valid if the g_{N} 's are only L^{1} functions (with all the formal properties of an approximate identity).

Fourier series are such a fundamental part of analysis that there are many books devoted solely or at least substantially to them. Among these are $[263,309,356,357,479,512,871,875,935,974,1024]$. In particular, Zgymund [1024] remains a readable classic.

The history of Fourier analysis is intimately wrapped up with an understanding of what a function is, and later, which functions have integrals. In the early history, a key role was played by Euler and the Bernoullis. Part 2A
has capsule biographies for them (Section 9.2 for Euler and Section 9.7 for the Bernoulli family).

The early history revolved around the wave equation in one dimension, $\frac{\partial^{2}}{\partial t^{2}} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)$. (We use units in which the wave speed is 1; the eighteenth-century work had a speed of propagation.) In about 1750, d'Alembert [212] and Euler [285] independently found general solutions of the form $f(x-t)+g(x+t)$, where f and g are "arbitrary functions." The eighteenth-century notion of function meant given by an explicit analytic expression involving sums, powers, trigonometric functions, and the like. A sharp controversy partially in letters and partially in papers developed. Euler argued that you needed to allow an initial condition like $u(x, 0)=\frac{1}{2}-\left|\frac{1}{2}-\frac{x}{\pi}\right|$ on $[0, \pi]$, thinking of a plucked string which was viewed as two analytic expressions, $\left(\frac{x}{\pi}\right.$ on $\left(0, \frac{\pi}{2}\right)$ and $1-\frac{x}{\pi}$ on $\left(\frac{\pi}{2}, \pi\right)$), and d'Alembert didn't like that.

Shortly after that, Daniel Bernoulli [78], following a 1715 observation of Brook Taylor [913], pointed out that $\cos (k t) \sin (k x)$ is also a solution (shifting variables for our $(0, \pi)$ case), and if one wanted $u(\pm \pi, z)=0$ boundary conditions, one could take $k=1,2, \ldots$. He claimed that the d'Alembert-Euler solutions could be represented as sums of solutions of this $\cos (n t) \sin (n x)$ form. There followed lively exchanges among the three, joined also by Lagrange and then Laplace, that involved what kind of functions could be represented by infinite sums of sines and cosines. Euler argued that only functions with a single expression could be so represented-which was ironic given that he had elsewhere considered the sums that converge to the jump, as we do in Theorem 3.5.17. Only Bernoulli was in the "any function can" camp. This issue of what kinds of functions Fourier sums could represent stayed open until the work of Dirichlet (and, even more broadly, of Riesz-Fischer) discussed below. Because of its importance to the understanding of functions, and to the history of Fourier analysis and of waves in physics, this controversy has seen considerable historical analysis: see Ravetz [760], Grattan-Guinness [362], and Wheeler-Crummett [986].

In his work on planetary motion, Euler [286] also used sine and cosine sums. Using orthogonality and formal interchange of sum and integral, he essentially found the formula (3.5.1) for the coefficients (he used $\sin (k \theta)$ and $\left.\cos (k \theta), \operatorname{not} e^{ \pm i k \theta}\right)$.

In 1799, Parseval [700] also considered such sums and wrote what was essentially (3.5.4) without any explicit proof or calculations. So, on the basis of this work, one of only five published works, Marc-Antoine Parseval des Chênes (1755-1836) is known to posterity. For example, we used his name for the abstract Hilbert space result, (3.4.3). We also used the name of Michel Plancherel (1885-1967), a Swiss mathematician, who in 1910 [730]
provided one of the first proofs of the analog for Fourier transforms and thereby got his name on all sorts of L^{2} relations of transforms, such as (3.4.3).

Next in the picture was Jean Baptiste Joseph Fourier (1768-1830). Fourier was more a physicist than a mathematician and his engineering expertise led to high political appointments. He started life as the ninth child of a tailor and became a baron of the First French Empire. He was active in revolutionary politics and was imprisoned during the reign of terror. It is likely that it was only the fall of Robespierre that prevented him from losing his head long before his scientific discoveries! He was involved with Napoleon's 1798-99 campaign in Egypt, starting as scientific adviser and ending as governor of Lower Egypt. In 1801, Napoleon appointed him as prefect (administrative head) of a province that included Grenoble, where he lived, supervising the construction of a highway from Grenoble to Turin, among other tasks. He initially supported the new king at the time of Napoleon's escape from Elba and had to flee Grenoble to avoid Napoleon's army. He then shifted back to Napoleon and was distrusted by the king after Waterloo, enough so that for a time, the king prevented his election to the French Academy. After Waterloo, he returned to Paris, and in 1822 he became the secretary of the Academy. For more on his life, see Körner [512, Sects. 92-93] and Herival [419].

Undoubtedly, Fourier is most known for his book on heat [311] written in 1804-07, while he was prefect in Grenoble. He submitted it to the French Academy in 1807. He used what we now call Fourier series and the Fourier transform (see Sections 6.3 and 6.5) in solving the heat equation (see Section 6.9). His claims about expanding arbitrary functions were only one of the controversial elements of his book, leading the committee of Lagrange, Laplace, Monge, and Lacroix to hold up publication. Along the way, the work got a prize from a committee of Lagrange, Laplace, Malus, Haüy, and Legendre. It was finally published in 1822.

This book established the usefulness of the method and many basic formulae. One of Fourier's results was the sin/cos version of (3.5.1), which he found not knowing of Euler's earlier derivation. Unlike Euler, who used orthogonality, Fourier's proof was very complicated and involved expanding sine in a Taylor series, collecting terms, and manipulating the power series for f-a procedure especially questionable for the discontinuous functions Fourier claimed one could expand in Fourier series!

The validity of Fourier expansions was established by the seminal paper [249] of Johann Peter Gustav Lejeune Dirichlet (1805-59). A capsule biography of Dirichlet appears in the Notes to Section 13.4 of Part 2B. We note
here that this paper was published in 1829 when Dirichlet was only twentyfour years old, that he studied under Fourier in Paris, and that Fourier was instrumental in Dirichlet getting a position in Germany around that time.

Dirichlet used his kernel to show that many noncontinuous functions, f, had convergent Fourier series, with the requirement that the limit at the point of discontinuity is $\frac{1}{2}(f(x+0)+f(x-0))$ (see Problem 5). He supposed his functions were continuous except at finitely many points, smooth in between (exactly how smooth wasn't made explicit), had left and right limits at the points of discontinuity, and had only finitely many maxima and minima. We now know these conditions are overkill-smoothness by itself is enough, as is the maximum-minimum condition alone if interpreted as functions of bounded variation (see below). Nevertheless, Dirichlet's result was radical for its time. Shortly before, in one his texts on Analysis, Cauchy had claimed that a pointwise limit of continuous functions is continuous. It took the clarifying notion of uniform convergence (pushed by Weierstrass) to settle these questions.

We note that in 1873, Paul du Bois-Reymond (1831-1889) [256] constructed a continuous function on $\partial \mathbb{D}$ whose Fourier series was divergent at a given point. Fejér [297] found a different example of this sort and in Problem 4 we expose his idea. (In Problem 10 of Section 5.4, the reader will show there exists $f \in C(\partial \mathbb{D})$ so $\left\|S_{N} f\right\|_{\infty} \rightarrow \infty$, a closely related fact. In Problem 12 of that section, the reader will prove that, in the language of that section, a Baire generic function has $\left|\left(S_{N} f\right)(1)\right| \rightarrow \infty$ and in Problem 13 that for a Baire generic function, $\left|\left(S_{N} f\right)\left(e^{i \theta}\right)\right| \rightarrow \infty$ for a Baire generic set of θ.)

Dirichlet's work set the baseline for all later work on Fourier series convergence, of which we want to mention five: that of Dini, Jordan, Fejér, Riesz-Fischer, and Carleson.

Ulisse Dini (1845-1918) wrote a book on Fourier series [247] that includes Theorem 3.5.4. (3.5.8) is called the Dini test or Dini condition. Occasionally, a function that obeys (3.5.12) is called Dini continuous.

Another basic convergence theorem is due to Camille Jordan (18381922) [455]:

Theorem 3.5.18 (Jordan's Theorem). If f is a function of bounded variation on $\partial \mathbb{D}$, then $S_{n}\left(f\left(e^{i \theta}\right)\right) \rightarrow \frac{1}{2}\left[f\left(e^{i(\theta+0)}\right)+f\left(e^{i(\theta-0)}\right)\right]$ for any $x \in(0,1)$.

Functions of bounded variation (which were first defined in this paper of Jordan) are defined and discussed in Sections 4.1 and 4.15. In particular, Theorem 4.15 .2 shows any such function is a difference of monotone functions, so it is sufficient to prove Jordan's theorem for monotone functions, which the reader does in Problem 3.

Lipót Fejér (1880-1959) proved Theorem 3.5.6 along the lines we do in his 1900 paper [298], written when he was only nineteen. For a discussion of the impact of his discovery on the revival of interest in Fourier analysis, see Kahane [465]. Fejér was born Lipót Weiss (German for "white") and was a student of Hermann Schwarz (German for "black"). He changed his name to Fejér (archaic Hungarian for "white") around 1900 and one of his students was Fekete (Hungarian for "black"). Among Fejér's other students were Paul Erdős, George Pólya, Tibor Radö, Marcel Riesz, Gabor Szegő, Paul Turán, and John von Neumann. Fejér spent most of his career at the University of Budapest, although he initially had trouble with his appointment because he was Jewish. He suffered during the Nazi occupation of Hungary in 1944, treatment that it is believed led to a loss of his mental capacity after the Second World War.

The last of the classical convergence results is the fact we regard as the definition of Fourier expansion, namely, for any $f \in L^{2}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$, $\int\left|\left(S_{n} f\right)\left(e^{i \theta}\right)-f\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi} \rightarrow 0$, a result sometimes called the Riesz-Fischer theorem after $[\mathbf{7 7 5}, \mathbf{3 0 5}]$. These papers completed the story of which functions can be represented as Fourier series. To do this, the authors needed to prove completeness of L^{2} (defined as classes of measurable functions), and it is this that we (along with many others) will call the Riesz-Fischer theorem. We discuss it further in Section 4.4 and its Notes.

In 1928, M. Riesz proved that for $1<p<\infty$, for $f \in L^{p}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$, we have $\left\|f-S_{n} f\right\|_{p} \rightarrow 0[\mathbf{7 9 0}]$. We'll prove this in Section 5.8 of Part 3. For $p=1$ or ∞, it is known that there are f^{\prime} 's in L^{p} with $\left\|S_{N} f\right\|_{p} \rightarrow \infty$; see Problem 10 of Section 5.4.

No discussion of pointwise convergence would be complete without mention of Lennart Carleson's (1928-) famous 1966 result [162] that for any f in $L^{2}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right),\left(S_{N} f\right)\left(e^{i \theta}\right)$ converges to f for Lebesgue a.e. θ. This result is a famous conjecture of Lusin and was extended to all $L^{p}, p>1$, by Hunt [438]. As mentioned, for a generic continuous function $\left(S_{N} f\right)\left(e^{i \theta}\right)$ diverges on a (dense) generic set, but, by Carleson's theorem, one of Lebesgue measure zero.

For $p=1$, Kolmogorov [501] gave an $L^{1}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$ function whose Fourier series diverges at every point in $\partial \mathbb{D}$. Three years earlier, when he was twenty-one, Kolmogorov found a similar function with almost everywhere divergence. Katznelson [479, Sect. II.3.5] has a proof of this result using the de la Vallée Poussin kernel of Problem 14. While the proof of Carleson's theorem is beyond the scope of these volumes, we'll prove a related result in Section 2.11 of Part 3: namely, if f has $f^{\sharp} \in \ell^{p}, 1 \leq p<2$, then for a.e. θ, $\left(S_{N} f\right)\left(e^{i \theta}\right) \rightarrow f\left(e^{i \theta}\right)(p=2$ is Carleson's theorem).

In Problem 12, an alternate result to Fejér's theorem is presented, proving abelian limits of Fourier series to a continuous function. It is due to Picard and Fatou (see the remark to the problem). Littlewood [596] has proven that if $\sum_{n=0}^{N} a_{n}$ has an abelian limit α and $\left|a_{n}\right| \leq C(n+1)^{-1}$, then the sum itself converges to α (see Section 6.11 of Part 4, especially Problem 5). Thus, any continuous function, f, on $\partial \mathbb{D}$ with $f_{n}^{\sharp}=O\left(n^{-1}\right)$ has a convergent Fourier series. By an integration by parts in a Stieltjes integral, it is easy see if f has bounded variation $f_{n}^{\sharp}=O\left(n^{-1}\right)$, so this provides another proof of Jordan's theorem.

Underlying Fourier series is a group structure. $\partial \mathbb{D}$ is a group under multiplication $e^{i \theta_{1}}, e^{i \theta_{2}} \mapsto e^{i\left(\theta_{1}+\theta_{2}\right)}$ and $d \omega / 2 \pi$ is the unique measure invariant under this multiplication. The functions $\varphi_{n}\left(e^{i \theta}\right)=e^{i n \theta}$ are exactly the only continuous functions, χ, on $\partial \mathbb{D}$ obeying

$$
\begin{equation*}
\chi\left(e^{i y} e^{i x}\right)=\chi\left(e^{i y}\right) \chi\left(e^{i x}\right) \tag{3.5.72}
\end{equation*}
$$

Extensions of Fourier series where the group is \mathbb{R}^{ν} will occur in Chapter 6 while general locally compact abelian groups will appear in Section 6.9 of Part 4.

Relevant to this section is the group, \mathbb{Z}_{N}, a cyclic group of order N thought of as $\mathbb{Z} / N \mathbb{Z}$, for integers $\bmod N$. Given f on \mathbb{Z} of period N, we define

$$
\begin{equation*}
\left(\mathcal{F}_{N} f\right)(m)=\frac{1}{N} \sum_{j=0}^{N-1} f(j) \bar{\omega}_{N}^{m j} \tag{3.5.73}
\end{equation*}
$$

where ω_{N} is a primitive N th root of unity, i.e.,

$$
\begin{equation*}
\omega_{N}=\exp (2 \pi i / N) \tag{3.5.74}
\end{equation*}
$$

Since $\varphi_{j}(m)=\omega^{m j}$ are an orthonormal basis for functions on $\{1, \ldots, N\}$ (with $\langle c, d\rangle=\frac{1}{N} \sum_{i=1}^{N} \bar{c}_{i} d_{i}$ inner product), the inverse is

$$
\begin{equation*}
\left(\mathcal{F}_{N}^{-1} h\right)(m)=\sum_{j=0}^{N-1} h(j) \omega_{N}^{m j} \tag{3.5.75}
\end{equation*}
$$

\mathcal{F}_{N} is called the discrete Fourier transform.
Clearly, if f is continuous on $\partial \mathbb{D}$ and $f_{N}(j)=f\left(\omega_{N}^{j}\right)$, then $\mathcal{F}_{N} f_{N} \rightarrow f^{\sharp}$ pointwise, so \mathcal{F}_{N} is of interest not only for its own sake but as a method of numerical approximation of the map $f \mapsto f^{\sharp}$. In this regard, there is an important algorithm for \mathcal{F}_{N} called the Fast Fourier Transform (FFT).

The purpose of the FFT is to dramatically reduce the number of computations to get \mathcal{F}_{N} from $O\left(N^{2}\right)$ to $O(N \log N)$ at least when $N=2^{m}$ (so for $m=20$, i.e., $N \approx 1,000,000$) from about a trillion calculations to more like twenty million! Since multiplication is much slower than addition, we'll
only count multiplications and we'll ignore the N multiplications needed to get the powers $\left\{\omega_{N}^{j}\right\}_{j=0}^{N-1}$ given ω_{N}.

If one uses (3.5.73) naively, one needs N^{2} multiplications (of $\bar{\omega}_{N}^{m j}$ and $f(j))$. If one writes

$$
\begin{equation*}
\left(\mathcal{F}_{2 N} f\right)(m)=\frac{1}{2 N} \sum_{j=0}^{N-1} f(2 j) \bar{\omega}_{2 N}^{2 m j}+\frac{\bar{\omega}_{2 N}^{m}}{2 N} \sum_{j=0}^{N-1} f(2 j \pi) \bar{\omega}_{2 N}^{2 m j} \tag{3.5.76}
\end{equation*}
$$

and defines f_{e} and f_{0} (for sum and add) on $\{0,1, \ldots, N-1\}$ by

$$
\begin{equation*}
f_{e}(j)=f(2 j), \quad f_{0}(j)=f(2 j+1) \tag{3.5.77}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\mathcal{F}_{2 N} f\right)(m)=\frac{1}{2}\left(\mathcal{F}_{N} f_{e}\right)(m)+\frac{\bar{\omega}_{2 N}^{m}}{2}\left(\mathcal{F}_{N} f_{0}\right)(m) \tag{3.5.78}
\end{equation*}
$$

if $0 \leq m<N$ and, if $N \leq m \leq 2 N-1$.
If we have an algorithm to compute \mathcal{F}_{N} in a_{N} multiplication steps, we can compute $\mathcal{F}_{2 N}$ in

$$
\begin{equation*}
a_{2 N}=2 a_{N}+N \tag{3.5.79}
\end{equation*}
$$

multiplication steps (the N comes from the N multiplications by $\omega_{2 N}^{m}$). When $N=2^{\ell-1}$, we can iterate ℓ times and use $a_{1}=1$ to get

$$
\begin{equation*}
a_{2^{\ell}}=(l+1) 2^{\ell} \tag{3.5.80}
\end{equation*}
$$

yielding to $O(N \log N)$ algorithm.
This algorithm was popularized by and is sometimes named after a 1965 paper of Cooley-Tukey [204]. They rediscovered an idea that Gauss knew about-it appeared in Gauss' complete works as an unpublished note. The Cooley-Tukey algorithm came at exactly the right time - just as digital computers became powerful enough to compute Fourier transforms of data important in the real world, and there was an explosion of applications. In fact, Tukey came up with the basic algorithm as a member of President Kennedy's Presidential Scientific Advisory Committee to try to figure out a way to analyze seismic data in order to get information on Russian nuclear tests! Garwin from IBM, also at the meeting, put Tukey in touch with Cooley who actually coded the algorithm!

One reason that Weierstrass' example had such impact is that earlier in the century, Ampère [26] seemed to claim that every continuous function was differentiable. Medvedev [647, Ch. 5] in a summary of these developments, argues that the problem was one of terminology. When Ampère wrote, neither "function" nor "continuous" had clearly accepted definitions and, Medvedev says, Ampère had in mind functions given locally by convergent power series! Shortly afterwards, Cauchy gave more careful notions (and Weierstrass, later, even more so). Be that as it may, many mid-century
analysis texts stated and proved (!) what they called Ampère's theorem: that every continuous function was differentiable. In his lectures as early as the 1860s, Weierstrass claimed that all these proofs were wrong.

The first results on the existence of nondifferentiable continuous functions are due to Bernhard Bolzano (1781-1848), a Czech priest (his father was from Italy). He found them around 1830 but never published themthey were finally published about a hundred years later; see Pinkus [728] for details. Around 1880, Charles Cellérier (1818-89) proved that for a large positive integer, a, the function $f(x)=\sum_{n=1}^{\infty} a^{-n} \sin \left(a^{n} x\right)$ is continuous but nowhere differentiable. He never published the result but it was discovered among his papers and published posthumously [178].

Weierstrass $[\mathbf{9 7 8}]$ claimed that in lectures given in 1861, Riemann asserted that $\sum_{n=1}^{\infty} n^{-2} \sin \left(n^{2} x\right)$, a function that enters in elliptic function theory, was continuous but nondifferentiable on a dense set. It is now known to be nondifferentiable, except for an explicit countable set. Weierstrass couldn't verify Riemann's claim. Instead, in 1872, he considered the function in (3.5.53) for $\gamma=0$ and proved that if $a<1, b$ is an odd integer, and if $a b>1+\frac{3}{2} \pi$, then f is nowhere differentiable. This example of Weierstrass had a profound effect on his contemporaries.

There were intermediate improvements by Bromwich, Darboux, Dini, Faber, Hobson, Landsberg, and Lerch, until Hardy [393] got the definitive result $a b \geq 1$ (and it is differentiable if $a b<1$). In the text, we only handled $a b>1 ; a b=1($ and $\gamma=0)$ can be handled using the Jackson kernel related to the square of the Fejér kernel (see Problem 17). I don't know who found this Fejér- and Jackson-kernel approach, but I've found it in several books from the 1960s.

There are close connections between nowhere differentiable functions and natural boundaries, especially lacunary series; see Problem 16 of Section 2.3 of Part 2A and Kahane [464].

A sign of the roughness of the functions $f_{a, b, \gamma}$ is that their graphs (i.e., $\{(x, y) \mid y=f(x)\})$ have dimension greater than one. Indeed, it is known that with a suitable definition of dimension ("box dimension," believed also for Hausdorff dimension; see Section 8.2), then for $a b>1$ and b sufficiently large,

$$
\operatorname{dim}\left(\operatorname{graph}\left(f_{a, b, \gamma=0}\right)\right)=2-\frac{\log \left(a^{-1}\right)}{\log (b)}
$$

This is discussed in Falconer [293]; see Figure 3.5.5. For extensive additional literature on nowhere differentiable functions, see the bibliography at http://mathworld.wolfram.com/WeierstrassFunction.html.

The Gibbs phenomenon is named after J. Willard Gibbs (1839-1903), the famous American physicist known for his work on statistical mechanics

Figure 3.5.5. $F_{a, b, \gamma}$ for $a=\frac{1}{3}, b=7$. This graph has dimension approximately 1.44.
after his paper [348]. It was so named by Maxime Bôcher (1867-1918), who found the first comprehensive mathematical treatment [98, 99], much like the one we sketch. The name is a good example of Arnold's principle, since fifty years before Gibbs, Henry Wilbraham (1825-83) discovered the phenomenon [1001]; see Hewitt-Hewitt [423] for the history. The Gibbs phenomenon has been rediscovered many times, for example, by engineers working on radar during the Second World War.
(3.5.5) was proven in several ways first by Euler in 1734-35 thereby solving a famous problem; see the discussion in the Notes to Sections 5.7 and 9.2 of Part 2A. Even though Euler proved (3.5.4) (much later), he doesn't seem to have noticed the connection.

Problems

1. Let f be piecewise continuous on $\partial \mathbb{D}$ in that there are $0 \leq \theta_{1}<\cdots<$ $\theta_{k}<2 \pi$, so $f\left(e^{i \theta}\right)$ is continuous at any $e^{i \theta_{0}} \in \partial \mathbb{D} \backslash\left\{e^{i \theta_{j}}\right\}_{j=1}^{k}$, and for any $k, \lim _{\varepsilon \downarrow 0} f\left(e^{i\left(\theta_{k}+\varepsilon\right)}\right) \equiv f\left(e^{i\left(\theta_{k}+0\right)}\right)$ and $\lim _{\varepsilon \uparrow 0} f\left(e^{i\left(\theta_{k}-\varepsilon\right)}\right) \equiv f\left(e^{i\left(\theta_{k}-0\right)}\right)$ exist.
(a) Prove there are continuous f_{n} on $\partial \mathbb{D}$ so $\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)-f_{n}\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi} \rightarrow 0$ as $n \rightarrow \infty$.
(b) Prove that if f_{k}^{\sharp} is defined by (3.5.1), then (3.5.4) holds.
2. In this problem, the reader will prove that for all N and $0<a<b<2 \pi$

$$
\begin{equation*}
\left|\int_{a}^{b} D_{N}(x) d x\right| \leq 4 \pi \tag{3.5.81}
\end{equation*}
$$

a result that will be useful in the next two problems.
(a) Prove it suffices to prove this for $0<a<b<\pi$ with 4π replaced by 2π. (Hint: $D_{N}(2 \pi-x)=D_{N}(x)$.)
(b) For $0<x<\pi-\frac{2 \pi}{\left(N+\frac{1}{2}\right)}$, show that $D_{N}(x)$ and $D_{N}\left(x+\frac{2 \pi}{\left(N+\frac{1}{2}\right)}\right)$ have opposite signs with $\left|D_{N}(x)\right|>\left|D_{N}\left(x+\frac{2 \pi}{\left(N+\frac{1}{2}\right)}\right)\right|$ and use this to prove for $0<a<b<\pi$, the integral has maximum absolute value for $a=0$, $b=\pi /\left(N+\frac{1}{2}\right)$ (Look at the right halves of the graph in Figure 3.5.1).
(c) Prove that $\left|\int_{0}^{\pi /\left(N+\frac{1}{2}\right)} D_{N}(x) d x\right| \leq D_{N}(0) \frac{\pi}{\left(N-\frac{1}{2}\right)}=2 \pi$.

Remark. We'll see later (Problem 10 in Section 5.4) that $\sup _{N} \int_{0}^{2 \pi}\left|D_{N}(\theta)\right| \frac{d \theta}{2 \pi}=\infty$.
3. This problem will prove Theorem 3.5.18. You'll need to know about functions of bounded variation (see Sections 4.1 and 4.15) and the second mean value theorem (see Problem 5 of Section 4.15). Since any function of bounded variation is a difference of monotone increasing functions (see Theorem 4.15.2), you can suppose that $f\left(e^{i \theta}\right)$ is monotone in θ on $[-\pi, \pi]$.
(a) For each $x_{0} \in[-\pi, \pi]$, show that it suffices to find a small δ so that, as $N \rightarrow \infty$,

$$
\begin{gathered}
\int_{x_{0}}^{x_{0}+\delta} f\left(e^{i x}\right) D_{N}\left(x_{0}-x\right) d x \rightarrow \frac{1}{2} f\left(e^{i\left(x_{0}+0\right)}\right) \\
\int_{x_{0}-\delta}^{x_{0}} f\left(e^{i x}\right) D_{N}\left(x_{0}-x\right) d x \rightarrow \frac{1}{2} f\left(e^{i\left(x_{0}-0\right)}\right)
\end{gathered}
$$

(b) Prove that it suffices to show for g monotone on $[0, \delta]$ and $g(0)=$ $g(0+)=0$ then, as $N \rightarrow \infty$,

$$
\begin{equation*}
\int_{0}^{\delta} g(x) D_{N}(x) d x \rightarrow g(0)=0 \tag{3.5.82}
\end{equation*}
$$

(c) For some $c \in(0, \delta)$, prove that

$$
\int_{0}^{\delta} g(x) D_{N}(x) d x=g(\delta-) \int_{c}^{\delta} D_{N}(x) d x
$$

(d) Prove $\lim \sup \left|\int_{0}^{\delta} g(x) D_{N}(x) d x\right| \leq 4 \pi g(\delta-)$. (Hint: Use Problem 2.)
(e) For any $0<\delta^{\prime}<\delta$, prove that $\lim _{N \rightarrow \infty}\left|\int_{\delta^{\prime}}^{\delta} g(x) D_{N}(x) d x\right|=0$. (Hint: Look at the proof of Theorem 3.5.8.)
(f) Prove (3.5.82), and so, Jordan's theorem.
4. This problem will construct (following ideas of Fejér [297]) a continuous function f on $\partial \mathbb{D}$ so that $\overline{\lim } S_{N}(f)(0)=\infty$.
(a) As a preliminary, prove that for all n and $x \in[-\pi, \pi]$

$$
\begin{equation*}
\left|\sum_{k=1}^{n} \frac{\sin (k x)}{k}\right| \leq \frac{3 \pi}{2} \tag{3.5.83}
\end{equation*}
$$

(Hint: Show that the sum is $\frac{1}{2} \int_{0}^{x}\left(D_{n}(t)-1\right) d t$ and use Problem 2.)
(b) Define

$$
\begin{equation*}
G_{n}(\theta)=\sum_{j=0}^{n-1} \frac{1}{n-j}\left[e^{i j \theta}-e^{i(2 n-j) \theta}\right] \tag{3.5.84}
\end{equation*}
$$

Prove that uniformly in n for $\theta \in[-\pi, \pi]$

$$
\left|G_{n}(\theta)\right| \leq 3 \pi
$$

(c) Now pick $0<n_{1}<n_{2}<\ldots$ and m_{1}, m_{2}, \ldots so that $m_{k}>m_{k-1}+$ $2 n_{k-1}$ and a sequence of positive numbers $\left\{a_{k}\right\}_{k=1}^{\infty}$ with $\sum_{k=1}^{\infty} a_{k}<\infty$ and let

$$
\begin{equation*}
f\left(e^{i \theta}\right)=\sum_{k=1}^{\infty} a_{k} e^{i m_{k} \theta} G_{n_{k}}(\theta) \tag{3.5.85}
\end{equation*}
$$

Show the sum is absolutely and uniformly convergent so that f is a continuous function.
(d) Prove that $\sum_{j=1}^{n} j^{-1}>\log (n+1)$.
(e) Prove that if $N_{k}=m_{k}+n_{k}$, then

$$
\begin{equation*}
\left(S_{N_{k}} f\right)(\theta=0) \geq a_{k} \log \left(n_{k}+1\right)-\sum_{j=1}^{\infty} a_{j} \tag{3.5.86}
\end{equation*}
$$

(f) Pick $n_{k}=2^{k^{3}}=m_{k}$ and $a_{k}=k^{-2}$ and show that $\left(S_{N_{k}} f\right)(\theta=0) \rightarrow \infty$.
5. This problem supposes you know about elements of L^{2} as Borel functions, as discussed in Sections 4.4 and 4.6.
(a) Suppose that $f \in L^{2}(\partial \mathbb{D})$ and for some θ_{0} and δ, we have

$$
\begin{equation*}
\int_{\left|\theta-\theta_{0}\right| \leq \delta} \frac{\left|f\left(e^{i \theta}\right)-f\left(e^{i \theta_{0}}\right)\right|}{\left|\theta-\theta_{0}\right|} \frac{d \theta}{2 \pi}<\infty \tag{3.5.87}
\end{equation*}
$$

Prove that (3.5.9) holds. (Hint: See Theorem 3.5.8.)
(b) Suppose that instead of (3.5.87) you have $f_{ \pm}=\lim _{\varepsilon \downarrow 0} f\left(e^{i\left(\theta_{0} \pm \varepsilon\right)}\right)$ exists and

$$
\begin{equation*}
\int_{\theta_{0}}^{\theta_{0}+\delta} \frac{\left|f\left(e^{i \theta}\right)-f_{+}\right|}{\left|\theta-\theta_{0}\right|} \frac{d \theta}{2 \pi}+\int_{\theta_{0}-\delta}^{\theta_{0}} \frac{\left|f\left(e^{i \theta}\right)-f_{-}\right|}{\left|\theta-\theta_{0}\right|} \frac{d \theta}{2 \pi}<\infty \tag{3.5.88}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\left(S_{N} f\right)\left(e^{i \theta_{0}}\right) \rightarrow \frac{1}{2}\left(f_{+}+f_{-}\right) \tag{3.5.89}
\end{equation*}
$$

(Hint: Find g with $g(\theta)=-g(-\theta)$, so $\left(S_{N} f\right)(1) \equiv 0$ and so that $h\left(e^{i \theta}\right) \equiv$ $f\left(e^{i \theta}\right)-g\left(\theta-\theta_{0}\right)$ is continuous at θ_{0} and obeys (3.5.87).)
6. (a) Let h be C^{∞} on $\partial \mathbb{D}$ and f continuous. Prove that $h * f$ is C^{∞}.
(b) By constructing C^{∞} approximate identities, prove $C^{\infty}(\partial \mathbb{D})$ is $\|\cdot\|_{\infty}$ dense in $C(\partial \mathbb{D})$.
7. Let K be a compact subset of $L^{2}(\partial \mathbb{D})$. Prove that for any ε, there is an N so that for all $f \in K$ and $n \geq N,\left|f_{n}^{\sharp}\right| \leq \varepsilon$. (Hint: First find $f^{(1)}, \ldots, f^{(n)}$ so that $\left.K \subset \cup_{j=1}^{\ell}\left\{g \left\lvert\,\left\|g-f^{(j)}\right\|_{2} \leq \frac{\varepsilon}{2}\right.\right\}.\right)$
8. Fill in the details of the proof of Theorem 3.5.5.
9. Suppose for some open interval $I \subset \partial \mathbb{D}$ and $f \in L^{2}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$, we have

$$
\sup _{\theta \in I} \int \frac{\left|f\left(e^{i \psi}\right)-f\left(e^{i \theta}\right)\right|}{|\psi-\theta|} \frac{d \psi}{2 \pi}<\infty
$$

Prove that for every compact $K \subset I$, we have $\sup _{\theta \in K} \mid S_{N} f\left(e^{i \theta}\right)-$ $f\left(e^{i \theta}\right) \mid \rightarrow 0$.
10. (a) Suppose $\sum_{n \in \mathbb{Z}}\left|a_{n}\right|<\infty$. Prove that $\sum_{|n| \leq N} a_{n} e^{i n \theta} \equiv g_{N}(\theta)$ converges uniformly to a continuous function $g(\theta)$ on $\partial \mathbb{D}$.
(b) If f is C^{1} on $\partial \mathbb{D}$, prove that $\left(f^{\prime}\right)_{n}^{\sharp}=i n f_{n}^{\sharp}$.
(c) If f is C^{1} on $\partial \mathbb{D}$, prove that $\sum_{n \in \mathbb{Z}}\left(1+|n|^{2}\right)\left|f_{n}^{\sharp}\right|^{2}<\infty$.
(d) If f is C^{1} on $\partial \mathbb{D}$, prove that $\sum_{n \in \mathbb{Z}}\left|f_{n}^{\sharp}\right|<\infty$.
(e) If f is C^{1} on $\partial \mathbb{D}$, prove that $S_{N}(f)$ converges uniformly to f. (Hint: If g is the uniform limit of $S_{N}(f)$, prove that $g^{\sharp}=f^{\sharp}$, and then that $f=g$.)

Remark. There exist f^{\prime} 's in $C(\partial \mathbb{D})$ for which $\sum_{n \in \mathbb{Z}}\left|f_{n}^{\sharp}\right|=\infty$; see Problem 10(e) and the Notes to Section 6.7.
11. (a) Prove that $\{1, \cos \theta, \sin \theta\}$ is a Korovkin set in the sense discussed in Theorem 2.4.7. (Hint: $\left|e^{i \theta}-e^{i \theta_{0}}\right|^{2}$.)
(b) Use Korovkin's theorem to prove Fejér's theorem.
12. This shows that abelian summation, rather than Cesàro summation, provides uniform convergence of Fourier series, and so provides yet another proof of Theorem 3.5.3. Given f a continuous function on $\partial \mathbb{D}$, define the Abel sum of the Fourier series for each $a>0$ by

$$
\begin{equation*}
\left(A_{a} f\right)\left(e^{i \theta}\right)=\sum_{n=-\infty}^{\infty} e^{-a|n|} f_{n}^{\sharp} e^{i n \theta} \tag{3.5.90}
\end{equation*}
$$

(a) Prove that

$$
\begin{equation*}
\left(A_{a} f\right)\left(e^{i \theta}\right)=\int_{0}^{2 \pi} P_{a}(\theta-\psi) f\left(e^{i \psi}\right) \frac{d \psi}{2 \pi} \tag{3.5.91}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{a}(\theta)=\frac{1-e^{-2 a}}{1+e^{-2 a}-2 e^{-a} \cos \theta} \tag{3.5.92}
\end{equation*}
$$

known as the Poisson kernel.
(b) Prove that $\left\{P_{a}(\theta)\right\}$ is an approximate identity as $a \downarrow 0$ (with an obvious extension of the notion to continuous a rather than discrete n).
(c) Conclude that for any $f \in C(\partial \mathbb{D}), A_{a} f \rightarrow f$ uniformly as $a \downarrow 0$.

Remark. This proof of the second Weierstrass theorem is due to Picard [723]. In one of the first papers applying Lebesgue's theory, this approach was extended by Fatou [295] in his 1906 thesis. It had earlier been used by Lebesgue himself in proving uniqueness of Fourier coefficients. We will have a lot more to say about the Poisson kernel in Section 5.3 of Part 2A and Sections 2.4 and 3.1, and Chapter 5 of Part 3. Part 3 will discuss an analog of this problem for spherical harmonic expansions.
13. This provides another proof of Theorem 3.5.3. The approximate identity is simpler than Fejér's, although without the direct Fourier series interpretation.
(a) Let

$$
\gamma_{n}=\int_{-\pi}^{\pi}(1+\cos \theta)^{n} \frac{d \theta}{2 \pi}
$$

Prove that $W_{n}(\theta)=\gamma_{n}^{-1}(1+\cos \theta)^{n}$ is an approximate identity.
(b) For any continuous f, prove that $f * W_{n}$ is of the form $\sum_{j=-n}^{n} a_{j}^{(n)} e^{i j \theta}$. Conclude that Theorem 3.5.3 holds.

Remarks. 1. This proof of the second Weierstrass theorem is due to de la Vallée Poussin [229].
2. This is sometimes written as $W_{n}(\theta)=\tilde{\gamma}_{n}^{-1} \cos ^{2 n}\left(\frac{\theta}{2}\right)$.
14. This will prove that given any $f \in L^{1}\left(\partial \mathbb{D}, \frac{d \theta}{2 \pi}\right)$, there is a sequence of trigonometric polynomials (i.e, finite sums of $\left.e^{i j \theta}, j \in \mathbb{Z}\right), P_{n}\left(e^{i \theta}\right)$, so that (i) $\left\|P_{n}\right\|_{1} \leq 3\|f\|_{1}$; (ii) $P_{n}^{\sharp}(k)=f^{\sharp}(k)$ if $|k| \leq n$; (iii) $f^{\sharp}(k)=0$ if $|k| \geq 2 n$.
(a) Define the de la Vallée Poussin kernel, $V_{n}(\eta)$, by

$$
\begin{equation*}
V_{n}(\eta)=2 F_{2 n-1}(\eta)-F_{n-1}(\eta) \tag{3.5.93}
\end{equation*}
$$

where F_{n} is the Fejér kernel. Prove that

$$
F_{n}^{\sharp}(j)= \begin{cases}1-\frac{|j|}{n+1} & \text { if }|j| \leq n \tag{3.5.94}\\ 0 & \text { if }|j| \geq n+1\end{cases}
$$

and

$$
V_{n}^{\sharp}(j)= \begin{cases}1 & \text { if }|j| \leq n \tag{3.5.95}\\ 2-\frac{|j|}{n} & \text { if } n+1 \leq|j| \leq 2 n-1 \\ 0 & \text { if }|j| \geq 2 n\end{cases}
$$

(b) Prove $\left\|V_{n}\right\|_{L^{1}} \leq 3$ for all n.
(c) If $P_{n}=V_{n} * f$, prove that P_{n} has the properties (i)-(iii).

Remark. The de la Vallée Poussin kernel first appeared in his 1918 paper [230].
15. This will lead the reader through a proof of the classical Weierstrass approximation theorem (see Section 2.4) due to Landau [542]. The Landau kernel is defined by

$$
L_{n}(x)= \begin{cases}\gamma_{n}^{-1}\left(1-x^{2}\right)^{n}, & |x| \leq 1 \tag{3.5.96}\\ 0, & |x| \geq 1\end{cases}
$$

where

$$
\begin{equation*}
\gamma_{n}=\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x \tag{3.5.97}
\end{equation*}
$$

(a) Prove that $2 \geq \gamma_{n} \geq C n^{-1}$ for some C. (Hint: $1-x^{2} \geq(1-|x|)$ and use $y=x / n$; Remark: In fact (see Theorem 15.2.2 of Part 2B), $\gamma_{n} \sim C n^{-1 / 2}$.)
(b) Prove that L_{n} is an approximate identity for \mathbb{R}, so that if f is a continuous function on \mathbb{R} with compact support, then $f * L_{n} \rightarrow f$ uniformly.
(c) Let

$$
\begin{equation*}
\tilde{L}_{n}(x)=\gamma_{n}^{-1}\left(1-x^{2}\right)^{n} \quad \text { for all } x \tag{3.5.98}
\end{equation*}
$$

For f continuous with $\operatorname{supp}(f) \subset\left[-\frac{1}{2}, \frac{1}{2}\right]$, prove that

$$
\begin{equation*}
\int f(y)\left[L_{n}(x-y)-\tilde{L}_{n}(x-y)\right] d y=0 \tag{3.5.99}
\end{equation*}
$$

for $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$.
(d) Conclude for such f that $\tilde{L}_{n} * f \rightarrow f$ uniformly on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Prove that $\tilde{L}_{n} * f$ is a polynomial in x.
(e) If f is a continuous function on $\left[-\frac{1}{2}, \frac{1}{2}\right]$, prove that there are α, β so $f(x)-\alpha x-\beta$ vanishes at $\pm \frac{1}{2}$, and conclude that f is a uniform limit on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ of polynomials in x.
(f) Prove the Weierstrass theorem for any interval.
16. Prove Theorem 3.5.15(b) when $0<\alpha<1$.
17. The Jackson kernel is defined by

$$
\begin{equation*}
J_{N}(\theta)=\gamma_{N}^{-1} F_{N}(\theta)^{2} \tag{3.5.100}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{N}=\int F_{N}(\theta)^{2} \frac{d \theta}{2 \pi} \tag{3.5.101}
\end{equation*}
$$

(a) Prove that $\left(J_{N}\right)_{k}^{\sharp}=1$ if $k=0$ and $=0$ if $k>2(N-1)$.
(b) Prove that if f obeys

$$
\begin{equation*}
f_{j}^{\sharp}=0 \quad \text { for } 0<|j-k|<2(N-1) \tag{3.5.102}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|f_{k}^{\sharp}\right| \leq(2 \pi)^{-1} \int J_{N}(x)|f(x)| d x \tag{3.5.103}
\end{equation*}
$$

(c) Prove that $\gamma_{N}>N / 2$. (Hint: Look at the Fourier coefficients of F_{N}.)
(d) For some constant, c_{1}, prove that

$$
\begin{equation*}
\left|J_{N}(x)\right| \leq \frac{c_{1}}{N^{3} x^{4}} \tag{3.5.104}
\end{equation*}
$$

(e) For some constant, c_{2}, prove that

$$
\begin{equation*}
\int_{-\pi}^{\pi} J_{N}(x)|f(x)| \frac{d \theta}{2 \pi} \leq c_{2}\left(N^{-2} \int|f(x)| d x+N^{-1} \sup _{|x| \leq N^{-1 / 4}}|f(x)|\right) \tag{3.5.105}
\end{equation*}
$$

(Hint: For $|x| \leq N^{-1}$, use $\int_{-\pi}^{\pi} J_{N}(x) \frac{d x}{2 \pi}=1$; for $N^{-1} \leq|x| \leq N^{-1 / 4}$, use (3.5.104) and $\int_{N^{-1}}^{N^{-1 / 4}} t^{-3} d t \leq N^{2}$; for $N^{-1 / 4} \leq|x| \leq \pi$, use (3.5.104) to see $\sup _{|x| \geq N^{-1 / 4}}\left|J_{N}(x)\right| \leq c_{2} N^{-2}$.)
(f) If f is continuous and Lipschitz at some point and obeys (3.5.102), prove for some constant, c_{3}, that

$$
\begin{equation*}
\left|f_{k}^{\sharp}\right| \leq c_{3}\left(N^{-2}+o\left(N^{-1}\right)\right) \tag{3.5.106}
\end{equation*}
$$

(g) Prove that if $a b=1, a<1$, then $f_{a, b, \theta=0}$ is nowhere differentiable.

Remark. The Jackson kernel is named after Dunham Jackson (18881946), an American mathematician who spent most of his career at the University of Minnesota. He introduced his kernel in his 1912 dissertation done under Edmund Landau. The index on it is sometimes one-half the one used in this problem, so that in (3.5.102), twice the index is replaced by the index.

Figure 3.5.6. A tent function.
18. This problem will construct what is probably the simplest nowhere differentiable function (or perhaps the variant in the next problem). For $x \in \mathbb{R}$, let $Q(x)=2 \operatorname{dist}(x, \mathbb{Z})$, a period 1 "tent function" (see Figure 3.5.6). Let

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} Q\left(2^{n} x\right) \tag{3.5.107}
\end{equation*}
$$

(a) Suppose g is any function differentiable at some point x and $y_{n} \leq$ $x \leq z_{n}$, where $y_{n} \neq z_{n}$ and $\lim _{n \rightarrow \infty}\left(z_{n}-y_{n}\right)=0$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{g\left(z_{n}\right)-g\left(y_{n}\right)}{z_{n}-y_{n}} \rightarrow g^{\prime}(x)
$$

(b) Prove that f, given by the sum in (3.5.107), defines a continuous function on \mathbb{R}.
(c) Let $\mathbb{D}_{\ell}=\left\{j / 2^{\ell} \mid j \in \mathbb{Z}\right\}$ be the dyadic rationals of order ℓ, and define for any $x \in \mathbb{R}$, $y_{\ell}(x), z_{\ell}(x) \in \mathbb{D}_{\ell}$ by $y_{\ell}(x)=2^{-\ell}\left[2^{\ell} x\right]$ and $z_{\ell}(x)=$ $y_{\ell}(x)+1 / 2^{\ell}$. Prove that $y_{\ell}(x) \leq x \leq z_{\ell}(x)$.
(d) For any x, prove that if $m \geq \ell$, then $Q\left(2^{m} y_{\ell}(x)\right)=Q\left(2^{m} z_{\ell}(x)\right)=0$.
(e) Let $\widetilde{R}(x)=2 \chi_{\left[0, \frac{1}{2}\right)}(x)-2 \chi_{\left[\frac{1}{2}, 1\right)}(x)$ and $R(x)=\sum_{n \in \mathbb{Z}} \widetilde{R}(x-n)$. For any $m<\ell$ and any $x \in \mathbb{R}$, prove that $2^{-m}\left[Q\left(2^{m} z_{\ell}(x)\right)-Q\left(2^{m} y_{\ell}(x)\right)\right]=$ $2^{-\ell} R\left(2^{m} x\right)$. (Hint: If $Q_{m}(x)=2^{-n} Q\left(2^{m} x\right)$, prove $Q_{m}(y)-Q_{m}(z)=$ $\int_{y}^{z} Q_{m}^{\prime}(w) d w$, where Q_{m}^{\prime} exists for all but a discrete set of points, and then that on $\left[y_{\ell}(x), z_{\ell}(x)\right]$, we have (except for a discrete set) that $Q_{m}^{\prime}(x)=R\left(2^{m} x\right)$. Note that you'll need to give careful consideration to the case where $x \in \mathbb{D}_{\ell}$.)
(f) Let $q_{n}(x)=\left[f\left(z_{n}(x)\right)-f\left(y_{n}(x)\right)\right] /\left[z_{n}(x)-y_{n}(x)\right]$. Prove that $q_{n}(x)=$ $\sum_{j=0}^{n-1} R\left(2^{n} x\right)$ and conclude that $\left|q_{n+1}(x)-q_{n}(x)\right|=2$ for all x and n. Show that f is nowhere differentiable.

Remark. This function is due to Takagi [903] in 1903, although the example is sometimes named after van der Waerden who rediscovered it (with 2^{n} replaced by 10^{n}) twenty-five years later. The function is sometimes called the blancmange function since its graph looks like the French dessert of that name (see Figure 3.5.7). This approach is from de Rham [237]. It is known that $\left\{x \mid f(x)=\sup _{y} f(y)\right\}$ is an uncountable set of Hausdorff dimension $\frac{1}{2}$; see Baba [43].

Figure 3.5.7. The Takagi function.
19. This has a variant of the Takagi function of Problem 18 due to McCarthy [645]. Let $g_{n}(x)=2 Q\left(\frac{1}{4} 2^{2^{n}} x\right)$, where Q is the tent function of Problem 18. Let

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} 2^{-n} g_{n}(x) \tag{3.5.108}
\end{equation*}
$$

(a) Prove that f is continuous.
(b) Prove that g_{k} has constant slope $\pm 2^{2^{k}}$ on intervals of size $22^{-2^{k}}$ and has period $42^{-2^{k}}$.
(c) Given k and x, pick $\Delta_{k} x= \pm 2^{-2^{k}}$ so x and $x+\Delta_{k} x$ lie in a single interval where g_{k} has constant slope. Prove this can be done and that, if $\left(\Delta_{k} h\right)=h\left(x+\Delta_{k} x\right)-h(x)$, then $\left|\Delta_{k} g_{k}\right|=1$.
(d) For $n>k$, prove that $\Delta_{k} g_{n}=0$. (Hint: The period of g_{n} divides $\Delta_{k} x$.)
(e) For $n<k$, prove that $\left|\Delta_{k} g_{n}\right| \leq 2^{-2^{(k-1)}}$. (Hint: Look at g_{n}^{\prime}.)
(f) Prove that

$$
\frac{\sum_{n \neq k} 2^{-n}\left|\Delta_{k} g_{n}\right|}{\left|2^{-k} \Delta_{k} g_{k}\right|} \leq 2^{k+1} 2^{-2^{(k-1)}}
$$

(g) Prove that $\Delta f / 2^{-k} \Delta_{k} g_{k} \rightarrow 1$ as $k \rightarrow \infty$.
(h) Prove that $|\Delta f| /\left|\Delta_{k} x\right| \rightarrow \infty$ as $k \rightarrow \infty$ and conclude that f is nowhere differentiable.

Remark. McCarthy seems to have been unaware of the work of Takagi and van der Waerden and, in turn, de Rham seems to have been unaware of McCarthy.
20. Prove that $\left\|C_{N} f\right\|_{\infty} \leq\|f\|_{\infty}$.
21. This problem will fill in the details of the proof of Theorem 3.5.17 and also prove (3.5.5).
(a) If f is given by (3.5.66), verify (3.5.68) for $n=0, \pm 1, \pm 2, \ldots$
(b) Prove (3.5.70).
(c) Prove (3.5.71).
(d) Complete the proof of Theorem 3.5.17.
(e) Prove that $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}=\frac{\pi^{2}}{8}$. (Hint: Use (3.5.68) and (3.5.4).)
(f) If $S=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ and $E=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}$, prove that $S=E+\frac{1}{4} S$.
(g) Prove (3.5.5).
22. (a) Compute g_{n}^{\sharp} if $g(\theta)=\left|\theta-\frac{\pi}{2}\right|$ on $[0,2 \pi]$.
(b) Verify that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.
23. (a) Let h be given on $[0,2 \pi]$ by

$$
h(\theta)= \begin{cases}\theta(\pi-\theta), & 0 \leq \theta \leq \pi \\ (\pi-\theta)(2 \pi-\theta), & \pi \leq \theta \leq 2 \pi\end{cases}
$$

Compute h_{n}^{\sharp}.
(b) Verify that $\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}$.

Remark. Problem 4 of Section 9.2 of Part 2A will find $\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}$ for all k (in terms of rationals known as the Bernoulli numbers).
24. Suppose that for some $C, \alpha>0$, and $\varepsilon>0$, we have $0<x<y<\varepsilon$ or $0>x>y>-\varepsilon \Rightarrow|f(x)-f(y)| \leq C|x-y|^{\alpha}$, and that $\lim _{\delta \downarrow 0} f(\pm \delta) \equiv$ $f(\pm 0)$ exist. Let $\Delta=|f(+0)-f(-0)|$. Prove that

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty}\left[\sup _{|x| \leq \delta}\left(S_{n} f\right)(x)-\inf _{|x| \leq \delta} S_{n}(f)\right]=\left(\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin s}{s} d s\right) \Delta
$$

showing that the Gibbs phenomenon is generally true at jumps.
25. This problem will prove Wirtinger's inequality: if $f\left(e^{i \theta}\right)$ is a C^{1} realvalued function on $\partial \mathbb{D}$ with

$$
\begin{equation*}
f(1)=f(-1)=0 \tag{3.5.109}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi} \leq \int_{0}^{2 \pi}\left|f^{\prime}\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi} \tag{3.5.110}
\end{equation*}
$$

You'll also prove (3.5.110) if

$$
\begin{equation*}
\int_{0}^{2 \pi} f\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}=0 \tag{3.5.111}
\end{equation*}
$$

(a) Compute $\left(f^{\prime}\right)_{n}^{\#}$ in terms of f_{n}^{\sharp} and deduce (3.5.110) if (3.5.111) holds.
(b) Suppose next that

$$
\begin{equation*}
f\left(e^{i \theta}\right)=-f\left(e^{-i \theta}\right) \tag{3.5.112}
\end{equation*}
$$

Prove that (3.5.110) holds.
(c) Given any f obeying (3.5.109), find $C^{1} g, h$ obeying (3.5.112) so $f \upharpoonright$ $\left\{e^{i \theta} \mid 0 \leq \theta \leq \pi\right\}=g \upharpoonright\left\{e^{i \theta} \mid 0 \leq \theta \leq \pi\right\}, f \upharpoonright\left\{e^{i \theta} \mid-\pi \leq \theta \leq 0\right\}=h \upharpoonright$ $\left\{e^{i \theta} \mid-\pi \leq \theta \leq 0\right\}$. Using (3.5.110) for g and h, prove it for f.
(d) Prove that when (3.5.109) holds, equality holds in (3.5.110) only if $f\left(e^{i \theta}\right)=\sin \theta$.

Remark. (3.5.110) was noted by Wirtinger if either (3.5.109) or (3.5.111) holds, but he never published it. He mentioned it to Blaschke who included it in his famous book on geometric inequalities [95].
26. This problem will prove a version of the isoperimetric inequality: namely, if $\gamma(s)$ is a smooth simple closed curve in \mathbb{R}^{2} of length 2π, then the area is at most π with equality only for the circle. Without loss, we can suppose γ is arclength parametrized, that is, $\gamma(s)=(x(s), y(s))$, for $0 \leq s \leq 2 \pi$, with

$$
\begin{equation*}
\left|x^{\prime}(s)\right|^{2}+\left|y^{\prime}(s)\right|^{2}=1 \tag{3.5.113}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|x^{\prime}(s)\right|^{2}+\left|y^{\prime}(s)\right|^{2} d s=2 \pi \tag{3.5.114}
\end{equation*}
$$

(a) Use Green's formula (see Section 1.4 of Part 3) to prove that

$$
\begin{equation*}
\text { Area within } \gamma=\int_{0}^{2 \pi} \frac{1}{2}\left(x(s) y^{\prime}(s)-x^{\prime}(s) y(s)\right) d s \tag{3.5.115}
\end{equation*}
$$

(b) Expanding x, y in Fourier series and using $|\alpha \beta| \leq \frac{1}{2}|\alpha|^{2}+|\beta|^{2}$, prove that

$$
\text { Area within } \gamma \leq \frac{1}{2} \int_{0}^{2 \pi}\left(\left|x^{\prime}(s)\right|^{2}+\left|y^{\prime}(s)\right|^{2}\right) d s=\pi
$$

with equality only if γ is a circle.
Remark. This simple proof of the isoperimetric inequality in dimension 2 is due to Hurwitz [440, 441] in work done in 1901-02. See Groemer-Schneider [370] and Groemer [369] for results in dimension higher than 2 using spherical harmonic expansions (see Section 3.5 of Part 3). In particular, Groemer [369] has many other results on applying Fourier series to geometric inequalities.
27. Prove that a function $f \in C(\partial \mathbb{D})$ is a uniform limit of polynomials in z if and only if $\int_{0}^{2 \pi} e^{i n \theta} f\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}=0$ for $n=1,2, \ldots$ (Hint: One direction is already in Proposition 2.4.4; for the other, use Fejér's theorem.)
28. (a) Let P_{n} be a polynomial of degree n in a complex variable z. Prove that

$$
-i P_{n}^{\star}\left(e^{i \theta}\right)=\int_{0}^{2 \pi} F_{n}(\theta-\varphi) e^{i n(\theta-\varphi)} P_{n}\left(e^{i \varphi}\right) \frac{d \varphi}{2 \pi}
$$

where

$$
F_{n}(\theta)=\sum_{j=-n+1}^{n-1}(n-|j|) e^{i j \theta}
$$

and $P_{n}^{\star}\left(e^{i \theta}\right)$ means $\frac{d}{d \theta} f(\theta)$ with $f(\theta)=P_{n}\left(e^{i \theta}\right)$ so $\left|P_{n}^{\star}\left(e^{i \theta}\right)\right|=\left|P_{n}^{\prime}\left(e^{i \theta}\right)\right|$.
(b) Find an explicit formula for F_{n} (not as a sum) and prove $F_{n}(\theta) \geq 0$ and $\int F_{n}(\theta) \frac{d \theta}{2 \pi}=n$.
(c) Conclude that

$$
\sup _{\theta \in[0,2 \pi]}\left|P_{n}^{\prime}\left(e^{i \theta}\right)\right| \leq n \sup _{\theta \in[0,2 \pi]}\left|P_{n}\left(e^{i \theta}\right)\right|
$$

(This is known as Bernstein's inequality.)

Subject Index

A-bound 4: 528, 632
A-bounded 4: 530, 632
A-form compact 4: 668
A-infinitesimal 4: 528
a.c. 1: 253
a.e. 1: 217
a.e. boundary values $\mathbf{3}$: 457

Abel map 2A: 587
Abel's convergence theorem 2A: 61
Abel's theorem 2A: 493, 524; 4: 505
abelian Banach algebra 4: 358, 365, $370,374,389,390,392,395,421$, 471, 491
abelian Banach algebra with identity 4: 365, 372
abelian functions $\mathbf{2 A}$: 404
abelian integrals $\mathbf{2 A}$: 315,498
abelian summability 4: 506
abelian summation 1: 160; 4: 505
Abelian theorem 3: 686
Abelian-Tauberian pairing 4: 505
absolute value 4: 75
absolutely continuous 1: 253; 3: 265; 4: 561
absolutely continuous function 4: 558
absolutely continuous spectral measure class 4: 299
absorbing set 1: 380
accessible point 2A: 321
accumulation function 3: 37
accumulation point 1: 43
adapted 3: 148
addition formula for $\wp \mathbf{2 A}$: 510
additivity of Fredholm index 4: 209
adjoint 1: 174; 2A: 6; 4: 34, 520
adjoint pseudodifferential operator $\mathbf{3}$: 364
*-homomorphism 4: 291
admissible chain 4: 59, 60
admissible function 1: 216
admissible vector 3: 379-381
affine bijection 1: 374
affine function 1: 375
affine group 3: 383
affine Heisenberg-Weyl group 3: 321
affine map 1: 374; 2A: 284
affinely independent 1: 374
Aharonov-Casher theorem 4: 214, 218
Ahlfors function 2A: $373,374,376 ; \mathbf{3}$: 269
Alexandroff-Hausdorff theorem 1: 201, 204
algebra 1: 482
algebra homomorphism 4: 59
algebra of sets 1: 190, 196, 207
algebraic annihilator 4: 202
algebraic curve 2A: 260, 261, 267
algebraic function $\mathbf{2 A}$: 109
algebraic geometry 2A: 265
algebraic multiplicity 1: $23 ; \mathbf{2 A}: 6 ; 4: 7$, $15,64,70,111,114,119,172,185$
algebraic number 1: 17
algebraic theory of OPs 4: 254
algebras of operators 4: 56, 367
algebroidal function 2A: 109; 4: 5, 22
almost everywhere 1: 217
almost Matthieu operator 3: 295
almost monotone function 4: 498, 502
almost periodic 4: 414-416, 419, 420
almost periodic(in Bochner sense) 4: 413
almost sure convergence 1: 624
alternating group 2A: 286
alternating set 4: 258
alternation principle 4: 258, 266
alternation theorem 4: 267
amenable group 1: 486
amplitude 3: 354, 361
Amrein-Berthier theorem 3: 329
analytic arc 2A: 196, 320
analytic bijection 2A: 135, 229, 276, 290, 320, 509
analytic capacity 2A: 373
analytic continuation 2A: 54, 232, 320; 3: 288
analytic corner 2A: 198
analytic curve 2A: 259
analytic Fredholm theorem 4: 194, 197, 200, 201
analytic function 2A: 50, 257; 3: 205, 279, 310; 4: 59, 73, 360, 476
analytic function theory 3: 391
analytic functional calculus 4: 58, 59, 363
analytic iff holomorphic $\mathbf{2 A}$: 81
analytic inverse 2A: 104
analytic set 1: 313
analytic slit maps 2A: 200
analytic structure 2A: 257
analytically continued 2A: 565
Anderson model 3: 295
angle-preserving 2A: 36
annihilation operator 1: 525, 538
annihilator 1: 361, 421; 4: 202
annulus 2A: 2, 294, 357
anti-unitary 1: 125
antilinear 1: 109
antipotential 3: 206, 211, 217, 220, 232
antisymmetric order 1: 10
antisymmetric tensor 1: 180
Appell's theorem 2A: 61
approximate identity 1: 143-145, 160-162, 593; 2A: 196; 3: 9, 495;
4: 396, 399, 433, 448, 450, 451, 455, 469, 631
approximation property 4: 97
approximation theory 4: 267
arc 1: 44
arcwise connected 1: 44, 46, 47; 2A: 21, 27, 75
Arens' theorem 4: 382
Arens-Mackey theorem 1: 443
argument principle $\mathbf{2 A}$: 95, 101, 105, $127,130,144$
arithmetic combinatorics 3: 685
arithmetic-geometric mean 1: 378, 389; 2A: 533
Arnold cat map 3: 132
Aronszajn-Donoghue theorem 4: 338, 570
Aronszajn-Krein formula 4: 335, 343, 664
Aronszajn-Smith theorem 1: 485
Arzelà-Ascoli theorem 1: 70, 75; 2A: 234; 3: 192; 4: 29, 93, 94, 224
associated Legendre polynomials 3: 250
Atiyah-Singer index theorem 4: 217
Atkinson's theorem 4: 206, 209
atlas 2A: 13
atom 1: 258
atom of $\operatorname{Re} H^{1} \mathbf{3}: 524$
atomic decomposition 3: 526-528
attracting fixed point 2A: 279
Aubry duality 3: 296
automatic continuity 4: 491
axiom of choice 1: 11, 13, 205
backward light cone 1: 613
bad cubes 3: 591
Baire category 2A: 241
Baire category theorem 1: 395, 400, $404,408,409,539 ; 2 A: 243 ; \mathbf{3 :} 25$
Baire functions 3: 4
Baire generic 1: 396; 2A: 241
Baire measure 1: 234, 237; 4: 461
Baire probability measure 1: 233
Baire set 1: 207
Baire space 1: 408
Baker-Campbell-Hausdorff formula 4: 628
balanced set 1: 380
balayage 3: 275
Balian-Low theorem 3: 400, 402, 404
Banach algebra 4: 50, 56, 69, 199, 357, $362,367,399,400,421,450,468$
Banach algebra property 4: 50, 357
Banach algebra with identity 4: 50-52, $55,57,58,358,359,363,370,373$, 397, 399, 470

Banach algebra with involution 4: 393
Banach fixed point theorem 1: 469
Banach indicatrix theorem 1: 317; 2A: $27,28,151$
Banach lattice 1: 261, 303
Banach limit 1: 477, 486, 490
Banach space 1: 113, 357, 363; 3: 442, 493,$548 ; 4: 28,35,44,45,57,67$, 144, 202, 368, 429
Banach-Alaoglu theorem 1: 424, 446, 448; 3: 467, 577; 4: 29, 372, 429, 574
Banach-Mazur theorem 1: 428
Banach-Steinhaus theorem 1: 398
Banach-Stone theorem 1: 466
Banach-Tarski paradox 1: 206
band spectrum 4: 56
Bargmann bound 4: 679, 686
Bargmann-Fock space 1: 538
Bari basis 3: 406
barrier 3: 224, 300, 301
barycenter 1: 461
base 1: 37
Basel problem 2A: 387, 393
Basel sum 1: 558, 567
basis 1: 18
Beckner's inequality 3: 652
Benedicks set 3: 328, 337
Benedicks theorem 3: 328
Benedicks-Amrein-Berthier theorem 3: 324
Benford's law 3: 97, 99, 100
Berezin-Lieb inequality 3: 378, 388, 389
Berezin-Weil-Zak transform 3: 402
Bergman coherent states 3: 376
Bergman kernel 2A: 316
Bergman space 1: 115
Bergman-Shilov boundary 4: 490
Bernoulli distribution 1: 619, 622, 623
Bernoulli numbers 2A: 92, 395, 434, 437, 441
Bernoulli polynomials 2A: 434
Bernoulli shift 3: 68, 69, 91-93, 97
Bernoulli's inequality 1: 386; 3: 641
Bernstein approximation theorem 1: 78
Bernstein polynomial 1: 76, 78
Bernstein's inequality 1: 168
Bernstein-Szegő approximation 4: 273, 284
Bernstein-Walsh inequality 3: 291
Bernstein-Walsh lemma 3: 279; 4: 261

Berry-Esseen bound 1: 656
Besicovitch almost periodic 4: 419
Besicovitch cover 3: 50
Besicovitch covering lemma 3: 45, 50
Besicovitch-Kakeya set 1: 409; 3: 498
Besov space 3: 583
Bessel function 1: 594; 2A: 123; 3: 244, $251,276,682 ; 4: 248,678$
Bessel inequality 1: 112, 116; 3: 544
Bessel kernel 3: 566, 567
Bessel polynomials 4: 247, 248, 252, 254
Bessel potential 3: 276, 567, 590
Bessel sequence 3: 395, 398, 399, 401
Bessel transform 3: 245, 248
Bessel's inequality 4: 138, 640
best constants 3: 582
best hypercontractive estimate 3: 642
beta function 1: 291; 2A: 417
beta integral 2A: 418
Beurling weight 4: 362, 367, 368
Beurling's theorem 3: 516, 517; 4: 128
Beurling-Deny criteria 3: 617, 629, 632, 661; 4: 613, 615
bicontinuous map 1: 39
Bieberbach conjecture 2A: 89, 369
big oh 2A: 8, 12
bijection 2A: 31
bilinear transformation 2A: 274
Binet's formula 2A: 436, 446
binomial distribution 1: 622,661
binomial theorem 1: 31, 32; 2A: 62; 3: 427, 641
bipolar Green's function $\mathbf{2 A}: 365,370$; 3: $302,303,315$
Birkhoff ergodic theorem 3: 73, 84, 86, 88, 92, 136, 295
Birkhoff-Khinchin theorem 3: 83
Birman-Schwinger bound 4: 668, 672, 673, 683
Birman-Schwinger kernel 3: 668; 4: 668
Birman-Schwinger operator 3: 661, 662; 4: 668
Birman-Schwinger principle 3: 662; 4: $671,677,679,681,683$
Birman-Solomyak space 4: 158, 160
Bishop boundary 4: 490
blancmange function 1: 164
Blaschke condition 2A: 452; 3: 13, 507
Blaschke factor 2A: 119, 449; 3: 12, 443
Blaschke product 2A: 453; 3: 13, 450-452, 468, 469, 506

BLL inequality 3: 563,564
Bloch coherent states 3: 382, 386, 387
Bloch's principle 2A: 578
Bloch's theorem 2A: 579
BLT 1: 123, 358
BMO 3: $473,518,520,522,524,526$, 527, 532-534, 584, 603
BMO function 3: 594, 595
BMOA 3: 535
Bochner almost periodic 4: 414, 415
Bochner almost periodic functions 4: 417
Bochner integrable 1: 340
Bochner measurable function 1: 338
Bochner tube theorem 2A: 584
Bochner's integrability theorem 1: 341
Bochner's theorem 1: 465, 552, 564, $566 ; 3: 179 ; 4: 254,393,398,450$, 550, 551
Bochner-Brenke theorem 4: 246
Bochner-Raikov theorem 4: 397, 398, 449, 450, 452
Bochner-Riesz conjecture 3: 599, 684, 685
Bochner-Riesz means 3: 603, 679, 684
Bochner-Riesz multipliers 3: 599, 603
Bochner-Schwartz theorem 1: 565, 571
Bochner-Weil theorem 4: 451, 467
Bohr almost periodic 4: 414, 416
Bohr almost periodic function 4: 415
Bohr compactification 4: 414, 418, 468
Bohr-Mollerup theorem 2A: 420, 423, 424, 426
Bolzano-Weierstrass property 1: 73
Bonami-Beckner inequality 3: 652
Bonami-Gross inequality 3: 640, 643, 652
Bonami-Gross semigroup 3: 633, 640, 656
Bonami-Segal lemma 3: 633, 640
Boole's equality 3: 508, $509,514,515$
Boole's theorem 3: 513
Borel functional calculus 4: 294
Borel measure 1: 234
Borel set 1: 207
Borel transform 3: 62, 64
Borel's law of normal numbers 3: 97
Borel's normal number theorem 3: 94
Borel-Cantelli lemma 1: 74, 633, 635, 644, 699

Borel-Carathéodory inequality 2A: 94, 120
Borel-Carathéodory theorem 1: 74
boson Fock space 3: 654
Bouligand's lemma 3: 231
boundary 1: 38; 2A: 24, 25
boundary of an abelian Banach algbera 4: 470
boundary value measures 3: 464
boundary values 3: 474
bounded analytic function 3: 501; 4: 360
bounded characteristic 3: 440
bounded component 3: 259
bounded domain 3: 264
bounded harmonic function 3: 179, 317
bounded integral kernel 4: 612, 620
bounded linear transformation 1: 123, 358
bounded mean oscillation 3: 520
bounded operator 1: 20
bounded projection 4: 37, 67
bounded variation 1: 189, 314; 3: 65
box topology 1: 99, 102
box-counting dimension 1: 701
BPW method 3: 220
Brézis-Lieb theorem 1: 243
bracketing 4: 595
Bradford's law 1: 658
branch cuts 2A: 206
Brascamp-Lieb-Luttinger inequality 3: 563
bread and butter of analysis 3: 544
Brelot-Perron method 3: 220
Brelot-Perron-Wiener method 3: 220
Brouwer fixed point theorem 1: 477, 480, 486
Brownian bridge 1: 328
Brownian motion 1: $319,324,326,328$, $593,608,658 ; \mathbf{3}: 276,514 ; 4: 594$
B^{*}-algebra 4: 400, 401, 403, 405, 406, 421, 424-428
calculus of variations 1: 452
Calderón norm 3: 36
Calderón reproducing formula 3: 387
Calderón-Vaillancourt theorem 3: 608, 614
Calderón-Zygmund decomposition 3: 532, 564, 592, 595, 597, 601
Calderón-Zygmund decomposition theorem 3: 592

Calderón-Zygmund kernel 3: 602
Calderón-Zygmund operators 3: 594
Calderón-Zygmund weak- L^{1} estimate 3: 597
Calkin algebra 4: 198
Calkin space 4: 152
canonical Birman-Schwinger kernel 4: 669
canonical coherent states 3: 374
canonical decomposition 4: 132, 139, 148, 152
canonical dual frames 3: 403
canonical expansion 4: 136, 142, 145, 157
canonical product 2A: 462
Cantor function 1: 200, 252
Cantor measure 1: 252, 295
Cantor set 1: 199, 404, 690; 3: 292, 683
Cantor's diagonalization theorem 1: 15
Cantor-Minkowski dimension 1: 702
capacity 1: 449; 3: 253, 279, 281
Carathéodory construction 1: 210, 686
Carathéodory function 2A: 182, 236, 239, 240
Carathéodory's theorem 1: 682
Carathéodory-Minkowski theorem 1: 459
Carathéodory-Toeplitz theorem 1: 564
Carathéodory function 3: 63, 65, 434, 459, 462-465, 468, 498; 4: 282, 321, 344
Carathéodory-Osgood-Taylor theorem 2A: 323
Carathéodory-Toeplitz theorem 4: 318, 321
cardinal series 1: 561, 568
Carleson's inequality 3: 168
Cartan uniqueness theorem 2A: 584
Cartan's first theorem 2A: 581, 585
Cartan's second theorem 2A: 582
Cartesian product 1: 11
Casorati-Weierstrass theorem 2A: 125, 126, 128
Cauchy determinant formula 2A: 457
Cauchy distribution 1: $620,623,631$, 657
Cauchy estimate 2A: $83,89,93,122$, 234, 276, 471; 3: 192, 199
Cauchy in measure 3: 39
Cauchy integral 3: 491

Cauchy integral formula 1: 569; 2A: 69, $76,140,142,151,164 ; \mathbf{3}: 12,393$
Cauchy integral theorem 2A: 46, 67, 69, 140, 142, 151; 3: 502
Cauchy jump formula $\mathbf{2 A}$: 78, 166
Cauchy kernel 3: 508
Cauchy net 1: 99
Cauchy ODE theorem 2A: 567
Cauchy power series theorem 2A: 80
Cauchy problem 1: 603, 612
Cauchy radius formula $\mathbf{2 A}$: 49, 57
Cauchy sequence 1: 5
Cauchy transform 2A: 166, 188; 3: 62, 64; 4: 476, 490
Cauchy-Hadamard radius formula $\mathbf{2 A}$: 49
Cauchy-Riemann equations $\mathbf{2 A}$: 32-34, $69,192,265,315$
Cauchy-Schwarz inequality 1: 112,382 ; 3: 544
Cavalieri's principle 1: 288
Cayley transform 4: 321, 330, 542, 543, 548
Cayley-Hamilton theorem 4: 15, 17
Cayley-Klein parameterization 2A: 287
ccslcs 1: 458-462
CD formula 3: 282
CD kernel 3: 282, 291
CD kernel universality 3: 292
cdf 1: 618
central limit theorem 1: 648, 650, 654;
3: 641, 643; 4: 241
Cesàro average 1: 138
Cesàro limit 4: 509
Cesàro summability 4: 506
Cesàro summation 1: 160
Cesàro average 3: 57
Cesàro limit 3: 328
Cesàro means 3: 603
Cesàro summable 3: 55
chain 1: 10,$11 ; \mathbf{2 A :} 24,139 ; \mathbf{4}: 4,58$
chain condition 1: 11
chain rule 2A: 31
character 4: 382
characteristic function 1: $622,625,657$
characteristic polynomial 4: 15
characters 4: 418, 420
Chebyshev polynomial 3: 240, 291; 4: 262
Chebyshev polynomial for \mathfrak{e} 4: 257

Chebyshev polynomials 2A: 90, 91, 397;
4: $244,258,260,263,266$
Chebyshev's inequality 1: 227, 632
Chern integer 4: 218
Chernoff's theorem 4: 624, 629
chi-squared distribution 1: 620
Cholesky factorization 1: 133, 136
Choquet boundary 3: 277; 4: 474, 490, 492
Choquet capacity theorem 3: 276
Choquet simplex 1: 465
Choquet theory 1: 464
Christ-Kiselev maximal function 3: 169
Christ-Kiselev maximal inequality $\mathbf{3}$: 169, 171
Christoffel symbol 2A: 19
Christoffel-Darboux formula 3: 282
Christoffel-Darboux kernel 3: 282
circle of convergence $\mathbf{2 A}$: 50,$82 ; \mathbf{4}$: 61
circle or line 2A: 285
circle or straight line 2A: 270
circled convex set 1: 374
circled set 1: 374
circles and lines 2A: 284
circular harmonics 3: 196
circular Hilbert transform 3: 449, 476, 487, 488, 493, 513, 522, 527
circular maximal function 3: 49
CKS lemma 3: 608, 611, 613, 614
Clarkson's inequality 1: 371
classical Calderón-Zygmund kernel 3: 589
classical Calderón-Zygmund operator 3: 589
classical coherent states 3: 374, 382
classical Dirichlet form 3: 629
classical Fourier series 3: 493
classical Gabor lattice 3: 390, 400, 401
classical Green's function $\mathbf{2 A}: 316,317$, 324, 370; 3: 182, 183, 205, 220, 224, 228, 231, 268
classical mechanics 4: 569
classical orthogonal polynomials 4: 243
classical symbols 3: 353
clock spacing 3: 292
clopen set 1: 44
closable 4: 520, 521
closable form 4: 585
closed 4: 520, 526
closed complement 4: 44
closed convex hull 1: 374, 458
closed curve 2A: 40
closed extension 4: 582, 585
closed graph theorem 1: 402, 413; 3: 495; 4: 30, 374
closed Hermitian operator 4: 522, 527, $543,554,582,593$
closed operator 4: 541
closed positive Hermitian operator 4: 588
closed quadratic form 4: 573-575, 577, $582,583,586,590,611,629$
closed sesquilinear form 4: 573
closed set 1: 38, 48
closed subspace 1: 20; 4: 36
closure 1: 4, 38
closure under pointwise limits 1: 208
clothoid 2A: 214
CLR bounds 3: 658, 665; 4: 679
CLR inequality 3: 657, 660,$669 ; 4: 674$
CLT 1: 648, 650, 654
cluster point 1: 39, 96
CMV matrices 4: 284, 666
CNS 1: 496
coadjoint orbits 3: 386
cocycle 3: 107, 145
codimension 1: 422
cofactor 4: 13
cofinite topology 1: 41
coherent projection 3: 376
coherent states 3: 320, 374, 375, 380, 382, 385, 407
Coifman atomic decomposition 3: 526, 528
coin flips 1: 294
cokernel 4: 202
Collatz-Wielandt formula 1: 675
commutant 1: 482; 4: 308, 370, 435
commutative algebra 4: 291
commutative Gel'fand-Naimark theorem 4: 401, 405
commutator 4: 73
compact 4: 99
compact convex subsets of a locally convex space 1: 458
compact exhaustion 2A: 228
compact group 4: 441, 457
compact Hausdorff space 1: 83, 91
compact metrizable group 4: 417
compact morphism 4: 407, 408, 410, 412, 413
compact operator 1: 175,$481 ; \mathbf{3}$: 341 , 538; 4: 96, 99, 100, 111, 133, 136, 138, 153, 173, 662
compact Riemann surface 2A: 263, 265; 3: 316
compact space 1: $64,69,97$
compactification 3: 277; 4: 407, 409, 412
compactness criteria 4: 228
compatible analytic structure 2A: 257
compatible atlasses 2A: 13
compatible projections 4: 39
complement 4: 202
complementary subspace 1: 19, 20, 363, 401; 4: 45, 219
complemented subspace 4: 36, 37
complete elliptic integral 2A: 341, 541
complete family 3: 390
complete measure 1: 209
complete metric space $\mathbf{1}: 5,6,41,68$
complete nest 4: 120
completely continuous 4: 99
completely continuous operator 4: 92
completely normal 1: 61
completely regular space 1: 61
completion 1: 6,8
complex analysis 3: 273
complex analytic manifold 2A: 269
complex Baire measure 1: 264
complex Banach space 4: 3
complex conjugation 4: 528, 640
complex Hahn-Banach theorem 1: 417
complex interpolation method 3: 556
complex Poisson formula 3: 443, 473
complex Poisson kernel 2A: 178; 3: 445
complex Poisson representation 2A:
178, 182; 3: 14, 444, 460
complex projective line 2A: 268
complex Stone-Weierstrass theorem 1: 92
complex tori 2A: $258,362,552$
compression 4: 322
concave function 1: 375
conditional expectation 3: 71, 147
conditional probability 1: 668
conditionally strictly negative definite 4: 682
confluent hypergeometric functions $2 \mathbf{A}$: 220
conformal bijection 2A: 256
conformal equivalence 2A: 257
conformal map 2A: 35, 341
conjugacy class 2A: 3, 8, 277, 292
conjugate 2A: 8; 3: 476
conjugate function 3: 445, 447, 472, 498
conjugate function duality 3: 477
conjugate harmonic function 3: 35, 448
conjugation 4: 527, 538
connected 1: 44, 46, 50; 2A: 26
connected component 1: 45; 2A: 27
constructive quantum field theory $\mathbf{3}$: 651
contented set 4: 596
continua 1: 406
continued fraction $2 \mathrm{~A}: 255,295,304$, 305
continued fraction approximant 2A: 296
continued fractions 3: 109
continuity at analytic corners 2A: 197
continuity principle 3: 254,274
continuous character 4: 383
continuous filtration 3: 168
continuous function 1: 5, 39; 4: 461
continuous functional 4: 399
continuous functional calculus 4: 294
continuous integral kernels 4: 174
continuous kernel 4: 177, 178
continuous linear functional 1: 122, 442
continuous measure 1: 256
continuous spectrum 4: 48
continuous wavelets 3: 383
continuously differentiable 2A: 9
continuum 1: 49, 406
contour 2A: 41; 4: 4
contour integral 2A: 43, 100, 201
contraction 4: 615, 617
contraction mapping theorem 1: 470
convergence almost surely 1: 624
convergence at large scales 3: 410
convergence at small scales 3: 410
convergence in distribution 1: 624
convergence in measure 3: 34, 40
convergence in probability 1: $624 ; \mathbf{3}: 34$
convergence of wavelet expansions $\mathbf{3}$: 429, 431
convergent power series 2A: 52
converges 1: 4, 38, 96
convex combination 1: 119, 374
convex cone 1: 418; 4: 427, 450, 454, 458, 459
convex function 1: $375,377,380 ;$ 3: 203
convex hull 1: 374
convex set 1: $119,373,377 ; 4$: 435,472
convex subset 4: 447
convolution 1: 504, 514
convolution operator 3: 54, 600
Cooley-Tukey algorithm 1: 155
coordinate disk 3: 298, 308
coordinate map 2A: 256
coordinate patch 2A: 13; 3: 298
coordinate plane 3: 671
core 4: 520, 548
Cornu spiral 2A: 211, 214
cotangent bundle 2A: 14; 3: 350
Cotlar's lemma 3: 613
Cotlar's theorem 3: 539, 542
Cotlar-Knopp-Stein lemma 3: 608
Cotlar-Stein lemma 3: 613
Coulomb energy 1: 449; 3: 253; 4: 265
Coulomb potential 3: 243
countable additive 1: 233
countably additive set function 1: 209
countably infinite 1: 14
countably normed space 1: 496
countably subadditive 1: 681
Courant-Fischer theorem 4: 109
covariance 1: 618
covectors 2A: 14
covering map 2A: $22 ; \mathbf{4}$: 407, 408, 413
covering space 2A: $22,23,571$
Cramer's rule 2A: 131; 4: 14, 23, 41, 164, 169, 170, 195, 653
Cramer's theorem 1: 666
creation operator 1: 525, 538
cricket averages 3: 46
critical Gabor lattice 3: 390
critical Lieb-Thirring inequality 3: 657
critical LT inequality 3: 668
critical point 2A: 104, 108, 264
critical value 2A: 264
Croft-Garsia covering lemma 3: 45, 50, 52
cross norm 4: 152
cross-ratio 2A: 275, 285
cross-section 2A: 17
C^{*}-algebra 4: $358,400,406,421,429$
C^{*}-identity 4: 39, 400
cubics 2A: 272
cumulative distribution function 1: 618
curve 1: 44,$51 ; 2 \mathbf{A}: 21,40$
cusp 2A: 161, 320, 325
cuts 2A: 262

Cwikel-Lieb-Rosenblum inequality 3: 657
cycles 2A: 25
cyclic 4: 432, 542
cyclic group 2A: 286
cyclic representation 4: 422, 423, 429, 433, 435, 437
cyclic subspace 4: 293, 301, 323, 664
cyclic vector 4: $293,303,323,345,447$
cyclic vector construction 4: 551
cyclicity of the trace 4 : 20
CZ kernel 3: 605
d'Alembert's formula 1: 599
Daniell integral 1: 229
Darboux's theorem 2A: 43
Daubechies construction 3: 425
Daubechies wavelets 3: 408, 430
Daubechies' theorem 3: 419, 428
Davies-Faris theorem 4: 632
de la Vallée Poussin kernel 1: 161
de la Vallée Poussin's theorem 3: 60
de Leeuw-Rudin theorem 3: 471, 472
de Moivre formula 2A: 59, 90
de Moivre's limit estimate 1: 641
de Moivre's martingale 3: 151
decomposition 4: 445
decreasing rearrangement 3: 29, 30
Dedekind cut 1: 9
Dedekind reciprocity 2A: 222
Dedekind sum 2A: 222
deficiency indices 4: 525, 557,570
deficiency indices $(1,1) 4$: $557,593,640$
definite integrals 2A: 201
del bar notation 2A: 34
δ-function 1: 494, 503
Denisov-Rakhmanov theorem 3: 293
dense orbits 3: 84
dense set 1: 43
dense subset 1: 4
density of states 3: 284
density of zeros 3: 284
dependent 1: 18
deRham's theorem 2A: 26
derivation 2A: 13
derivative 1: $363 ; \mathbf{2 A}$: 9
derivatives of distributions 1: 506
determinant 2A: 6; 4: 13, 14, 165, 167, 232
determinate 1: 329 , 432
devil's staircase 1: 200
de Leeuw-Rudin theorem 3: 456

DFT 3: 339
diagonalizable 2A: 5; 4: 7
diagonalization trick 1: 12; $\mathbf{2 A}$: 238
diamagnetic inequality $\mathbf{3}$: 669; 4: 622, 627
Dieudonné's theorem 4: 208
difference operator 4: 658
differentiable 1: 363; 2A: 9
differentiable manifold 2A: 12
differential form 2A: 267
differentiation of the integral 1: 316
differentiation theorem 3: 53
dihedral group 2A: 286
dilation 3: 564; 4: 321
dilation theorem 4: 322
dimension 1: 19
Dini condition 3: 485
Dini's test 1: 138, 152
Dini's theorem 1: 231; 4: 182
Dini-type condition 1: 139
Diophantine approximation 1: 396; 3: 129
dipolar layer 3: 275
dipole layers 4: 115
dipole moment 3: 251
Dirac δ-function 1: 494, 503
direct method of the calculus of variations 1: 452
direct sum 1: 177
direct sum of Banach spaces 1: 361
directed set 1: 96
Dirichlet algebra 4: 490
Dirichlet boundary conditions 4: 628, 665, 666
Dirichlet domain 3: 132
Dirichlet form 3: $622,629,630,652$
Dirichlet Green's function 3: 182, 184, 186
Dirichlet kernel 1: 140, 158
Dirichlet Laplacian 4: 226-228, 593, 594
Dirichlet principle 2A: 316; 3: 275, 276
Dirichlet problem 1: 592, 594, 608; 2A: 184, 186, 314, 317; 3: 181, 183, 208, 220-222, 227-229, 242, 261, $265,275,276,300,317 ; 4: 115$, $116,118,482$
Dirichlet problem for the ball 3: 188
Dirichlet-Heine theorem 1: 68, 367
Dirichlet-Neumann bracketing 4: 594
Dirichlet-Neumann decoupling 4: 595
discontinuous groups 2A: 335
discontinuous subharmonic function 3: 206
discrete eigenvalues 4: 111
discrete Fourier transform 1: 154
discrete Gaussian free field 1: 296
discrete group 4: 457
discrete Hardy inequality 3: 559
discrete Heisenberg group 3: 403
discrete Hilbert transform 3: 487, 542
discrete spectrum 4: 64, 68, 70, 192, 651, 668
discrete topology 1: 40
discriminant 2A: 514
distribution 1: 502, 520, 705; 3: 345
distribution function 1: 618; 3: 26, 33
distribution, positive 3: 210
distributional derivative 3: 323, 340; 4: 477, 523
distributional inequality 4: 627
distributional integral kernel 3: 605
distributional sense 4: 621
distributions equal near x_{0} 3: 345
divided differences 2A: 102
divisor 2A: 3
Dixon's proof 2A: 142
dodecahedron 2A: 286
domain 3: 617; 4: 518
domain of holomorphy $\mathbf{2 A}$: 409
domain of self-adjointness 4: 520
dominant measure 4: 306
dominant vector 4: 306
dominated convergence 4: 626
dominated convergence for L^{p} 1: 247
dominated convergence theorem 1: 242, 302, 552; 2A: 183; 3: 5, 446, 465, 504,$635 ; 4: 276,532,552$
dominating subspace 1: 418
Donsker's theorem 1: 328
Doob decomposition theorem 3: 155
Doob martingale inequality 3: 83
Doob maximal inequality 3: 48
Doob's inequality 3: 152, 161, 601
Doob's upcrossing inequality 3: 165
double point 2A: 260
double-layer potentials 3: 275
doubling map 3: 69
doubly connected 2A: 151, 233
doubly connected region $2 \mathbf{A}: 357,360$
doubly homogeneous space 3: 496
doubly periodic 2A: 513
doubly periodic function $\mathbf{2 A}$: 501
doubly stochastic map 3: 70
doubly stochastic matrices 4: 144
doubly substochastic 4: 138
dressing and undressing 3: 128
dss 4: 138
dual 1: 422
dual basis 4: 11
dual indices 3: 5
dual lattice 1: 573
dual pair 1: 437, 443
dual space 1: 122, 358
duality 2A: 230
duality for H^{p} 3: 518
duality for L^{p} 1: 270
duality for Banach lattices 1: 261
duality for Banach spaces 1: 259
Duhamel's formula 3: 649
Dunford's theorem 2A: 85
Dunford-Pettis theorem 1: 274, 275; 3: 617, 626, 662
duplication formula 2A: 510
dyadic cube 3: 591
dyadic filtration 3: 592
dyadic Hardy-Littlewood martingale 3: 151
dyadic Lorentz norm 3: 557
dyadic rational 1: 55
edge of the wedge theorem $\mathbf{2 A}$: 195
Egorov's theorem 1: 244, 250, 251
eigenfunction 4: 593
eigenjump 4: 121
eigennilpotent 1: 23; 4: 7, 23, 65
eigenprojection 1: 23; 4: 7, 22, 65
eigenvalue 1: 22,$24 ; \mathbf{2 A}: 5$
eigenvalue moment 3: 657
eigenvalue perturbation theory 4: 646, 655
eigenvalues 3: 339; 4: 22, 23, 46, 114, $134,185,593,661$
eigenvalues in gaps 4: 342
eigenvector 1: 24; 4: 9, 22, 166
Eisenstein series 2A: 504, 518
ellipse 2A: 348
elliptic curve 2A: 261, 502, 509
elliptic differential operators 4: 217
elliptic equation 1: 588
elliptic FLT 2A: 278, 289, 291, 293
elliptic function $\mathbf{2 A}$: $135,512,543$
elliptic function theory 3: 391
elliptic integral 2A: 341, 418, 502, 516, 522, 536
elliptic modular function $\mathbf{2 A}$: 325,346 , 355, 542, 571, 573
elliptic PDO 3: 352
elliptic regularity 3: 350, 352
elliptic regularity for elliptic Ψ DO 3 : 365
elliptic Riemann surface 3: 307
elliptic symbol of order m 3: 365
end-cut 2A: 321
endpoints 2A: 40
energy 1: 449; 2A: 19
entire function $\mathbf{2 A}: 83,134,135,459 ; \mathbf{3}$: 218; 4: 177
equicontinuity 1: 75; 4: 29
equicontinuous 1: 70; 4: 94
equidistributed 3: 98, 102, 128
equidistribution 3: 106
equilibrium measure 1: $449,450,587$; 3: 11, 253, 256, 281, 285, 286, 296
equimeasurable 3: 29, 30, 36, 547, 548
equivalence class 3: 3; 4: 3
equivalence relation 1: 3; 3: 3; 4: 3
equivalent compact morphisms 4: 407
equivalent norms 1: 358; 4: 359, 374, 403
ergodic 3: 93
ergodic Jacobi matrices 3: 296, 297
ergodic measurable dynamical system 3: 89
ergodic measure 3: 71, 72
ergodic theorem 3: 72, 73
ergodic theory 3: 539
ergodicity 3: 86
Erlangen program 2A: 282
Erlanger program 4: 444
essential singularity 2A: 125, 127
essential spectrum 4: 193, 666
essential support 3: 280
essentially self-adjoint 4: 520, 553,560 , $565,611,631,640-642$
Euclidean algorithm 2A: 8, 304, 306
Euclidean inner product 1: 114
Euler duplication formula 2A: 437
Euler gamma function 1: 583
Euler polynomials 2A: 443
Euler product formula $\mathbf{2 A}: 387,393$, 396, 467
Euler reflection formula $\mathbf{2 A}$: 413,423 , 424, 427, 429
Euler spiral 2A: 211, 214, 220
Euler's formula $\mathbf{2 A}$: 55,59 ; 3: 232

Euler-Lagrange equation 1: 451
Euler-Maclaurin expansion 1: 569
Euler-Maclaurin series 2A: 434, 438, 441, 444
Euler-Maclaurin summation formula 1: 567
Euler-Mascheroni constant 2A: 410, 420, 444; 4: 506
Euler-Wallis equations 2A: 297, 303, 304; 4: 240
Euler-Wallis recursion 2A: 297
event 1: 618
eventually 1: 39,96
Ewald's method 1: 567
exact dimension 1: 693
exceptional orthogonal polynomials 4 : 255
existence for ODEs 1: 469
existence result 4: 635
expectation 1: 618
exponent of convergence $\mathbf{2 A}$: 460,462
exponential decay 2A: 557
exponential distribution 1: 620, 623
exponential functions 2A: 203
exponential Herglotz representation 4: 340
extended maximum principle 3: 264, 266, 274
extension 4: 520, 581
exterior algebra 2A: 285
exterior ball condition 3: 229, 232
exterior cone condition 3: 230
exterior Dirichlet problem 3: 266, 307, 317
exterior Green's function $\mathbf{2 A}$: 324
exterior potential 2A: 324
exterior problem 3: 266, 267
exterior Szegő function 4: 277
extreme point 1: 459; 3: 72, 84, 87; 4: $435,437,447,472,492,650,659$, 660
F_{σ} 1: 58
F. and M. Riesz theorem 3: 455, 456
F. and R. Nevanlinna theorem 3: 442, 450, 470
f.i.p. 1: 64

Faber-Fekete-Szegő theorem 3: 291; 4: 264
Fabry gap theorem 2A: 243
face 1: 460
factorizable perturbation 4: 579, 580
factorization 4: 445
Faltung 1: 514
Farey series 2A: 332
Farey tesselation 2A: 332
fast Fourier transform 1: 154
Fatou set 2A: 243
Fatou's lemma 1: 240, 251, 302; 3: 5, $273,423,450,452,462,465$
Fatou's theorem 3: 450
Favard's theorem 4: 233, 235-237, 239, 241, 268, 271, 301, 302, 328
Favard's theorem for the unit circle 4 : 284
FBI transform 1: 538
Fefferman duality 3: 526
Fefferman duality theorem 3: 523, 536
Fefferman-Stein decomposition 3: 524, 527, 536, 538
Fejér kernel 1: 142, 145; 3: 7, 52, 57, 495
Fejér's theorem 1: 139, 154, 160; 3: 7, 457; 4: 286, 491
Fejér-Riesz theorem 3: 426, 434; 4: 317, 321
Fekete set 4: 263, 265
fermions 3: 653
Feynman-Hellman theorem 4: 26, 27, 646
Feynman-Kac formula 1: 326; 4: 612, $623,625,626,630$
FFT 1: 154
Fibonacci numbers 2A: 91
field of fractions $\mathbf{2 A}$: 129
filters 1: 99
filtration 3: 147
final subspace 1: 175; 4: 75, 542
fine topology 3: 276
finer topology 1: 43
finite approximable operator 4: 91
finite bordered Riemann subsurface $\mathbf{3}$:

$$
301,311,315
$$

finite gap set 3: 289
finite group 4: 443
finite intersection property 1: 64
finite Jacobi matrices 4: 236
finite matrix approximation 4: 652, 654
finite measure 1: 233; 3: 510, 512
finite multiplicity 4: 670
finite order 2A: 459, 462
finite parts 1: 512
finite propagation speed 1: 603
finite rank 4: 35, 96
finite rank operator 4: 91, 99, 142, 663
finite rank residues 4: 195
finite simple graph 3: 631
finite volume 3: 119
finite-dimensional 1: 18
finite-dimensional complement 4: 202
finite-dimensional TVS 1: 359
finitely additive set function 1: 191
FIO 3: 367
first Baire category 1: 228, 404
first Beurling-Deny criterion 4: 627
first countable space 1: 52
first resolvent equation 4: 524
first-order Euler-Maclaurin series 2A: 432
fixed circle 2A: 288
fixed point 1: 468; 2A: 274, 291
fixed point theorems 1: 468
flow 2A: 14
flow equation 2A: 14
FLT 2A: 255, 274, 277, 280, 284, 326
Fock space 1: 532, 533, 538; 3: 9, 385, 393, 402
Foias-Nagy commutant lifting theorem 4: 322
Ford circle 2A: 304
forensic accounting 3: 100
form bounded 4: 579
form closure 4: 585
form compact perturbation 4: 663
form core 4: 577, 620, 621
form domain 3: 617; 4: 579
form of a self-adjoint operator 4: 575
form sum 4: $578,611,620$
form-bounded perturbation 4: 579
formal product 2A: 65
formal symbol 3: 358
Fourier analysis 1: 149; 4: 385, 419, 467
Fourier coefficients 2A: 132; 3: 489
Fourier expansion 1: 131; 3: 447; 4: 418
Fourier integral operator 3: 320, 352, 366, 367
Fourier inversion 4: 384
Fourier inversion formula 1: 510,546 , $562 ; \mathbf{3}: 8,504 ; 4: 449,458,462$
Fourier inversion theorem 1: 516, 517, 542, 546
Fourier multiplier 3: 598, 599
Fourier series 1: 137; 2A: 134; 3: 6, 21, 502

Fourier series coefficients 3: 398
Fourier series expansion 4: 96
Fourier transform 1: 508; 2A: 124, 557; 3: $6,7,244,247,374,416,498$, 502-504, 506, 514, 566, 599, 680; 4: 28, 385, 578
Fourier transforms of a measure 1: 552
Fourier transforms of Gaussians 1: 509
Fourier transforms of powers 1: 583
Fréchet derivative 1: 363
Fréchet differentiable 1: 363, 473
Fréchet metric 1: 496, 500
Fréchet space 1: 497, 501, 539
fractal 1: 701
fractional derivatives 3: 566
fractional Laplacian 3: 666
fractional linear transformation $\mathbf{2 A}$: 255, 274
fractional part 1: 2; 4: 2
fractional parts of $x \mathbf{2 A}$: 2
fractional Sobolev space 3: 566, 569, 582
frame 3: 395, 396, 398, 400, 402, 403
Fréchet differentiable 4: 169, 172
Fréchet space 2A: 229, 230, 233; 3: 6, 442
Fredholm alternative 4: 111, 113, 116, 117
Fredholm determinant 4: 167, 174, 186
Fredholm formulae 4: 191
Fredholm integral equation 4: 116
Fredholm kernel 4: 174
Fredholm minor 4: 175
Fredholm operator 4: 203, 204, 207, 209, 216, 218
Fredholm theory 3: 275; 4: 118, 172, 191, 192, 199
free Green's function 3: 181, 252
free Laplacian semigroup 3: 618
frequency module 4: 419
frequently 1: 39, 96
Fresnel functions 2A: 211, 214
Fresnel integrals 2A: 210, 211
Friedrichs extension 4: 227, 574, 587, 593, 600, 651
Friedrichs solution 4: 659
Frobenius' theorem 4: 387
Frostman's theorem 3: 256, 274
Fubini's theorem 1: 284, 288, 304, 584; 2A: 10; 3: $253 ; 4: 455,460,462$
Fubini-Tonelli theorem 1: 288

Fuchsian group 2A: 256, 325, 331; 3: 126, 132
function algebra 4: $360,366,375,471$, 472, 474, 489-492
function separable 1: 248
functional calculus 4: 69, 219, 288, 620
functional equation for $\Gamma \mathbf{2 A}$: 411
functional equation for the Jacobi theta function 1: 558
fundamental cell 2A: 491, 507
fundamental criterion for self-adjointness 4: 526
fundamental criterion for unbounded self-adjoint operators 4: 568
fundamental domain 2A: 487
fundamental group 2A: 22
fundamental lifting theorem 2A: 571
fundamental solution 1: 589, 606
fundamental theorem of algebra 2A: 84, 87, 88, 97, 116, 118; 3: 280
fundamental theorem of calculus 1: 30 , $33,194,232 ; \mathbf{2 A}: 9,45 ; \mathbf{3}: 581$
fundamental theorem of complex analysis 2A: 81
fundamental theorem of potential theory 3: 274
Furstenberg topology 1: 50
Furstenberg's theorem 3: 295
Furstenberg-Kesten theorem 3: 133, 144, 295
G_{δ} 1: 58
Gabor analysis 3: 386
Gabor frame 3: 403
Gabor lattice 3: 385, 390, 394, 396, 397, 401
Gagliardo-Nirenberg inequality 3: 570-573, 582, 586, 658, 660; 4: 674, 676
Galois group 2A: 286
gamma function 1: 291; 2A: 208, 403, 410, 419
Gateaux derivative 1: 364
gauge 1: 380
gauge invariance 2A: 267
gauge potential 4: 622
gauge transformation 4: 622, 628
Gauss map 3: 113, 123, 124
Gauss measure 3: 109, 112, 113, 123, 124, 652
Gauss multiplication formula $\mathbf{2 A}$: 413, 423

Gauss semigroup 3: 630
Gauss' criteria 2A: 61
Gauss' theorem 2A: $16,188,317 ; \mathbf{3}: 17$, 197
Gauss-Bonnet theorem 4: 217
Gauss-Green theorem 2A: 68
Gauss-Kuzmin distribution 3: 103
Gauss-Kuzmin theorem 3: 103, 110
Gauss-Kuzmin-Wirsing operator 3: 111, 125
Gauss-Lucas theorem 2A: 102
Gaussian 1: 595
Gaussian coherent states 3: 374
Gaussian curvature 3: 682, 685
Gaussian distribution 1: 619
Gaussian integral 1: 286; 2A: 208, 437
Gaussian measure 1: 286; 3: 641, 643, 655
Gaussian probability distribution 4: 625
Gaussian process 1: 298, 328
Gaussian sums 2A: 223
Gaussians 3: 566
Gegenbauer polynomial 3: 241
Gel'fand isomorphism 4: 332
Gel'fand spectrum 4: 371, 373, 389, 392, 418, 449
Gel'fand theory 4: 332, 410
Gel'fand topology 4: 371, 386, 400, 456-458, 467
Gel'fand transform 4: 372, 385, 386, 388, 401
Gel'fand-Naimark theorem 4: 401, 405, 421, 424, 428
Gel'fand-Naimark-Segal construction 4: 423
Gel'fand-Pettis integral 1: 337
Gel'fand-Raikov theorem 4: 431, 437
Gel'fand's question 3: 95, 97, 99
general linear group 1: 352 , 488
general measure theorey 1: 300
generalized Bernoulli shift 3: 93
generalized convergence 1: 98
generalized Dirichlet problem 3: 265
generalized eigenvectors 4: 65
generalized functions 1: 512
generalized Hardy inequality 3: 551
generalized Laguerre polynomials 4: 244
generalized Sobolev spaces 3: 566
generalized state 4: 422
generalized Stein-Weiss inequality $\mathbf{3}$: 563
generate 4: 376
generating function $\mathbf{2 A}$: 91
generator 3: 616; 4: 550
generic sets 1: 396
genre 2A: 469
genus 2A: 262, 462, 472
geodesic 2A: 19
geodesic equation $\mathbf{2 A}$: 19
geodesic flow 3: 104, 116, 118, 126
geodesic parameterization $\mathbf{2 A}$: 19
geodesically complete $\mathbf{2 A}$: 20
geodesics 3: 118
geometric distribution 1: 619, 623
geometric measure theory 1: 700
geometric multiplicity 1: $23 ; \mathbf{2 A}: 6 ; 4$: 7, 65, 111
germ 2A: 565, 566
Geronimus-Wendroff theorem 4: 272
Geronimus-Wendroff theorem for OPRL 4: 283
Gibbs phenomenon 1: 148, 156
Gibbs state 3: 654
Glauber dynamics 3: 654
Glauber-Sudarshan symbol 3: 378, 386
Gleason part 4: 490, 493
gliding hump method 1: 413
global analytic function $\mathbf{2 A}$: 54,565
GNS construction 4: 400, 423, 428, 434
Golay-Rudin-Shapiro sequence 4: 369
golden mean 2A: 91, 306
Goldstine's lemma 1: 442, 444, 457
Goursat argument 2A: 66
Grace-Lucas theorem 2A: 102
Gram determinant 1: 135
Gram-Schmidt 1: 132, 133; 3: 408
gramian 2A: 457
graph 1: 401; 4: 518
graph Laplacian 3: 631
graph of an operator 4: 519
greatest integer less than $x \mathbf{2 A}$: 2
greatest lower bound 1: 9, 259
Green's formula 3: 215
Green's function 1: 584, 590; 2A: 324, 365,370 ; 3: 11, 181, 182, 197, 205, $228,231,253,259,266,276,279$, $302,303,308,310,314,315 ; 4$: 106, 261, 262, 563
Green's function with a pole 3: 271

Green's function with a pole at infinity 3: 259
Green's theorem 2A: 16; 3: 16
Gronwall's method 1: 472
Gross' theorem 3: 636
Gross-Nelson semigroup 3: 636, 638, 639, 641, 642
Grossmann-Morlet-Paul theorem 3: 380
ground state 4: 676
ground state representation 3: 622
group algebras 4: 361
group determinants 4: 444
group extension 3: 107
group representation 3: 379
Gudermann's series 2A: 448

Haar basis 3: 408-410, 434; 4: 98, 100, 349
Haar function 3: 384
Haar measure 1: $342,349,352,476$, 546; 3: 101, 118, 378, 380, 383, 389, 549; 4: 362, 368, 384, 399, $420,448,454,458,461$
Haar probability measure 4: 418
Haar wavelet 3: 384, 408, 424
Hadamard factorization theorem 2A: 464, 473; 4: 184
Hadamard gap theorem 2A: 58, 64
Hadamard lacunary 2A: 64
Hadamard product formula $\mathbf{2 A}$: 393, 462, 464, 466
Hadamard theorem 4: 185
Hadamard three-circle theorem 2A: 116, 174; 3: 441
Hadamard three-line theorem 2A: 174
Hadamard's inequality 4: $174,177,178$
Hahn decomposition 1: 259; 3: 65; 4: 83, 398
Hahn decomposition theorem 1: 268
Hahn-Banach theorem 1: 414, 417, 420, $424,427,458,475,486,590,607 ;$ 2A: 231; 3: $75,519,537,538 ; 4$: $28,48,219,424,426,470,473,475$, 481, 484, 522
Hahn-Hellinger theory 4: 313
Hahn-Mazurkiewicz theorem 1: 205
half-space, Poisson kernel 3: 186
half-strip 2A: 340
Halmos' theorem 1: 211
Hamburger moment 4: 644, 646, 647

Hamburger moment condition 4: 633, 634
Hamburger moment problem 1: 330; 4: $633,651,652,656,658$
Hamburger moment theorem 1: 428
Hankel function 4: 686
Hankel matrices 4: 218
Hankel matrix 1: 330; 3: 535, 537, 538
Hankel transform 3: 245
Hardy space 3: 440, 444
Hardy space of bounded mean oscillation 3: 520
Hardy's convexity theorem 3: 441, 444
Hardy's inequality 3: 323, 335, 458, $544,550,557,558,560,564,669 ; 4$: 567, 568
Hardy's uncertainty principle 3: 324, 326
Hardy's variational principle 3: 325
Hardy-Littlewood maximal function 3: $41,53,59,446,478,503$
Hardy-Littlewood maximal inequality 3: 41, 48, 52, 55, 77, 83, 90, 91, $147,158,167,539,592$
Hardy-Littlewood maximal theorem 3: 151
Hardy-Littlewood theorem 3: 83
Hardy-Littlewood-Sobolev inequality 3: 335, 544
harmonic conjugate 2A: 181; 3: 505
harmonic distribution 3: 193
harmonic function 2A: 35, 183, 184, 186, 257, 267, 314; 3: 178, 179, 184, 189, 196, 211, 215, 217, 223, 233, 239, 256, 261, 266, 276, 288, 299, 300, 302, 307, 317, 441, 481, 505; 4: 476
harmonic homogeneous function 3: 233
harmonic homogeneous polynomial 3: 239
harmonic measure 3: 182, 265, 267, 272, 274; 4: 267, 475, 481
harmonic oscillator basis 1: 524
harmonic polynomial 3: 233, 234
Harnack related 4: 493
Harnack's inequality 3: 195, 265, 299, $314,318,544 ; 4: 484,490,493$
Harnack's principle 2A: 187; 3: 196, 223, 317
Hartman's theorem 3: 538
Hartogs' ball theorem 2A: 584

Hartogs' theorem 2A: 581, 584
Hartogs-Rosenthal theorem 2A: 157; 4: 470, 477, 489
Hausdorff s-dimensional measure 1: 689
Hausdorff dimension 1: 688; 3: 254, 277, 290, 329
Hausdorff dimension theory 3: 679
Hausdorff measure 1: 700; 3: 274
Hausdorff moment problem 1: 330; 4: 633
Hausdorff moment theorem 1: 332
Hausdorff outer measure 1: 687
Hausdorff separation axiom 1: 60
Hausdorff space 1: 53, 61, 64; 4: 28
Hausdorff-Besicovitch dimension 1: 700
Hausdorff-Young inequality 1: 549, 563 ; 3: 170, 335, 342, 544, 565, 583
heat equation 1: 592, 610,611
heat kernel 1: 592
Heine-Borel theorem 1: 73
Heinz-Loewner theorem 4: 606
Heisenberg commutation relation 3: 322
Heisenberg group 3: 321, 336, 382, 397, 407, 614
Heisenberg uncertainty principle 3: 321, 323, 335
Hellinger-Toeplitz theorem 1: 402; 4: 516
Helly selection theorem 1: 424
Helmer's theorem 2A: 406, 409
Helmholtz equation 1: 591, 594
Herglotz function 1: 434; 2A: 236, 237, 239; 3: 287, 499; 4: 353
Herglotz representation 3: 287, 297, 459, 463, 498-500, 513; 4: 331
Herglotz representation theorem 1: 465, 565; 4: 648
Herglotz theorem 3: 467, 498
Hermite basis 3: 8, 323, 327
Hermite coefficient 1: $528,530,537$
Hermite differential equation 4: 244
Hermite expansion 1: $528,530,541$
Hermite polynomial 1: 290, 527
Hermite polynomials 4: 243, 247
Hermite semigroup 3: 630
Hermite-Padé approximation 1: 434
Hermitian 1: 402; 4: 521, 522, 526, 541, $553,555,577$
Hermitian operator 4: 519, 575, 588, 634
Hessian matrix 1: 377

Hilbert cube 1: $59,62,63,67,91,293$, 309, 478, 479
Hilbert inequality 3: 487
Hilbert space 1: 113,$117 ; 4: 28,71,99$, 111, 203
Hilbert transform 3: 62, 449, 473, 476, 487, 488, 493, 496, 498, 505, 508, $509,512,514,522,539,544,568$, 588, 599; 4: 216
Hilbert-Fredholm kernel 4: 191
Hilbert-Fredhom formulae 4: 192
Hilbert-Schmidt 3: 626; 4: 178, 180, 192
Hilbert-Schmidt expansion 4: 175
Hilbert-Schmidt ideal 4: 137
Hilbert-Schmidt integral kernels 4: 95
Hilbert-Schmidt kernel 4: 96, 186
Hilbert-Schmidt norm 2A: 331; 4: 668, 685
Hilbert-Schmidt operator 4: 96, 106, $108,143,145,153,154,160,440$, 680
Hilbert-Schmidt perturbations 4: 345
Hilbert-Schmidt theorem 1: 175; 4: $102,109,115,119,132,226,441$
Hirschmann uncertainty principle $\mathbf{3}$: 334
HLS inequality 3: 559, 562, 676, 682
HMO 3: 519, 520, 524, 535
Hölder continuous 1: 76, 139, 146, 147, 324; 3: $574,671,673,685 ; 4: 369$, 507
Hölder continuity 3: 483
Hölder dual index 4: 146
Hölder's inequality 1: $246,368,370$, 381, 382, 570, 2A: 176; 3: 4, 40, 440, 466, 492, 519, 544, 572, 587, 644,649 ; 4: 30, 134, 150, 532
Hölder's inequality for trace ideals 4 : 134, 150
holomorphic function $\mathbf{2 A}: 30,31,34$, $35,46,67,69,89$
holomorphic iff analytic 2A: 81
holomorphic one-forms $\mathbf{2 A}$: 588
holomorphically simply connected $\mathbf{2 A}$: 71, 150, 311
homeomorphism 1: 39
homogeneous 4: 572
homogeneous harmonic function 3: 239
homogeneous harmonic polynomial 3: 245, 247
homogeneous polynomial 3: 236, 252
homogeneous Sobolev estimates 3: 570, 582, 584, 588
homogeneous space 1: 105; 3: 493
homologous chains 2A: 25, 140
homologous to zero 2A: 140
homology 2A: 24
homology group 2A: 25, 142
homotopic 2A: 21
homotopic curves 2A: 75
homotopy 2A: 21
homotopy classes 2A: 21
homotopy group 2A: 22
homotopy invariance of index 4: 209
Hopf fibration 2A: 287
Hopf's geodesic theorem 3: 119, 125
Hopf-Kakutani-Yoshida maximal ergodic theorem 3: 74, 76
Hopf-Rinow theorem 2A: 20
Hörmander's condition 3: 370
Hörmander's inequality 1: 607
Hörmander's theorem 3: 370
Hörmander-Mikhlin multiplier theorem 3: 599
Horn's inequality 1: 394; 4: 134, 135
H^{p}-duality 3: 517
hsc 2A: 71, 150, 151, 311
h_{s}-continuous 1: 693
h_{s}-singular 1: 693
hull 4: 386, 414, 418, 504, 505
hull-kernel topology 4: 386, 389, 412
Hunt interpolation theorem 3: 546, 555, 561
Hunt-Marcinkiewicz interpolation theorem 3: 553,561
Hurewicz's theorem 2A: 25, 26, 142, 587
Hurwitz's theorem 2A: 245, 312, 356, 385, 576; 3: 443
Husimi symbol 3: 378, 386
Huygens' principle 1: 603
HVZ theorem 4: 666
hydrogen atom Hamiltonian 4: 532
hyperbolic equation 1: 588
hyperbolic FLT 2A: 278, 288, 291, 293
hyperbolic geodesics 2A: 334
hyperbolic Riemann surface 3: 104, 116, $307,308,310,311,314,317,318$
hyperbolic systems 3: 371
hyperbolic tiling 3: 127
hyperbolic triangle 2A: 325, 330, 334
hypercontractive 3: 624
hypercontractive semigroup 3: 618, 623 , 637; 4: 627
hypercontractivity 3: $615,636,646$, 647, 656; 4: 627
hypercube 3: 190
hypergeometric functions 4: 244, 251
hyperinvariant subspace 4: 117
hypermaximal Hermitian 4: 554
hyperplane 1: 454; 2A: 574
hyperspherical polynomial 3: 241
hypersurface 3: 16, 232
hypoelliptic operator 3: 370
icosahedron 2A: 286
ideal 1: 28; 4: 92, 94, 365, 366, 504
idempotent 4: 36
identically distributed random variables 1: 621
identity 4: 358
identity principle 3: 190
identity principle for harmonic functions 3: 190
identity theorem 2A: 54
iid random variables 3: 93, 100
iidrv 1: 621, 629
implicit function theorem 1: 474; 2A: 10, 105; 4: 5
incomplete family 3: 390
independent 1: 18, 421, 620, 621
independent functions 1: 629
independent random variables 3: 10
indeterminate 1: 329,$435 ; 4: 232,641$, 644, 647, 651, 652, 656
index 4: 204, 216, 217
index one 4: 66
indicator functions 1: 621, 622
indicatrix 1: 317; 2A: 28
indiscrete topology 1: 40
individual ergodic theorem 3: 73
induced metric 1: 497
induced order 1: 418
inductive limit 1: 708, 711
inequalities among operators 4: 581
inf 1: 9, 89
infinite matrices 4: 56, 99
infinite multiplicity 4: 661
infinite product measure 1: 293
infinite products 2A: 385
infinite sums 2A: 212
infinitely divisible 1: 658

Ingham's Tauberian theorem 4: 499, 504, 505, 510
inhomogeneous Sobolev estimates 3: 572, 655, 665
initial subspace 1: 175; 4: 75, 542
inner content 4: 596
inner function 3: 469, 516
inner product 2A: 6
inner product space 1: 24,$110 ; 4$: 8
inner regular 1: 236
inner regularity 1: 251
inner-outer factorization 3: 469, 470
integral equation 4: 41, 56
integral kernel 1: 531; 4: 159
integral operator 4: 158
integral part 1: 2; 4: 2
interacting quantum fields 3: 651
interior 1: 4, 38
interlace 3: 281
intermediate value theorem 1: 33, 73
interpolation 3: 15, 518, 615
interpolation estimates 3: 597
intrinsic hypercontractivity 3: 644, 653
intrinsic semigroup 3: 622, 623; 4: 627
intrinsic ultracontractivity 3: 625, 644
intrinsically hypercontractive 3: 626
intrinsically hypercontractive semigroup 3: 623
intrinsically supercontractive 3: 646
intrinsically ultracontractive 3: 626, 646
intrinsically ultracontractive semigroup 3: 623
invariance of index 4: 220
invariant 1: 481
invariant measure 3: 65, 68
invariant nest 4: 121, 124
invariant probability measure 3: 112
invariant subspace 1: 20, 24; 3: 516; 4: $20,38,117$
invariant subspace for A 1: 481
inverse Fourier transform 1: 508; 3: 7
inverse function theorem 2A: 10
inverse mapping theorem 1: 401, 472; 4: 48
inverse Szegő recursion 4: 272
invertible 4: 67
invertible maps 4: 204
involution 4: 392
irrational rotations 3: 94
irreducible 1: 675
irreducible group representation 3: 379
irreducible polynomial 4: 445
irreducible representation 4: 431
irrep 4: 431, 437, 441, 443, 447, 448
isolated singularity 2A: 124
isometric circle 2A: 289
isomorphic dynamical system 3: 69
isoperimetric property 1: 167
isospectral torus 3: 293

Jackson kernel 1: 163
Jacobi amplitude function 2A: 539
Jacobi differential equation 4: 245
Jacobi elliptic function 2A: 342, 497, 522, 529
Jacobi matrix 4: 196, 233, 302, 636, $640,652,654,666,679,683$
Jacobi operator 4: 684
Jacobi parameters 3: 281, 283, 292; 4: 196, 230, 232, 237-241, 268, 302, 636
Jacobi polynomials 4: 243, 247, 251, 252
Jacobi theta function 1: 558,$612 ; \mathbf{2 A}$: 528; 3: 391, 404
Jacobi triple product formula 2A: 537
Jacobi variety 2A: 587
Jacobi's construction 2A: 495
Jacobian 2A: 15
Jacobson topology 4: 388
Jensen's formula 2A: 449, 451, 454, 460,$469 ; 3: 12,13,391,444$
Jensen's inequality 1: $377,383,385 ; \mathbf{3}$: 149, 204, 388; 4: 278
Jensen-Walsh theorem 2A: 102
John-Nirenberg inequality 3: 473, 490, 532, 534, 594
joint probability 1: 621
joint probability distribution 3: 10
joint spectrum 4: 374
jointly continuous 3: 266
Jordan anomaly 1: 22; 2A: 6; 4: 7, 24
Jordan arc 2A: 41
Jordan block 2A: 5, 131; 4: 7, 8
Jordan content 4: 596, 603
Jordan contour 2A: 103
Jordan curve 2A: 41, 103, 188, 321, 323
Jordan curve theorem 2A: 162, 164, 165
Jordan decomposition 1: 259
Jordan decomposition theorem 1: 268, 269

Jordan normal form 1: $22,25,26,28$, $671 ; \mathbf{2 A}: 5,131,277 ; 4: 6,8,9,14$, 162
Jordan's lemma 2A: 217
Jordan's theorem 1: 152, 158, 315
Jordan-von Neumann theorem 1: 113, 117
Joukowski airfoil 2A: 339
Joukowski map 2A: 339, 351
Julia set 2A: 243
Julia's theorem 2A: 573
k-forms 2A: 15
K-systems 3: 97
Kac return time theorem 3: 85, 90
Kadec $\frac{1}{4}$ theorem 3: 406
Kadison positive 4: 424-426, 428
Kadison state 4: 424-426, 428
Kakeya conjecture 3: 684, 685
Kakeya dimension conjecture 3: 685
Kakeya maximal function conjecture 3: 685
Kakeya problem 3: 603
Kakeya set 3: 685
Kakeya sets 1: 409
Kakeya-Eneström theorem 2A: 104
Kakutani's dichotomy theorem 1: 298, 578
Kakutani-Krein theorem 1: 89
Kaplansky density theorem 4: 314
Kármán-Trefftz airfoil 2A: 339
Kármán-Trefftz map 2A: 351
Kato's finite rank theorem 4: 337
Kato's inequality 3: 544; 4: 612, 613 , $619,623,627,630$
Kato's $L_{\text {loc }}^{2}$ theorem 4: 611
Kato's theorem 4: 533, 537
Kato-Birman theorem 4: 353
Kato-Rellich theorem 4: 529, 530, 536, $540,568,574,577,620$
Kato-Trotter product formula 4: 629, 632
KdV sum rules 4: 284
Kellogg-Evans theorem 3: 260, 265, 274
Kelvin transform 3: 187, 201, 221, 233, 260
kernel 1: 19; 4: 386
kernel theorem 1: 537
keyhole contour 2A: 77
Khinchin recurrence theorem 3: 90
Khinchin's constant 3: 111
Khinchin's inequality 1: 639,646

Khinchin's theorem 3: 110
kinetic energy 4: 676
Kingman ergodic theorem 3: 133
Kirchoff's formula 1: 600
Kirchoff-Poisson formula 1: 600
Kleinian group 2A: 256, 335
KLMN theorem 4: 577, 600
Knapp scaling 3: 681
Knapp's counterexample 3: 678
Knaster-Kuratowski fan 1: 404
Koch snowflake 2A: 48
Koebe function 2A: 338
Kolmogorov 0-1 law 3: 154, 162
Kolmogorov compactness criteria 4: 228
Kolmogorov consistency theorem 1: 296
Kolmogorov continuity theorem 1: 321, 328
Kolmogorov dimension 1: 702
Kolmogorov space 1: 61
Kolmogorov three-series theorem 3: 161
Kolmogorov's inequality 3: 152
Kolmogorov's random L^{2} series theorem 3: 154
Kolmogorov's theorem 3: 462, 463, 474
Koopman unitary 3: 67
Korovkin set 1: 83, 86
Korovkin's theorem 1: 83, 85, 160
Krein extension 4: 535, 574, 588, 590, 593, 651, 652
Krein solution 4: 659
Krein spectral shift 4: 334, 340, 344, 345, 353
Krein's factorization theorem 4: 465
Krein-Milman theorem 1: 459, 461, $464,466,566 ; 3: 72 ; 4: 431,437$, 490
Krein-S̆mulian theorem 1: 462
Krein-von Neumann extension 4: 588, 600
Kronecker example 2A: 243
Kronecker index 1: 487
Kronecker's lemma 3: 166
Kronecker-Weyl theorem 3: 98
Kügelsatz 2A: 584
Kuratowski closure axioms 1: 50
Kurzweil integral 1: 230
Ky Fan inequalities 4: 135
l'Hôpital's rule 2A: 438
L-space 1: 269
ladder operator 1: 538
Lagrange interpolation 1: 568

Laguerre differential equation 4: 244
Laguerre polynomials 4: 243, 247
Laguerre theorem 2A: 474
Lambert's series 2A: 63
Landau kernel 1: 162
Landau's trick 2A: 473
Landau-Pollack uncertainty principle $\mathbf{3}$: 331
Laplace transforms 4: 385, 386
Laplace's method 3: 568
Laplace-Beltrami operator 3: 178, 233, 236, 251
Laplacian 2A: 35
large deviations 3: 654
largest quadratic form less than $q 4$: 583
lattice 1: $214,259,573 ; \mathbf{2 A}: 482 ; \mathbf{3}: 119$
lattice points 4: 598
Laurent expansion 2A: 429, 506, 523
Laurent polynomial 2A: 122; 3: 478; 4: 316
Laurent series 2A: 120, 121, 125, 132; 3: 426; 4: 23, 64
Laurent series coefficients 3: 502
Laurent's theorem 2A: 120
Laurent-Puiseux series 4: 22, 23
Laurent-Weierstrass series 2A: 123
Lavrentiev's theorem 4: 470, 483, 489
law of large numbers 1: 295, 632, 634, $635,644,650,676 ; 3: 10,93$
law of the iterated logarithm 1: 328, 638
LCA group 4: 382, 413, 416, 450, 467, 468, 504
LCS 1: 440
least upper bound 1: 9, 259
least upper bound property 1: 9
Lebesgue covering dimension 1: 701
Lebesgue decomposition 4: 305, 585
Lebesgue decomposition theorem 1: 254, 269, 279, 302; 4: 583
Lebesgue differentiation theorem 3: 53, $59,168,591$
Lebesgue generic 1: 396
Lebesgue integral 1: 225
Lebesgue measurable 1: 210
Lebesgue measure 1: 225, 295; 3: 190, 278, 510
Lebesgue measure class 4: 299
Lebesgue numbers 1: 411
Lebesgue outer measure 1: 682

Lebesgue point 3: 53, 201
Lebesgue space-filling curve 1: 204
Lebesgue spine 3: 220
Lebesgue's theorem 1: 316
Lebesgue-Fejér theorem 3: 55
Lebesgue-Stieltjes integral 1: 252
Lebesgue-Stieltjes measure 1: 240, 618
Lebesgue-Stieltjes outer measure 1: 682
Lebesgue-Walsh theorem 4: 470, 480, 489
left pseudoinverse 4: 205
left regular expression 4: 437, 448
left shift 4: 49, 55
left-invariant Haar measure 1: 342
Legendre duplication formula $\mathbf{2 A}$: 413, 427, 428, 437, 440
Legendre polynomials 1: 133; 3: 243; 4: 244
Legendre relation 2A: 498, 540; 3: 392
Leibniz's formula 4: 17
Leibniz's rule 4: 360
lemniscate integral 2A: 418, 498, 516
lens region 2A: 337
Leray-Schauder degree theory 1: 487
Lévy 0-1 law 3: 154
Lévy convergence theorem 1: 649, 650, 653, 655
Lévy distribution 1: 658
Lévy laws 1: 657
Lévy reflection principle 1: 638
Lévy's constant 3: 111
Lévy's inequality 1: 638
Lévy's theorem 3: 111
Lévy-Khinchin formula 1: 465, 658
Lévy-Wiener theorem 4: 390
LF space 1: 708, 711
Lidskii's theorem 4: 128, 137, 170, 184-188, 190, 192
Lie algebras 3: 122; 4: 628
Lie bracket 4: 628
Lie groups 2A: 267; 3: 122, 386; 4: 554, 628
Lie product formula 3: 128; 4: 628
Lieb-Thirring bounds 3: 670; 4: 683
Lieb-Thirring inequalities 3: 657, 658; 4: 673,674
Lieb-Thirring kinetic energy bound 4 : 675
Lifschitz tails 3: 295
lifting $\mathbf{2 A}$: 22
lim inf 1: 42
lim sup 1: 42
limit 1: 38, 96
limit circle 4: $561,563,565,570$
limit point 1: 4, 39, 96; 4: 563, 565, 570
limit point/limit circle 4: 558, 560, 568, 569, 637
limit set 3: 126
Lindberg's method 1: 656
Lindeberg-Feller CLT 1: 651
Lindelöf space 1: 52
Lindelöf spaces 3: 51
Lions' theorem 4: 129
Liouville number 1: 397; 3: 296
Liouville's first theorem 2A: 491
Liouville's fourth theorem 2A: 492
Liouville's second theorem 2A: 491
Liouville's theorem 2A: 84, 87, 89, 126, 143,$525 ; 3: 65,179 ; 4: 51$
Liouville's third theorem 2A: 491
Liouville-Picard theorem 3: 197
Lipschitz boundary 3: 274
Lipschitz continuous 1: 139
Lipschitz function 1: 213
little oh 2A: 8, 12
Littlewood's Tauberian theorem 4: 507, 508
Littlewood's three principles 1: 226, 244, 249
Littlewood-Paley decomposition 3: 433, $600,603,610,676,682$
local behavior 2A: 104, 108
local constant 3: 636
local coordinate 2A: 13
local degree 2A: 264
local dimension 1: 693
local geodesics 2A: 20
local inverse 2A: 31
local norm 3: 636
localization 3: 345
locally arcwise connected $\mathbf{1}$: 46
locally compact abelian group 1: 546; 4: 382, 391, 413, 448
locally compact group 4: $361,368,430$, 432, 437
locally compact space 1: 72
locally convex space 1: 440, 443
\log convexity 2A: 414
\log Sobolev inequality 3: 636, 637, 639, $643,651,653,654,656$
log-normal distribution 1: 431
logarithmic Sobolev estimates 3: 615
logarithmic Sobolev inequality 3: 636
lognormal distribution 3: 419
Lomonosov's lemma 1: 482
Lomonosov's theorem 1: 484; 4: 117
Looman-Menchoff theorem 2A: 68
Lorentz distribution 1: 630
Lorentz quasinorm 3: 548
Lorentz spaces 3: 172, 548, 549, 556, 557
low-pass filter 3: 416
lower bound 1: 11; 4: 519, 573
lower envelope theorem 3: 284, 290
lower order 3: 606
lower semicontinuous 1: 41, 70, 448; 4: $573,574,614$
lower symbol 3: 377, 386
lower triangular 1: 133; 2A: 284
Löwner's theorem on matrix monotone functions 1: 465
loxodromic FLT 2A: 278, 291
$L^{p}(0,1), 0<p<1$ 1: 439
L^{p} Fourier multiplier 3: 598, 599
L^{p}-contractive semigroup 3: 615,618 , 622, 637
L^{p}-convergence of Fourier series, $1<p<\infty$ 3: 497
L^{p}-multiplier 3: 599
L^{p}-norms 3: 27
L^{p}-space 1: 246
lsc 1: 41, 70, 448; 3: 258
lsc function 4: 580
LT bounds 3: 658, 665
LT inequality 3: 658, 669
lub 1: 259
Lucas' theorem 2A: 102
Lusin area integral 2A: 47
Lusin's theorem 1: 219, 226, 231, 244, 251, 468; 3: 256, 274
Luxemburg norm 1: 391
Lyapunov behavior 3: 141, 144
Lyapunov condition 1: 651
Lyapunov exponent 1: 655; 3: 133, 141, 290, 291, 295
M-space 1: 269
M-test 2A: 231
M. Riesz's theorem 3: 472, 474, 489, 492, 493, 497, 507
M. Riesz criterion 4: 223
M. Riesz extension theorem 1: 419, 429

MacDonald function 3: 566
Maclaurin series 2A: 57
magic of maximal functions 3: 23
magnetic fields 3: 669; 4: 622, 627
majorizes 1: 392
Malgrange-Ehrenpreis theorem 1: 603, 604, 607; 3: 366
Mandelbrot set 2A: 243
manifold 2A: 13
Marcinkiewicz interpolation 3: 619, 622
Marcinkiewicz interpolation theorem 3: $32,546,555,556,590,598$
Markov chain 1: 668, 676
Markov semigroup 3: 622, 634, 651, 654
Markov's inequality 1: 81, 217, 218, 227, 248; 3: 5
Markov-Kakutani theorem 1: 476, 486
Markus sense 1: 393
Markus' theorem 1: 393
Martin boundary 3: 276
martingale 3: 148, 149, 152, 157
martingale convergence 3: 153
martingale convergence theorem 3: 158, 592
martingales 4: 627
Marty's theorem 2A: 247, 252, 575
mass gap 3: 656
mass point 1: 256
mathematical induction 1: 7
max-min criterion 4: 104
maximal ergodic inequality 3: $74,83,88$
maximal ergodic theorem 3: 76
maximal function 3: 22, 23
maximal Hermitian 4: 554
maximal Hilbert transform 3: 512, 539
maximal ideal 4: 365, 366, 370-372, 375, 392
maximal ideal space 4: 371
maximal inequality 3: 24,544
maximal type 2A: 459
maximum principle $\mathbf{2 A}$: $114,115,119$, 159, 184; 3: 180, 184, 191, 207, 227, 256, 264, 279, 299, 308, 326, 441; 4: 364, 381, 471
Mazur's theorem 1: 386, 388, 484; 4: 371, 387
meager set 1: 404
mean 1: 618
mean ergodic theorem 3: 72
mean oscillation 3: 519
mean value property $\mathbf{2 A}$: 183; 3: 178, 179
mean value theorem 1: 198
measurable 1: 207
measurable dynamical system 3: 66, 67 , $73,85,87,89,133,137$
measurable semiflow 3: 68
measurable set with respect to an outer measure 1: 682
measure 1: 233
measure class 4: 304
measure space 1: 300; 3: 22
measure-preserving 3: 120
measure-preserving map 3: 66
measure-preserving semiflow 3: 68, 77, 87
measures on Polish spaces 1: 306
Mehler's formula 1: 290; 3: 372
Mellin transform 1: 548
Menshov's theorem 3: 172
Mercedes frame 3: 403
Mercer's theorem 3: 626, 628; 4: 180, 182, 678
Mergelyan's theorem 2A: 151, 156; 4: 470, 488-490
meromorphic Fredholm theorem 4: 200
meromorphic function 2A: 129, 130, 193, 257, 264, 267; 3: 316
mesh 2A: 145
mesh-defined chain 2A: 146
mesh-defined contour 4: 5
method of descent 1: 601, 602
metric outer measure 1: 684
metric space 1: 3, 6, 40, 54
metric tensor 2A: 18
metric topology 1: 357
metrical transitivity 3: 71
metrizability 1: 61
metrizable 1: $67,75,709,712$
Mexican hat wavelet 3: 384
Meyer wavelets 3: 408, 417
microlocal analysis 3: 352, 368
midpoint convex 1: 375
midpoint convexity 3: 203
Milman-Pettis theorem 1: 443, 444
min-max 4: 109, 133
min-max criterion 4: 104
min-max principle 4: 197
min-max property 4: 266
minimal basis 2A: 483,486
minimal closed boundary 4: 471
minimal measure 3: 84
minimal polynomial 1: 26
minimal superharmonic majorant 3: 307
minimal type 2A: 459
minimizers in potential theory 1: 447, 583
minimum modulus principle 2A: 115
minimum principle 3: 180
Minkowski dimension 1: 702
Minkowski gauge 1: 380
Minkowski inequality 4: 30
Minkowski's inequality 1: 246, 370, 371, 379, 387, 388, 3: 4, 432, 544, 549, 550
Minkowski-Bouligand dimension 1: 702
Minlos's theorem 1: 566
minor 4: 13
Mittag-Leffler theorem 2A: 399, 401, 403, 405, 406
mixing 3: 85, 86, 93
mlf 4: 370, 449
Möbius tranformation 2A: 274
modified Bessel function of the second kind 3: 566
modified Zak transform 1: 518
modular form 2A: 550
modular function 1: 343; 2A: 550; 3: 379, 389
modular group 2A: 550
modular problem 2A: 514
modular space 2A: 362
moduli 2A: 362
modulus of continuity 1: 139; 3: 484
moment problem 1: 329, 336, 432; 3: 295; 4: 232, 240, 328, 633, 642, 651, 658, 660
monic OPRL 4: 266
monic orthogonal polynomials 4: 229, 240
monodromy group 2A: 568
monodromy theorem $\mathbf{2 A}$: $355,566,571$
monotone 1: 680
monotone class 1: 303
monotone convergence for L^{p} 1: 247
monotone convergence for forms 4:586, 626
monotone convergence theorem 1: 214, $221 ; 3: 5,27,446,466 ; 4: 583,614$, 649, 672
monotone convergence theorem for forms 4: 620, 653
Montel property 1: 710, 712

Montel three-value theorem 2A: 572
Montel's theorem 2A: 234, 235, 238, 239,$312 ; \mathbf{3}: 15,299 ; 4: 4$
Montel's theorem for harmonic functions 3: 192
Montel's three-value theorem 2A: 238, 577
Morera's theorem 2A: 69, 70, 81, 82, 182, 183, 190; 3: 192; 4: 380, 381, 477
mother wavelet 3: 384, 407, 419
MRA 3: 412, 414, 415, 420, 422, 427, 429, 431, 435
Muirhead maximal function 3: 36, 41, 548
multi-index 1: 499
multilinear 4: 11
multiparticle Coulomb quantum Hamiltonian 4: 533
multiplication operator 1: 506; 3: 589; 4: $288,303,523$
multiplication operator form 4: 294
multiplicative ergodic theorem 3: 144
multiplicative linear functional 2A: 233;
4: $370,371,456$
multiplicity 2A: 95; 3: 280
multiplicity theorem 4: 304, 305
multiplicity theory 4: 313
multiplier 3: 599
multiply connected 2A: 151
multipole expansion 3: 242, 243
multiresolution analysis (MRA) 3: 411
multivariate Bernstein polynomial 1: 86
Müntz-Szász theorem 1: 83; 2A: 454, 456-458
mutual energy 3: 253
mutually complementary 1: 21
mutually complementary projections $\mathbf{1}$: 22
mutually independent 1: 621
mutually singular measures 1: 252
MVP 2A: 183, 192; 3: 179, 184, 188, 195
N-body Schrödinger operators 4: 666 n-connected 2A: 151
N-extremal solution 4: 659
N-particle wave function 4: 675
Nash estimate 3: 572, 619
natural boundary 2A: $55,58,65,241$, 243, 332
natural logarithm 2A: 2; 4: 2
necessary conditions 4: 634
negative eigenvalue 4: 681-683
negligible set 1: 217
Nehari's theorem 3: 537, 538
neighborhood 1: 43, 96
neighborhood base 1: 43
Nelson's best hypercontractive estimate 3: 642
nest 4: 120
net 1: 96
Neumann boundary conditions 3: 275; 4: 594, 628
Neumann Laplacian 4: 593, 594
Neumann problem 3: 202, 275
Neumann series 3: 275; 4: 56
Nevanlinna class 2A: 452
Nevanlinna function 3: 499
Nevanlinna parametrization theorem 4: 649, 658
Nevanlinna space 3: 13, 440
Nevanlinna theory 2A: 578; 3: 444
Newton's potential 3: 249
nilpotent 1: 20-22, 27
nilpotent operator 4: 7, 19
NLS 1: 113, 123, 357, 420, 439
Nobel prize in mathematics 2A: 400
non-self-intersecting curve 2A: 41
non-uniqueness of exterior Dirichlet problem 3: 266
nonatomic measure 1: 258; 3: 37
nonclosable operator 4: 522
noncommutative Gel'fand-Naimark theorem 4: 421, 424, 428
noncommutative integration 3: 653; 4: 146
noncritical points 2A: 104
nonloxodromic FLT 2A: 289
nonnegative sesquilinear form 4: 572
nonpolar 3: 288, 289
nonpolar set 3: 289
nonreflexive Banach space 1: 426
nonseparable Hilbert space 1: 113
nonsingular algebraic curve 2A: 260
nontangential boundary value $\mathbf{3}$: 500
nontangential limits $2 \mathbf{A}$: 166; 3: 58, 445
nontangential maximal function 3: 58, 446
nontangential maximal inequality $\mathbf{3}$: 444
nontrivial 1: 482
nontrivial measure 4: 232
norm 1: 112, 357
norm convergence of Fourier series 3: 496
norm equivalence of Banach norms 1: 401
norm-compatible involution 4: 393, 399, 421
norm-Lipschitz 4: 172
norm-resolvent sense 4: 546, 651
normal 1: 51, 54, 58
normal convergence 2A: 229, 249
normal distribution 1: 619, 623
normal family $\mathbf{2 A}$: $237,238,249,252$, 572, 575
normal number 3: 94
normal number theorem 3: 94
normal operator 1: 175; 2A: 6, 7; 4: 39, 405
normal space 1: 53, 61, 64; 4: 28
normal subgroup 2A: 288
normal type 2A: 459
normalization formulae for classical OPs 4: 245
normalized coherent states 3: 375
normalized surface measure 3: 183
normed linear space 1: 113,$357 ; 4$: 28
normed rings 4: 57
nowhere dense 1: 199, 203, 205, 404; 3: 278
nowhere dense sets 1: 399
nowhere differentiable function 1: 147, 397
nowhere Hölder continuous 1: 324
nuclear operators 4: 144, 186
number of bound states 4: 671
number of eigenvalues 4: 684
number of zeros 4: 685
Nyquist-Shannon sampling theorem 1:
560; 2A: 221
O.N. basis 1: 169
octahedron 2A: 286
ODEs, ordinary differential equations 2A: 11
off-diagonal kernel 3: 589, 597, 603
one-forms 2A: 15
one-parameter unitary group 4: 546, 549, 553
one-point compactification 1: 2,$72 ; 4$: 2, 407, 413
open ball 1: 4
open cover 1: 52; 3: 277
open function 1: 39
open mapping principle 2A: 114
open mapping theorem 1: 399; 4: 30
open Riemann surface 2A: 263
open set 1: 37, 48
operator algebra 4: 358, 376
operator compact perturbation 4: 663
operator core 3: 655; 4: 594, 620, 631
operator core results 4: 594
operator theory 4: 41
OPRL 3: 285; 4: 230, 231, 240, 266, 282
optimal hypercontractive estimates $\mathbf{3}$: 640
OPUC 3: 293; 4: 230, 241, 268, 275, 282, 283, 285
order 2A: 95, 459
order-reversing 1: 260
ordered vector space 1: 418
ordinary distribution 1: 705; 3: 209
orgy of interpolation theory 3: 624
orientable 2A: 15
Orlicz space 1: 250, 388, 391
Orlicz spaces 3: 172
Ornstein-Uhlenbeck process 1: 328
Ornstein-Uhlenbeck semigroup 3: 630, 633, 640-642, 652
orthogonal complement 1: 120
orthogonal polynomials 1: 133; 3: 238, 280
orthogonal polynomials on the real line 4: 230, 231
orthogonal polynomials on the unit circle 4: 230,268
orthogonal projection 1: 175; 3: 341, 343; 4: 40, 289
orthogonality relation 3: 380,387
orthogonality relations 4: 438
orthonormal 1: 111
orthonormal basis 1: $24,131,132,137$, 182; 3: 233, 238, 398, 399, 403-405, $408,412,415 ; 4: 8,28,44,137,522$
orthonormal family 4: 132, 157
orthonormal polynomials 3: 280; 4: 229
orthonormal set 1: 116; 3: 411, 423; 4: 95, 138
oscillator process 1: 328
Oseledec's theorem 3: 144
outer boundary 3: 258; 4: 201, 364
outer content 4: 596
outer function 3: 469
outer measure 1: 680
outer regular 1: 236
outward pointing normal 3: 181
overcomplete 3: 384
overcomplete family 3: 390
overcomplete latice 3: 396
\wp-function 2A: 501
pacman 3: 231
Padé approximation 1: 434
Painlevé problem 2A: 374
Painlevé's smoothness theorem 2A: 323
Painlevé's theorem 2A: 189, 194, 320
pairs of projections 4: 67, 70, 210, 217
Paley-Littlewood decomposition 3: 607
Paley-Wiener coherent states 3: 376
Paley-Wiener ideas 3: 421
Paley-Wiener space 1: 562; 2A: 562
Paley-Wiener theorem 1: 568; 2A: 557, 584, 586; 3: 502; 4: 159
Paley-Wiener-Schwartz theorem 2A: 562
parabolic equation 1: 588
parabolic FLT 2A: 278, 288, 291, 293
parabolic Riemann surface 3: 307
paraboloid 3: 680
paracompact 1: 75
parallelogram identity 1: 110
parallelogram law 1: 118, 120; 4: 572, 586
paramatrix 3: 365
Parseval relation 1: 131, 535; 3: 397, 399; 4: 137
Parseval's equality 4: 640
partial differential equations 3: 565
partial differential operator 3: 352
partial fraction expansion 4: 478
partial fraction expansion of cosecant 2A: 390
partial fraction expansion of cotangent 2A: 391
partial isometry 1: 174,$176 ; 4$: 75, 83 , 84, 328, 442, 542, 555
partial order 1: 10
partial sums 1: 138
partially ordered set 1: 10
particle density 4: 674
partition 1: 190
partition of unity 1: $32,71,215 ; \mathbf{2 A}$: 11, 13
path 1: 44
path integrals 4: 594
path lifting theorem 2A: 22
Pauli equation 4: 215
paving lemma 2A: 47
PDO 3: 352
peak point 4: $474,475,490,492$
Peano axioms 1: 7
Peano's theorem 1: 480
Peano-Jordan measure 4: 603
Peetre's inequality 3: 579, 613
percolation model 3: 139
perfect 1: 203, 205
perfect set 1: 43
perfectly normal space $\mathbf{1}$: 61
period 2A: 134
period lattice 2A: 587
periodic analytic functions 2A: 132
periodic distributions 1: 520
periodic entire function 2A: 134
periodic functions 2A: 201
periodic Jacobi matrices 4: 267
periodic Schrödinger operator 3: 666
permanence of relation $\mathbf{2 A}$: 567
permanence of spectrum 4: 364
permutation 1: 180; 4: 12
Perron construction 3: 307
Perron family 3: 300, 305, 317
Perron method 3: 220, 221, 224, 226, 265, 267
Perron modification 3: 222, 223, 298, 317
Perron solution 3: 221
Perron theory 3: 261
Perron trials 3: 221
Perron's principle 3: 300, 317
Perron-Frobenius theorem 1: 670, 674; 3: 622,$654 ; 4: 626$
perturbation theory 4: 27
perturbations 4: 13
Peter-Weyl theorem 4: 431, 441
Pettis integral 1: 337
Pettis' theorem 1: 339, 341
Phragmén-Lindelöf method 2A: 118, 171, 173, 564; 3: 326
Picard iteration 1: 471; 2A: 12
Picard's great theorem 2A: 570
Picard's little theorem 2A: 570
Picard's theorem 2A: 238, 325, 543, $570,573,575,577,578 ; \mathbf{3}: 179,213$
Pick function 3: 499
Pitt's Tauberian theorem 4: 498
Plancharel formula 3: 8

Plancherel theorem 1: 131, 511, 517, 542, 547; 3: 374, 382, 383, 402, $445,504,585,673,677 ; 4: 384$, 449, 454, 463, 464, 504
plane wave expansion 3: 249
Plemelj formula 1: 512
Plemelj-Smithies formulae 4: 170, 172, 191
Plemlj-Privalov theorem 3: 484, 489
Pochhammer symbol 4: 242
Poincaré metric 2A: 292
Poincaré recurrence theorem 3: 85
Poincaré's theorem 2A: 581, 584
Poincaré conjecture 3: 654
Poincaré metric 3: 118
Poincaré sequence 3: 99
Poincaré's criterion 3: 229
Poincaré's inequality 3: 578, 581
point evaluation 4: 472
point mass 1: 256
point set topology 1: 35
point spectrum 4: 345
pointwise a.e. convergence 3: 25
pointwise convergence 3: 465
pointwise ergodic theorem 3: 73
pointwise limits 3: 445, 453, 462
Poisson distribution 1: 619, 623, 631, 658, 664
Poisson formula 2A: 183; 3: 14, 454, 465
Poisson integral 3: 225
Poisson kernel 1: 161; 2A: 179, 181, 183, 187; 3: 52, 183, 184, 186, 188, $208,222,242,444,445,500,538 ; 4$: 46, 475
poisson kernel of the ball 3: 187
Poisson limit theorem 1: 662
Poisson process 1: 661, 664, 665
Poisson random variable 1: 663
Poisson representation 2A: 179, 182; 3: $14,189,461 ; 4: 475$
Poisson representation theorem 3: 337
Poisson summation formula 1: 556, 557, $560,567,569,573,574, \mathbf{2 A}: 213$, 224, 443
Poisson's equation 1: 589
Poisson-Jensen formula 2A: 450, 472; 3: 12, 13, 442, 443
polar decomposition 1: 175; 2A: 7; 3: 140; 4: 71, 76, 78, 79, 82, 87, 109, $132,148,328,610$
polar decomposition theorem 2A: 7; 4: 76
polar set 3: $254,256,260,261,263$, 264, 270, 277, 286, 289, 290
polar singularities 3: 302
polarization 1: 110; 4: 39, 321, 463, $519,555,586$
polarization identity 4: 454
poles 2A: 127, 480
Polish space 1: $305,306,310,313,324$; 3: 4; 4: 625
polydisk 2A: 580
polynomial 3: 279
polynomial asymptotics 4: 274
polynomials of the second kind 4: 638
Pommerenke's theorem 2A: 374
Pompeiu's formula 2A: 78, 189, 584
Pontryagin duality 4: 385, 449, 465-467
Pontryagin topology 4: 467
Pontryagin-van Kampen duality 4: 467
portmanteau 1: 313
portmanteau theorem 1: 307
poset 1: 10
positive 4: 393, 426
positive cone 1: 418
positive definite 1: 377,$552 ; 4: 318$
positive definite distribution 1: 565
positive definite function 1: 127,$553 ; 4$: 450, 453
positive definite functional 4: 395
positive definite kernel 1: 127
positive definite matrix 4: 447
positive functional 1: 212, 418; 4: 384, 395, 397, 399
positive harmonic function 3: 179,260
positive Hermitian operator 4: 574
positive operator 1: 175; 2A: 6; 4: 71, 519, 613, 651
positive quadratic form 4: 653
positive self-adjoint extension 4: 574, $588,590,635,651,652$
positive self-adjoint operator 4: 574, $575,580,612,631$
positivity 4: 611
positivity improving 4: 612
positivity-preserving 4: 619, 627
positivity-preserving operator 4: 611, $613,617,618,626$
positivity-preserving semigroup 3: 622; 4: 632
potential 3: $206,252,256,279,280 ; 4$: 476
potential theory 1: 447, 583,$587 ; \mathbf{2 A}$: 267; 3: 11, 252, 273, 276; 4: 56
power series 2A: 49, 66, 135
predictable 3: 148
predictive 3: 165
prime 2A: 8
prime ends 2A: 323
prime number theorem 4: 506, 510, 513
principal conjugacy subgroup of level 2
2A: 487
principal ideal 4: 365
principal part theorem 2A: 493, 524
principal value 2A: 202
principal value distribution 1: 517
principle of descent 3: 272, 284
principle of uniform boundedness 1: 398; 4: 30
Pringsheim-Vivanti theorem 2A: 63
probabilistic potential theory 3: 276
probability density 1: 618
probability distribution 3: 10, 320
probability measure 1: 233, 311; 4: 237, 633
probability measure space 1: 617; 3: 655
product measure 1: 284
product of distributions 3: 349
product of pseudodifferential operators 3: 364
product of two distributions 3: 346
product topology 1: 99
projection 1: 19, 121; 4: 36, 38, 62, 79, 84, 114
projection lemma 1: 121
projection-valued measure 4: 287, 292
projective curve 2A: 271
projective geometry 2A: 272
projective space 2A: 268
Prokhorov's theorem 1: $312,313,625$, 630, 649
prolate spheroidal function 3: 338
propagation of singularities 3: 350, 371
proper 1: 121
proper face 1: 460
proper ideal 4: 365
Prym's decomposition 2A: 430
pseudo-open set 1: 380
pseudodifferential operator 3: 320, 350, 352, 356, 364, 366, 604
pseudoinverse 4: 205, 207, 217
pseudolocal 3: 356
世DO 3: 356, 604
Puiseux series 2A: 108, 109, 113; 4: 5, 22,24
pullback 2A: 15
punctured ball 3: 220
punctured disk 2A: 357; 3: 231
punctured plane 2A: 357
pure point 1: 256; 4: 646
pure point measure 1: 256,$555 ; 4$: 644
pure power 4: 247
push forward 2A: 15
Pythagorean theorem 1: 111, 116
q form-bounded 4: 578
q-binomial function 2A: 534
q-binomial coefficient 2A: 535
q-difference 2A: 535
q-factorial 2A: 535
q-Gamma function 2A: 534
q-integral 2A: 535
q-ology 2A: 534
q.e. 3: 254
quadratic form $\mathbf{2 A}$: $270 ; \mathbf{4 :} 572,573$, $575,577,580,582,585,590$
quadratic form sum 4: 618
quantitative bounds 4: 682
quantum mechanics 3: 320; 4: 569
quartics 2A: 272
quasi-elliptic 2A: 498
quasi-everywhere 3: 254
quasiclassical estimates 4: 672
quasiclassical limit 4: 596, 597
quasiconformal 2A: 38
quasinilpotent 4: 53,55, 63
quasiperiodic function 4: 419
quaternionic irreps 4: 440
quotient NLS 1: 361
quotient space 1: 103, 361; 4: 202
quotient topology 1: 103
Rademacher functions 3: 409
radial maximal function 3: 444
radical 4: 366, 372
radius of convergence 4: 59
Radon measure 1: 234, 278
Radon transform 1: 548
Radon-Nikodym derivative 3: 288; 4: 660
Radon-Nikodym theorem 1: 254, 257, 268, 275, 279, 302; 4: 305

RAGE theorem 4: 320, 321
Raikov's Theorem 1: 666
Rajchman measures 1: 582
ramification index 2A: 264
ramification point 2A: 264
random matrix product 3: 107
random series 1: 629; 3: 147
random variable 1: 618
range 1: 19
rank-one 4: 661
rank-one perturbations 4: 9-19, 333, 342, 348, 664
rank-one perturbations of unitary operators 4: 344
ratio of the base $\mathbf{2 A}$: 483
rational function $\mathbf{2 A}$: 130, 157, 201, 212, 286, 480
rational Herglotz function 4: 659
Rayleigh-Schrödinger series 4: 27
rcm 3: 27, 29
real analytic curve 2A: 196
real Hilbert space 1: 113
real inner product space 1: 23,110
real interpolation method 3: 556
real Poisson kernel 2A: 179
rearrangement 3: 29
rearrangement inequalities 4: 134
rectangle 2A: 341
rectifiable 1: 194
rectifiable curve 2A: 42, 46, 99
recurrence theorem 3: 85
recursion relation 3: 281; 4: 269
reduced resolvent 4: 66
reducing projection 4: 38
refinable function 3: 412
refinement 1: 191; 2A: 42
refinement equation 3: 412
reflecting Brownian motion 4: 594
reflection 2A: 289
reflection principle $\mathbf{2 A}$: 189, 191, 194, 320, 326, 327; 3: 199
reflection principle for harmonic functions 3: 199
reflectionless Jacobi matrices 3: 293
reflections in circles 2A: 282
reflexive Banach space 1: 423, 446; 4: 94
reflexive relation 1: $3 ; \mathbf{3}$: $3 ; \mathbf{4}$: 3
region 2A: 2; 3: 178
regular 3: 281, $285,286,289 ; 4$: 266
regular abelian Banach algebra 4: 386
regular boundaries 4: 604
regular directed point 3: 347
regular function $\mathbf{2 A}$: 114, 178
regular hypersurfaces 3: 672
regular measure 1: 236, 237, 311
regular part of q 4: 583
regular point 2A: 54; 3: 224, 229, 345;
4: 561
regular space 1: 61
regularity 3: 292
regularized determinants 4: 187
relation 1: 3
relative bound 4: 528, 532, 533
relative form bound 4: 578
relative index 4: 210
relative topology 1: 38, 44
relatively A-form compact 4: 662
relatively A-operator compact 4: 662, 667
relatively bounded 4: 528
relatively closed 1: 38
relatively compact 4: 198, 661, 662
relatively compact perturbation 4: 662, 663, 684
relatively form compact 4: 667
relatively open 1: 38
relatively prime $\mathbf{2 A}$: 8, 401
relatively trace class 4: 661
Rellich embedding theorem 3: 578
Rellich's criterion 4: 225, 228
Rellich's inequality 3: 560; 4: 534, 568, 571
Rellich's theorem 4: 25
Rellich-Kondrachov embedding theorem 3: 576, 582
removable set 2A: 373, 375
removable singularities theorem 3: 193, 263, 274, 300
removable singularity $\mathbf{2 A}$: $125,127,293$
reparamerizations 2A: 40
representation 4: 421, 424, 430-432, 445, 447
representing measure 4: 475
reproducing kernel 1: 129, 539
reproducing kernel Hilbert space 1:
$126,128,130,575 ; \mathbf{3}: 373,375,385$
residual spectrum 4: 47
residue calculus $\mathbf{2 A}$: 212
residue theorem 2A: 130, 143
resolution 4: 314
resolution of singularities $\mathbf{2 A}$: 260
resolution of the identity 4: 290, 294
resolvent 4: 47, 50, 56
resolvent set 4: 47, 50, 363, 524
restricted dyadic filtration 3: 148
restriction conjecture 3: 684, 685
restriction to submanifolds 3: 671
retract 1: 479, 487
retraction 1: 479
return time theorem 3: 85, 90
reversed polynomials 4: 269
Ricker wavelet 3: 384
Rickman's lemma 3: 216
Riemann curvature 2A: 316
Riemann function 1: 599, 601, 602
Riemann hypothesis 2A: 316
Riemann integrable 1: 228, 232
Riemann integral 1: 187; 3: 375
Riemann localization principle 1: 142
Riemann map 2A: 327, 336; 3: 269
Riemann mapping 2A: 319, 320, 324
Riemann mapping theorem 2A: 311, $314,315,325,353,369$; 3: 268,472
Riemann metric 2A: 18, 272, 316
Riemann removable singularity theorem 2A: $125,142,195$
Riemann sphere 2A: 257
Riemann surface 2A: 54, 256, 259-261, 266, 267, 269, 315, 362, 498, 553, 568; 3: 298, 300, 310, 311, 316, 318
Riemann surface of the function $\mathbf{2 A}$: 565
Riemann tensor 2A: 316
Riemann theta function 2A: 588
Riemann zeta function 2A: 421; 4: 500
Riemann's P-functions 2A: 316
Riemann-Hilbert problem 3: 487
Riemann-Hurwitz formula 2A: 587
Riemann-Lebesgue lemma 1: 142, 543; 3: 398; 4: 504
Riemann-Stieltjes integral 1: 187, 189, 192, 433
Riemann-Stieltjes integrals 2A: 42
Riemannian manifold 2A: 18
Riesz L^{p} duality theorem 1: 270
Riesz basis 3: 395, 396, 398, 401
Riesz decomposition 3: 217; 4: 83
Riesz decomposition theorem 3: 212, 213
Riesz factorization 3: 452, 454, 455, $458,462,470,507$
Riesz factorization theorem 3: 457

Riesz geometric lemma 4: 111
Riesz lemma 4: 31, $93,112,118$
Riesz maximal equality 3: 48, 51
Riesz potentials 3: 276
Riesz product 1: 577, 582
Riesz projection 3: 489
Riesz representation theorem 1: 124, 238, 255; 4: 576
Riesz space 1: 259
Riesz transform 3: 514
Riesz's criterion 4: 225
Riesz's geometric lemma 1: 360, 364
Riesz-Fischer theorem 1: 137, 153, 217, 226, 248, 632
Riesz-Kakutani theorem 1: 238
Riesz-Markov theorem 1: 233, 236, 238, 266, 515; 2A: 231; 3: 182; 4: 294, 295
Riesz-Schauder theorem 4: 111, 117-119, 194, 200
Riesz-Thorin interpolation 3: 623
Riesz-Thorin theorem 1: 549; 2A: 175; 3: 15, 492, 556, 677; 4: 146, 615
right continuous monotone 3: 27
right half-plane 1: 2; 4: 2
right limit 2A: 242; 3: 293
right pseudoinverse 4: 205
right regular representation 3: 120
right shift 4: 49, 55
Ringrose structure theorem 4: 121, 123
Ringrose-West decomposition 4: 120
Ringrose-West theorem 4: 122
rings of sets 1: 207
Robin boundary condition 4: 602
Robin constant 3: 253, 279
Robin potential 3: 274
Robin's constant 1: 453
Robin's problem 3: 274
Rodgers-Szegő polynomials 2A: 535
Rodrigues formula 4: 244, 254
Rogers' inequality 1: 372
Rogers-Taylor theorem 1: 695
Rolle's theorem 1: 197
Rollnik norm 4: 683
root asymptotics 3: 281
roots 3: 281; 4: 236
Rosen's lemma 3: 644, 653
rotations 3: 68
Rothe's formula 2A: 537
rotund 1: 444
Rouché's theorem 2A: 97, 98, 100, 144

Rudin-Shapiro polynomials 4: 369
Ruelle-Oseledec theorem 3: 141, 145
Runge's theorem 2A: 153, 159, 244
s-number 4: 134
s.a.c. 1: 253
sample space 1: 617
scale covariance 3: 596
scaling filter 3: 416, 420, 422
scaling function 3: 411, 429
Schatten classes 4: 145
Schauder basis 4: 97, 98, 100, 101
Schauder's theorem 4: 92, 100, 101
Schauder-Tychonoff fixed point theorem 4: 117
Schauder-Tychonoff theorem 1: 478, 490; 4: 118
Scheffé's lemma 1: 243, 251
Schiefermayr's theorem 4: 267
schlicht function 2A: 246
Schmidt expansion 4: 134
Schobloch's reciprocity formula 2A: 421
Schottky's theorem 2A: 578
Schrödinger equation 1: 596
Schrödinger operator in magnetic field 4: 622
Schrödinger operators 3: 644; 4: 227, 569, 666, 682
Schrödinger-Robertson uncertainty relations 3: 334
Schur algorithm 2A: 302, 304-306
Schur approximant 2A: 307
Schur basis 4: 122, 162, 163, 185, 186
Schur complement 4: 208
Schur function 2A: 235, 301, 306, 307; 3: 464
Schur iterates 2A: 302
Schur parameters 2A: 302, 307
Schur product 1: 552; 3: 670
Schur's lemma 3: 379, 381; 4: 436, 437, 446
Schur-Lalesco-Weyl inequality 3: 544; 4: 162, 185, 671
Schur-Weyl duality 4: 446
Schwartz kernel theorem 1: 531; 3: 357
Schwartz space 1: 499; 3: 5
Schwarz alternation method 3: 275
Schwarz inequality 3: 322
Schwarz integral formula 2A: 178
Schwarz kernel 2A: 178; 3: 445
Schwarz lemma 2A: 116, 117, 120, 194, 236, 241, 290, 302, 312, 315

Schwarz reflection principle 2A: 189, 194
Schwarz-Christoffel map 2A: 351
Schwarz-Christoffel theorem 2A: 343
Schwarz-Christoffel transformation 2A: 342
Schwarz-Pick lemma 2A: 119
second Beurling-Deny criterion 4: 615
second category 1: 404
second countable 1: 51
second countable space 1: 52
second kind polynomials 3: 294
second-order differential equation 4 : 243
sector 2A: 2
Segal-Bargmann kernel 1: 540
Segal-Bargmann transform 1: 535; 3: 8, 327, 337, 374, 387, 402
Segal-Fock space 1: 538
self-adjoint 1: 24,$175 ; 4: 8,108,516$, $520,532,541,546,552,554,577$, 582, 588
self-adjoint extension 4: 521, 541, 554, $556,557,564,568,570,588,590$, $593,635,641,643,651$
self-adjoint operator 2A: 6; 3: 381, 616; 4: 39, 543, 548, 549, 577, 579, 580, $582,590,617,618,661,665,667$
self-adjoint projection 4: 84, 549
self-adjointness 4: 568
semibounded 4: 519
semigroup 4: 385, 617, 618
semigroup methods 4: 612
semimetric 1: 3
seminorm 1: 113, 357, 380
semisimple 4: $366,373-375,384,455$
semisimple abelian Banach algebra 4: 399
separable space 1: 52
separated boundary conditions 4: 563
separated by a hyperplane 1: 454
separating hyperplane theorem 1: 455, 456, 467; 3: 296
separation axioms 1: $53 ; 4$: 28
sequentially compact 1 : 65,66
sequentially continuous $\mathbf{1}$: 40
sesquilinear 1: 110
sesquilinear form 4: 572, $573,579,634$
Shannon entropy 3: 334
Shannon's inequality 3: 335, 341
sheaf of germs 2A: 565

Shilov boundary 3: 277; 4: 405, 406, 470, 471, 475, 489, 492
σ-compact space 1: 277
σ-algebra 1: 206
σ-finite 1: 233, 300
σ-finite measure space 3: 4
σ-ideal 1: 209
σ-ring of sets 1: 207
$\sigma(X, Y)$ 1: 437
sign of a permutation 4: 12
signal analysis 3: 387
signed Baire measure 1: 264
Simon's $L_{\text {loc }}^{1}$ theorem 4: 611
Simon-Wolff criterion 4: 338
simple curve 2A: 41
simple double point 2A: 260
simple eigenvalue 4: 27
simple function 1: 338
simple invariant nest 4: 121, 127, 132
simple nest 4: 121
simple operators 4: 303
simple point 2A: 323
simple pole 2A: 127
simple random walk 1: 320
simple roots 4: 236
simplex 1: 374, 465; 2A: 24
simply connected 2A: 21, 151, 311, 319, 326, 571; 3: 304, 310
single-layer potentials 3: 275
singular continuous 4: 646
singular continuous spectrum 4: 570
singular homology 2A: 24
singular inner function 3: 469
singular integral operator 3: 588, 599
singular measure 1: 252
singular point 2A: 54; 3: 224, 260, 265, 276, 345
singular Riesz potential 3: 590, 599
singular support 3: 345
singular value decomposition 4: 134
singular values 3: 140; 4: 132, 134
skew shift 3: 106-108, 123
Slater determinants 4: 675
slice of annulus 2A: 347
slit plane 2A: 338
slowly oscillating function 4: 498, 509
small coupling analysis 4: 683
small coupling ground state 4: 681
Smith-Volterra-Cantor set 1: 202
SMP 3: 202, 203, 223, 224, 264
Snell's theorem 4: 262

Sobolev embedding theorem 3: 570, $573,574,577,681$
Sobolev estimates 3: 570, 619, 644, 655, $663 ; 4$: 31, 531
Sobolev inequalities 4: 674
Sobolev inequality 1: 564; 3: 323, 544, 583, 658, 669
Sobolev norm 3: 568
Sobolev spaces 3: $544,568,582$, 583 , 681
Sobolev spaces for fractional exponent 3: 566
Sokhotskii's theorem 2A: 128
Sokhotskii-Plemelj formula 1: 512
solvable group 1: 489
space of Bessel potentials 3: 566
space of maximal ideals 4: 412
space of moduli 2A: 362
space-time bounds 3: 683
space-time estimates 3: 682
span 1: 18
special linear group 1: 352
spectral averaging 4: 344
spectral localization theorem 4: 63
spectral mapping theorem 4: 56, 61, 69, 297, 363, 426, 661
spectral measure 4: 344, $353,545,635$, 641
spectral measure version 4: 294
spectral projections 1: 23; 4: 7, 64, 65, 68
spectral radius 4: 52, 372
spectral radius formula 4: 52, 57, 330, 363
spectral representation 3: 620; 4: 614
spectral synthesis 4: 504
spectral theorem 1: 24,$175 ; \mathbf{2 A}: 7 ; 3$: 102, 616; 4: 8, 19, 81, 83, 87, 199, 284, 287, 289, 299, 323, 332, 516, 541, 543-545, 548, 552, 568, 583, $631,658,664,667$
spectral theorem for commuting operators 4: 324,325
spectral theorem for normal operators 4: 326,405
spectral theorem for unitary operators 4: 316
spectral theorem: Borel functional calculus 4: 292
spectral theorem: functional calculus version 4: 292
spectral theorem: multiplication operator form 4: 293
spectral theorem: resolution of identity form 4: 291
spectral theorem: spectral measure form 4: 293
spectrum 4: $47,50,56,68,363,419$, 524
spherical Bessel function 3: 249; 4: 686
spherical coordinates 3: 198
spherical derivative 2A: 250, 252
spherical harmonic 3: 197, 232, 234, $236,238,240,248,251$
spherical harmonic expansion 3: 241
spherical harmonic expansion of plane waves 3: 248
spherical maximal function 3: 49, 51
spherical metric 2A: 247, 252
spur 4: 143
square integrable representation 3: 379
square root 4: 78
square root lemma 4: 73, 88
square root property 2A: 310
stability of hydrogen 3: 323
stability of matter 1: 454; 3: 669; 4: 676
stable distribution 1: 657
Stahl-Totik theorem 3: 297
standard deviation 1: 618
standard normal distribution 1: 619
star-shaped regions 2A: 69
state 4: 422, 423, 428, 435
stationary phase 3: 130
stationary phase ideas 3: 681
stationary phase method 3: 674
statistical mechanics 3: 654
Stein interpolation 3: 619
Stein interpolation theorem 2A: 177
Stein-Weiss inequality 3: 560
Steinhaus' theorem 1: 570
stereographic projection 2A: 256, 268, 272, 284
Stern-Brocot tree 2A: 333, 336
Stieltjes integral 1: 187; 4: 241
Stieltjes measure 3: 28
Stieltjes moment condition 4: 633, 634
Stieltjes moment problem 1: 330; 4: $633,650,651,658$
Stieltjes moment theorem 1: 428
Stieltjes moments 4: 650, 652, 656

Stieltjes transform 3: 62, 64; 4: 334, 643
Stieltjes-Osgood theorem 2A: 238
Stirling approximation 2A: 431; 4: 178
Stirling's formula 2A: 437
stochastic matrices 4: 144
Stokes' theorem 2A: 16, 68; 3: 17, 313
Stone topology 4: 388
Stone's formula 4: 332
Stone's theorem 4: 537, 549, 551, 553
Stone-Čech compactification 4: 388, 412
Stone-von Neumann uniqueness theorem 3: 336, 342
Stone-Weierstrass theorem 1: 88, 92, 138, 283, 293, 303, 466, 631; 4: 30, $360,394,405,410,416,456$
stopping time 1: 593; 3: 148, 165
Strichartz estimates 3: 679, 680
strict compactification 4: 407-409, 412, 413
strict inductive limit 1: 708
strict partial order 1: 10
strictly convex 1: 585
strictly interlace 4: 236
strictly stochastic matrix 1: 670
strip 2A: 346
strong Krein-Milman theorem 1: 462
strong law of large numbers 1: 632; 3: 10, 92, 93
strong maximal theorem 3: 48
strong Montel theorem 2A: 252
strong operator topology 1: 173; 4: 35, 44
strong resolvent sense 4: 546, 586
strong Szegő theorem 4: 285
strong topology 1: 43
strongly absolutely continuous measure 1: 253
strongly continuous 4: 430, 552
strongly measurable function 1: 338
strongly mixing 3: 85
strongly overcomplete family 3: 390
strongly separated by a hyperplane $\mathbf{1}$: 454
structure constants 3: 415
structure theorem for nilpotents 4: 7, 15
Stummel class 4: 532
Stummel conditions 4: 532
Sturm oscillation theorems 4: 569

Sturm-Liouville operators 4: 344
Sturm-Liouville theorem 4: 105
Sturm-Liouville theory 4: 102, 109, 227
sub-Dirichlet bound 3: 631
sub-Dirichlet inequality 3: 630, 632, 638, 645, 653
sub-Markovian 3: 623
sub-Markovian semigroup 3: 622, 632, 639, 640, 653, 659, 661
subadditive ergodic theorem 3: 134
subadditive sequence 3: 134
subbase 1: 37
subcover 1: 52
subcritical Gabor lattice 3: 390
subdiagonal 1: 133
subdivision 2A: 42
subharmonic 3: 206
subharmonic function 3: 202-205, 208, 210, 212, 213, 221, 224, 227, 253, 261, 263, 264, 274, 280, 297, 299, 301, 305, 308, 440, 441, 444; 4: 279
subharmonic function, discontinuous 3: 206
sublattice 1: 89
submartingale 3: $148,149,152,157,165$
submartingale convergence theorem 3 : 156
submean property 3: $202,212,263,307$
subnet 1: 97
subordinate 4: 666
subordinate partition 1: 191
subsequence 1: 4, 38
subspace 1: 19
successor 1: 7
summability method 4: 505
sunrise lemma 3: 47, 51, 52, 77
sup 1: 9,89
supercontractive semigroup 3: 618, 645
supercontractivity 3: 646, 653
supercritical Gabor lattice 3: 390
superdiagonal 1: 133
superharmonic function 3: 202, 261, 266
superharmonic majorant 3: 307
supermartingale 3: 148, 149
support 1: 215,225
support of a distribution 1: 520
surface area of unit ball 1: 291
surface measure 3: 181
Suslin set 1: 313
suspension 3: 88
svd 4: 134

Swiss cheese 4: 477, 490, 492
symbol 3: 353, 604
symmetric 4: $393,557,558$
symmetric decreasing rearrangement 1 : 392
symmetric envelope 3: 54
symmetric involution 4: 393, 394, 397, 400, 401, 406, 425
symmetric operator 4: 519, 530, 659
symmetric rearrangement 3: 40
symmetric relation 1: 3; 3: 3; 4: 3
symmetric subalgebra 4: 407, 409, 410
symmetric tensor 1: 180
symmetry 3: 311
Sz.-Nagy dilation theorem 4: 322, 323
Szegő asymptotics 4: 277, 284
Szegő condition 4: 275
Szegő function 4: 275
Szegő kernel 1: 129
Szegő mapping 4: 284
Szegő recursion 4: 270, 273, 282
Szegő's theorem 4: 274, 276-278, 285
T_{1} space 1: 53
$T 1$ theorem 3: 603
T_{2} space 1: 53
T_{3} space 1: 53
T_{4} space 1: 53
Takagi function 1: 165
Tanaka-Krein duality 4: 468
tangent 2A: 14
tangent bundle 2A: 14
Tarski's theorem 1: 12
Tauberian number theorems 4: 513
Tauberian theorem 3: 686; 4: 505, 513
Taylor series 1: 31; 2A: 52, 57, 61, 95, 120, 230, 301; 3: 233
Taylor's theorem 1: 30; 2A: 9, 51
tempered distribution 1: 502; 3: 345, 673
tensor power trick 3: 556
tensor product 1: 177, 179; 4: 11
tetrahedron 2A: 286
theory of compactifications 4: 360
thermodynamic limit 1: 662
theta function 3: 391
thin set 3: 276
Thomas-Fermi equation 1: 451, 453
Thomas-Fermi theory 4: 676
Thouless formula 3: 283, 289, 291, 295, 296
three-circle theorem $\mathbf{2 A}: 116,118,120$, 174,177
three-line theorem 2A: 174,177
three-term recurrence for OPRL 4: 233
three-term recursion relation 4: 232
Tietze extension theorem 1: 57, 62, 86, 468; 4: 28, 381, 410
tight measure 1: 311
tight random variables 1: 625
Titchmarsh's theorem 4: 129, 130
Toeplitz determinants 4: 284
Toeplitz matrix 2A: 66; 4: 212, 221, 284
Toeplitz operator 4: 212, 214, 218, 221
Tomas-Stein theorem 3: 674, 676, 679, 680, 682-684
Tonelli's theorem 1: 288
topological boundary 4: 471
topological dimension 1: 701
topological dynamical system 3: 67, 72, 96, 100, 107
topological group 1: 105, 342; 3: 101; 4: 457
topological space 1: 37,51
topological vector space 1: 122, 123, 357; 2A: 229
topological vector spaces 4: 217
topologically simply connected 2A: 73, 311
topology 1: 36, 37; 2A: 265
toral automorphisms 3: 132
total variation 2A: 27
totally bounded 1: 65, 66
totally disconnected 1: 46, 203, 205, 467; 4: 391
totally ordered 1: 10
tower of subspaces 4: 112
trace 4: $15,19,140,144$
trace class 3: $626 ; 4: 136,138,140,143$, $144,178,180,340,346,347,353$, $665,666,678,680$
trace class operator 4: 680
trace class perturbations 4: 345
trace ideals 4: 145, 671
Tracy-Widom distribution 1: 620
transcendental numbers 1: 16
transfinite diameter 4: 264
transition map 2A: 257
transition matrix 1: 669
transitive 2A: 292
transitive relation 1: 3; 3: 3; 4: 3
translations 1: 504
transpose 1: 23; 4: 11, 34
triangle inequality $\mathbf{1}: 3,112$
trichotomy property 1: 10
Triebel-Lizorkin space 3: 583
trigonometric functions 2A: 203
trigonometric moment problem 1: 435
trigonometric polynomial 3: 435
triple product 2A: 523
Trotter product formula 4: 612, 623, $624,626,628,630,632$
tsc 2A: 73, 151, 311
TVS 1: 357, 422, 439, 443
Tychonoff space 1: 61; 4: 412
Tychonoff's theorem 1: 100, 102, 103, 293, 447; 4: 408, 412
type 2A: 459
ultimate argument principle 2A: 144
ultimate Cauchy integral formula $\mathbf{2 A}$: 140, 142; 4: 61
ultimate Cauchy integral theorem $\mathbf{2 A}$: 140, 142
ultimate CIF 4: 4
ultimate residue theorem 2A: 143
ultimate Rouché theorem 2A: 144
ultra Cauchy integral formula $\mathbf{2 A}$: 151
ultra Cauchy integral theorem 2A: 151
ultra Cauchy theorem 2A: 190
ultra-weakly continuous functionals 4 : 429
ultracontractive 3: $624,639,640,662$
ultracontractive semigroup 3: 618, 626, 645
ultracontractivity 3: 618, 619, 627, 653
unbounded component 3: 258, 259
unbounded operator 3: 237; 4: 518
unbounded self-adjoint operators 4: 534
uncertainty principle 3: 323, 333-335
uncomplemented subspace 1: 363
uniform algebra 4: 360
uniform boundedness 1: 398
uniform boundedness principle 1: 399, 400; 3: 495; 4: 368
uniform continuity 4: 451
uniform convergence 1: 41, 49
uniform lattice 3: 119
uniform measure 3: 277
uniform space 1: 367
uniformization theorem 2A: 362, 369; 3: 303
uniformly continuous 4: 414, 415
uniformly convex 1: $388,443,445 ; 4$: 153
uniformly equicontinuous 1: 70, 649
uniformly L^{p}-function 4: 533
uniformly rotund 1: 444
unimodular 1: 343; 3: 383, 387
unimodular group 3: 378
unique ergodicity 3: 99
uniquely ergodic 3: $96,98,106,107$
uniquely ergodic measure 3: 84
uniqueness for Dirichlet problem 3: 181
uniqueness of the norm theorem 4: 388
unit ball, Green's function for 3: 187
unit cell 1: 573
unitarily equivalent 4: 541
unitary 1 : $25 ; 4$: $68,75,82,393$
unitary equivalence 4: 433
unitary matrix 4: 9
unitary operator 1: 134; 2A: 6; 3: 381;
4: 39, 543
unitary representation 4: 432, 441
univalent function 2A: 246
universal compactification 4: 412
universal covering map 2A: 358
universal covering space $\mathbf{2 A}$: 23,354 , 553
universal net 1: 102
upcrossing inequality 3: 164
upcrossing methods 3: 84
upcrossings 3: 164
upper bound 1: 11
upper diagonal 1: 27
upper envelope theorem 3: 273, 274
upper half-plane 1: 2; 2A: 2; 3: 498; $\mathbf{4}$: 2
upper semicontinuous 1: 42, 70; 3: 202
upper symbol 3: 377, 386
upper triangular 1: 133; 2A: 284; 4: 162
Urysohn metrizability theorem 1: 51, 59, 61
Urysohn space 1: 61
Urysohn's lemma 1: 55, 57, 406
usc 1: 42, 70; 3: 202, 263, 278
vague convergence 1: $237,240,410$
van der Corput's difference theorem 3: 123
Vandermonde determinant 1: 575
vanishing mean oscillations 3: 523
variance 1: 618
variation 3: 320
variational form 4: 285
variational interpretation 4: 274
variational methods 4: 109
variational principle 4: $277,617,673$
variational principle for convex sets $\mathbf{1}$: 120
variational principle for Green's
function 3: 304
variational property of OPs 4: 256
Varopoulos-Fabes-Stroock theorem 3: 619
vector bundle 2A: 17
vector field 2A: 14
vector lattice 1: 89, 259
vector space 1: 18
Verblunsky coefficients 2A: 306; 3: 293; 4: 231, 268, 270, 273, 283
Verblunsky's theorem 4: 268, 270, 283, 284
Viète's formula 2A: 399
Vitali convergence theorem $\mathbf{2 A}$: 159, 236
Vitali covering theorem 1: 695
Vitali set 1: 205
Vitali's convergence theorem 3: 15
Vitali's convergence theorem for harmonic functions 3: 192
Vitali's covering lemma 3: 43, 44, 52
Vitali's covering theorem 3: 277, 601
Vitali's theorem 2A: 238, 239, 242; 3: 299; 4: 4
VMO 3: 523, 534, 536
Volterra integral operator 4: 53, 54
Volterra nest 4: 121, 128
Volterra operator 4: 121, 128
volume of the unit ball 1: 291
von Neumann algebra 4: 358
von Neumann ergodic theorem 3: 72, 87; 4: 319
von Neumann extension 4: 588
von Neumann lattice 3: 390, 394, 400, 401
von Neumann solution 4: 635, 639-641, 643, 646, 650, 659, 660
von Neumann trick 3: 64
von Neumann's conjugation result 4: 528
von Neumann's contraction theorem 4: 322
von Neumann's density theorem 4: 315
von Neumann's double commutant theorem 4: 314, 315
von Neumann's extension theorem 4: 554
von Neumann's theorem 1: 254
Wall polynomials 2A: 303, 305
Wallis' formula 2A: 223, 396, 415, 416, 437
wave equation 1: 598,612
wave operator 4: 353
wavefront set 3: $347-350,371$
wavelet theory 3: 387, 433
wavelets 3: 383, 418
weak barrier 3: 224
weak convergence 1: 237
weak Hausdorff-Young inequality $\mathbf{3}$: 564
weak law of large numbers 1: 295, 632, 634, 635, 644, 650
weak Lomonosov theorem 1: 484; 4: 117
weak LT bound 3: 659
weak LT inequality 3: 658, 660
weak mixing 3: 86; 4: 320
weak operator topology 1: 173; 4: 35, 44, 153
weak sequential convergence 1: 438
weak Stein-Weiss estimate 3: 561
weak topology 1: 43, 44, 168, 170, 171; 4: 28, 35, 424
weak Young inequality 3: 546, 561, 586
weak-* topology 1: 95,$437 ; 4$: 29
weak- L^{1} bounds 3: 594
weak- L^{1} estimates 3: 602
weak-* topology 3: 500
weakly analytic 2A: 85
weakly generate 4: 376
weakly harmonic function 3: 191
weakly measurable function 1: 337
weakly mixing 3: 85,92
weakly positive definite 4: 450, 451
weakly positive definite function 1: 565 ;

$$
\text { 4: } 453
$$

weakly regular measure 1: 306
Wedderburn's lemma 2A: 401, 409
wedding-cake representation 3: 29, 36, 40, 63, 549
Weierstrass approximation theorem 1: $76,77,86 ; 3: 236 ; 4: 232,235,239$, 308

Weierstrass convergence theorem $\mathbf{2 A}$: 82, 134, 159
Weierstrass density theorem 1: 77
Weierstrass double series theorem 2A: 87, 88
Weierstrass elliptic function 2A: 522
Weierstrass factor 4: 188
Weierstrass factorization theorem 2A: 403
Weierstrass factors 2A: 401, 501, 504
Weierstrass M-test 2A: 231, 383
Weierstrass \wp-function 2A: 506; 3: 392
Weierstrass product theorem 2A: 402, 408
Weierstrass sigma-function 2A: 504
Weierstrass σ-function 2A: 501; 3: 391
Weierstrass uniform convergence theorem 1: 41
Weierstrass zeta-function 2A: 505
well-ordered 1: 10
well-ordering principle 1: 12
Weyl m-function 4: 569
Weyl calculus 3: 354, 368
Weyl group 3: 336
Weyl sequence 4: 200
Weyl's criterion 3: 98
Weyl's eigenvalue counting theorem 4: 597
Weyl's equidistribution 3: 94
Weyl's equidistribution theorem 3: 95, 98, 101
Weyl's invariance theorem 4: 193, 197, 200, 351, 662
Weyl's law 3: 100
Weyl's theorem 3: 122
Weyl-Titchmarsh m-function 4: 569
Weyl-Titchmarsh limit point/limit circle 4: 569
Weyl-von Neumann-Kuroda theorem 4: 345, 349
Wick powers 1: 289
Widom's theorem 3: 286, 291, 292
Wielandt's theorem 2A: 412, 416, 424, 426, 428
Wiener algebra 4: 361, 368, 369, 454, 494
Wiener Tauberian theorem 4: 367, 377-379, 388-390, 493-495, 498, 504, 508, 509
Wiener's theorem 1: 555, 567, 572
Wiener-Hopf operators 4: 218

Wiener-Lévy theorem 4: 378, 388
Wiener-Shilov theorem 4: 504
Wigner distribution 3: 369, 370
Wigner-Ville distribution 3: 370
Wignert distribution 3: 370
winding line on the torus 4: 408
winding number 2A: 100, 101, 144; 3: 398; 4: 4, 58
windowed Fourier transform 3: 383
Wirtinger calculus 1: 533; 2A: 37; 3: 312
Wirtinger's inequality 1: 166
witch of Agnesi 1: 630
work of the devil 1: 210
Wronski's formula 2A: 66
Wronskian 4: 561, 636
W^{*}-algebra 4: $358,428,429$
Wüst's theorem 4: 540
Y-weak topology 1: 437
Young's inequality 1: 367,$550 ; \mathbf{3 :} 5$, 431, $544,545,560,573,583,586$, $605,618,647,665,676,677 ; 4: 673$

Zak transform 1: 518, 519; 3: 8, 9, 397, 398, 400-402, 407
Zalcman's lemma 2A: 575, 577, 578
Zaremba's criterion 3: 230
Zermelo-Fraenkel axioms 1: 13
zero capacity 3: 11, 253
zero counting measure 3: 280, 281; 4: 266
zero energy Birman-Schwinger kernel 4: 677
zeros 2A: 53, 95, 127, 480; 3: 280
Zhukovsky map 2A: 339
zonal harmonic 3: 238
Zorn's lemma 1: 11, 100; 4: 370
Zornification 1: 131, 401, 416, 420; 4: $314,365,423,471$

Author Index

Abel, N. H. 2A: 59, 497-499, 517, 589, 591; 4: 505, 687
Abels, H. 3: 367, 603, 691
Abikoff, W. 2A: 367, 591
Ablowitz, M. J. 2A: 351, 591
Abry, P. 1: 702, 713
Aczél, J. 4: 255, 687
Adamjan, V. M. 4: 658, 687
Adams, J. F. 4: 443, 687
Adams, R. A. 3: 583, 652, 691
Adams, W. J. 1: 654, 655, 713
Agarwal, R. P. 1: 485, 713
Agmon, S. 2A: 58, 242, 591; 3: 683, 691; 4: 128, 600, 667, 687
Aharonov, Y. 4: 218, 687
Ahern, P. R. 4: 490, 687
Ahlfors, L. V. 1: 60; 2A: 142, 149, 309, 314, 324, 362, 378, 577, 591; 3: 298, 691
Aikawa, H. 3: 177, 691
Aizenman, M. 3: 513, 669, 691; 4: 538, 687
Akhiezer, N. I. 1: 434, 435, 444, 713; 2A: 477,$591 ; \mathbf{4}: 267,658,659,687$
Alaoglu, L. 1: 447, 713
Albeverio, S. 1: 313, 713; 4: 666, 687
Albiac, F. 1: 357, 444, 713
Alexander, A. 2A: 37, 499, 591
Alexandroff, A. D. 1: 269, 713
Alexandroff, P. 1: 48, 60, 61, 74, 75, 106, 502, 713, 714
Alfsen, E. M. 1: 350, 465, 714
Aliprantis, C. D. 1: 269, 443, 714

Allahverdiev, Dž. É. 4: 136, 688
Alon, N. 1: 617, 714
Alonso, A 4: 601, 688
Alpay, D. 1: 126, 714; 2A: 305, 592
Altomare, F. 1: 83, 714
Ambrose, W. 4: 57, 688
Ampère, A. 1: 155, 714
Amrein, W. O. 3: 337, 691; 4: 218, 321, 354, 688
Ando, T. 1: 126, 714; 4: 601, 688
Andrews, G. E. 2A: 419, 421, 534, 535, 592; 4: 231, 254, 688
Andrievskii, V. V. 1: 453, 714
Ané, C. 3: 650, 691
Antonne, L. 1: 175, 714
Apostol, T. M. 2A: 393, 550, 592
Appell, P. 2A: 156, 592
Applebaum, D. 1: 659, 714
Arendt, W. 4: 604, 688
Arens, R. F. 1: 443, 715; 4: 69, 389, 405, 489, 688
Argand, J.-R. 2A: 4
Armitage, D. 3: 177, 692
Armitage, J. V. 2A: 477, 479, 536, 592
Arnol'd, V. I. 1: 629; 2A: 479, 592; 3: 79, 99, 692
Aronszajn, N. 1: 106, 126, 487, 715; 3: $276,681,692 ; 4: 343,353,627,688$
Arov, D. Z. 4: 658, 687
Artin, E. 2A: 142, 419, 421, 423, 592; 3: 125, 692
Arveson, W. 4: 217, 314, 688
Arzelà, C. 1: 70, 75, 715

Ascoli, G. 1: 14, 70, 75, 447, 458, 715
Ash, R. B. 1: 230, 715; 2A: 150, 323, 468, 592
Ashbaugh, M. S. 4: 602, 689
Askey, R. 2A: 419, 421, 534, 535, 592; 4: 231, 240, 254, 282, 688, 689
Aslaksen, E. W. 3: 387, 692
Atiyah, M. F. 1: 607, 715; 4: 217, 689
Atkinson, F. V. 4: 217, 689
Aubin, T. 3: 582, 692
Aubry, S. 3: 296, 692
Austin, D. 2A: 333, 592
Autonne, L. 4: 82, 689
Avez, A. 3: 79, 99, 692
Avila, A. 2A: 564,$592 ; \mathbf{3 :} 145,292,692$
Avron, J. 3: 291, 296, 692; 4: 217, 218, 689
Axler, S. 3: 177, 692
Ayoub, R. 2A: 517, 592
Bôcher, M. 1: 157, 718
Baba, Y. 1: 164, 715
Babenko, K. I. 1: 563, 715; 3: 125, 692
Bachmann, P. 2A: 12, 592
Bacry, H. 3: 401, 402, 692
Báez-Duarte, L. 3: 161, 692
Baggett, L. 3: 403, 692
Baik, J. 1: 630, 715
Baire, R.-L. 1: 47, 49, 211, 407, 409, 715
Baker, H. F. 4: 628, 689
Bakonyi, M. 2A: 305, 593
Bakry, D. 3: 653, 692
Balian, R. 3: 402, 692
Banach, S. 1: 206, 210, 318, 357, 363, $364,407,408,424,425,447,466$, $485,486,501,715,716 ; 3: 24,25$, $46,49,692,693 ; 4: 43,100,689$
Bañuelos, R. 3: 162, 693
Bär, C. 2A: 21, 593
Bargmann, V. 1: 538, 716; 3: 385, 386, 401, 693; 4: 682, 689
Bari, N. K. 3: 401, 406, 693
Barndorff-Nielsen, O. E. 1: 659, 716
Barnes, C. W. 4: 255, 689
Barut, A. O. 3: 386, 693
Battle, G. 3: 402, 405, 433, 434, 693
Bauer, H. 1: 230, 313, 716; 3: 177, 276, 693
Baumgärtel, H. 4: 70, 689
Beals, R. 2A: 419, 536, 593; 3: 614, 693; 4: 231, 255, 689

Bear, H. S. 1: 230, 716
Beardon, A. F. 2A: 145, 149, 335, 589, 593; 3: 127, 693
Beauzamy, B. 1: 444, 716
Beckenbach, E. F. 2A: 152, 194, 593
Beckenstein, E. 1: 443, 706, 746
Beckner, W. 1: 563, 716; 3: 335, 652, 693
Begehr, H. G. W. 2A: 585, 593
Belhoste, B. 2A: 499, 593
Bell, E. T. 2A: 404, 593
Bell, S. R. 2A: 188, 323, 378, 593
Bellman, R. 1: 486, 716
Beltrami, E. J. 2A: 562, 593; 4: 135, 689
Ben-Aroya, A. 3: 654, 693
Benedetto, J. J. 3: 333, 693; 4: 505, 689
Benedicks, M. 3: 337, 693
Benford, F. 3: 99, 694
Benguria, R. D. 4: 605, 690
Bennet, G. 1: 490
Bennett, A. A. 1: 364, 716
Bennett, C. 3: 534, 556, 583, 694
Benyamini, Y. 1: 357, 716
Bercovici, H. 4: 322, 722
Berenstein, C. A. 2A: 469, 593
Berezanskii, Ju. M. 3: 292, 694
Berezin, F. A. 1: 538, 716; 3: 386, 402, 694
Bergh, J. 3: 556, 583, 694
Bergman, S. 1: 126, 716, 717; 4: 489, 690
Berlinet, A. 1: 126, 717
Bernoulli, D. 1: 150, 653, 717
Bernoulli, Jakob 1: 452, 628, 644, 653, 717; 2A: 396, 437, 516, 533, 593
Bernoulli, Johann 2A: 393
Bernstein, A. R. 1: 487, 717
Bernstein, I. N. 1: 608, 717
Bernstein, S. N. 1: 78, 82, 717; 2A: 574; 3: 291, 694; 4: 256
Berry, A. C. 1: 656, 717
Bers, L. 2A: 38, 230, 367, 593
Berthier, A. M. 3: 337, 691
Bertoin, J. 1: 659, 717
Besicovitch, A. S. 1: 700, 702, 717; 3: 50, 684, 694; 4: 367, 419, 690
Besov, O. V. 3: 583, 694
Bessaga, C. 1: 357, 717
Bessel, F. W. 1: 112, 117, 717
Betti, E. 2A: 403, 593

Beukers, F. 2A: 398, 593
Beurling, A. 3: 177, 276, 470, 517, 694; 4: $128,367,369,385,627,690$
Bezout, E. 4: 17, 690
Bialynicki-Birula, I. 3: 335, 694
Biane, P. 3: 653, 694
Bieberbach, L. 2A: 294, 305, 350, 594
Bienaymé, I. J. 1: 227, 717
Bienvenu, L. 3: 160, 694
Billingsley, P. 1: 313, 327, 717; 3: 79, 125, 694
Binet, J. 2A: 419, 447, 594
Bing, R. H. 1: 61, 717
Bingham, N. H. 1: 645, 717
Birkhoff, G. 1: 269, 717; 3: 406, 695
Birkhoff, G. D. 1: 562; 2A: 161, 594; 3: $65,79-82,125,406,694,695$
Birman, M. 4: 160, 353, 601, 605, 666, 682, 690
Birnbaum, Z. 1: 388, 717
Bishop, E. 1: 13; 3: 84, 695; 4: 490, 492, 690, 691
Blachman, N. M. 3: 652, 695
Blackadar, B. 4: 314, 691
Blanchard, Ph. 3: 669, 695
Blankenbecler, R. 4: 683, 691
Blaschke, W. 1: 167, 718; 2A: 455, 594
Blatt, H. P. 1: 453, 714
Blatter, C. 3: 433, 695
Bliedtner, J. 3: 177, 695
Bloch, A. 2A: 577-579, 594
Bloch, F. 3: 386, 387, 695
Blumenthal, R. M. 3: 177, 695
Boas, R. P. 1: 569, 718
Bôcher, M. 3: 197, 695
Bochi, J. 3: 145, 692
Bochner, S. 1: 126, 341, 512, 564, 718; 2A: $584,586,594 ; \mathbf{3 :} 543,603$, 695; 4: 254, 367, 419, 691
Bodineau, T. 1: 630, 718
Bogachev, V. I. 1: 230, 686, 718
Bogdan, V. M. 4: 387, 691
Boggess, A. 3: 433, 695
Bohl, P. 1: 487, 718; 3: 98, 695
Bohman, H. 1: 83, 718
Bohnenblust, H. F. 1: 425, 718, 719
Bohr, H. A. 2A: 118, 420, 594; 3: 19, 695; 4: 367, 419, 691
Bokobza, J. 3: 367, 733
Bolsinov, A. V. 2A: 479, 594
Boltzman, L. 3: 79, 80, 695

Bolzano, B. 1: 73, 156, 718
Bombelli, R. 2A: 4, 304, 594
Bonahon, F. 2A: 333, 594
Bonami, A. 3: 337, 652, 695
Bonet, J. 1: 443, 748
Bonsall, F. 4: 357, 691
Boole, G. 3: 513, 696
Boon, M. 3: 402, 696
Borchardt, C. W. 2A: 87, 497, 594
Border, K. 1: 443, 485, 714, 718
Borel, A. 4: 443, 691
Borel, É. 1: 73, 211, 228, 568, 628, 644, $645,656,718$; 2A: 64, 94, 182, 469, $577,578,594 ; \mathbf{3 :} 97,696 ; 4$: 266, 691
Borodin, A. N. 1: 327
Borsuk, K. 1: 487, 719
Borwein, D. 4: 506, 691
Borzov, V. V. 4: 605, 690
Bosma, W. 3: 125, 696
Bott, R. 1: 607, 715; 4: 217, 689
Bottazzini, U. 2A: 3, 36, 475, 517, 594
Böttcher, A. 4: 218, 691
Bouligand, G. 1: 702, 719; 3: 231, 696
Bouniakowsky, V. 1: 117, 719
Bouquet, J.-C. 2A: 87, 130, 595
Bourbaki, N. 1: 48, 74, 99, 102, 106, $125,225,230,350,443,447,501$, 706, 719; 2A: 57, 595
Bourdon, P. 3: 177, 692
Bourgain, J. 1: 365, 719; 3: 49, 84, 85, 682, 683, 685, 696
Bowen, R. 3: 126, 696
Bowman, F. 2A: 477, 595
Bradford, S. C. 1: 658, 719
Branquinho, A. 4: 255, 711
Brascamp, H. J. 1: 394, 563, 719; 3: 563, 696
Bratteli, O. 3: 433, 696; 4: 314, 691
Brauer, R. 2A: 305
Breiman, L. 1: 617, 719
Brelot, M. 3: 177, 231, 273, 274, 276, 696, 697
Brenke, W. C. 4: 254, 692
Bressoud, D. M. 1: 193, 203, 225, 228, 719
Breuer, J. 2A: 58, 59, 241, 242, 595
Brezinski, C. 2A: 304, 595
Brézis, H. 1: 249, 719
Brezis, H. 3: 336, 697
Brieskorn, E. 2A: 267, 595

Brillhart, J. 4: 370, 692
Briot, Ch. 2A: 87, 130, 595
Brocot, A. 2A: 333, 595
Brodskiŭ, M. S. 4: 128, 692
Bros, J. 1: 539, 720
Brouncker, W. 2A: 282, 304
Brouwer, L. E. J. 1: 13, 486, 575, 701, 720; 2A: 164, 595
Browder, A. 2A: 157, 595; 4: 489, 692
Browder, F. 2A: 26
Brown, G. 1: 582, 720
Brown, J. L. 1: 720
Brown, J. R. 3: 65, 697
Brown, L. G. 4: 199, 692
Brown, R. 1: 326, 720
Brown, R. F. 1: 485, 720
Bruhat, F. 1: 513, 720
Bugeaud, Y. 2A: 304, 595
Bullen, P. S. 1: 388, 720
Burckel, R. B. 2A: 165, 323, 595
Bürgisser, P. 2A: 112, 595
Burkholder, D. L. 3: 25, 162, 697
Burkinshaw, O. 1: 269, 714
Burns, A. 2A: 48, 595
Burnside, W. 4: 443, 692
Busemann, H. 3: 48, 697
Butera, P. 3: 401, 693
Buttazzo, G. 1: 453, 720
Butzer, P. L. 1: 569, 575, 720; 2A: 443, 595

Calabi, E. 2A: 398, 593
Calderón, A.-P. 2A: 177, 595; 3: 36, 83, $276,387,542,601,614,697 ; 4$: 69, 688
Calkin, J. W. 3: 581, 697; 4: 152, 198, 568, 692
Callahan, J. J. 3: 17, 697
Calvin, C. 3: 387, 702
Campbell, J. E. 4: 628, 692
Campiti, M. 1: 83, 714
Candès, E. J. 3: 339, 698
Cantelli, F. P. 1: 644, 720, 721
Cantero, M. J. 4: 284, 692
Cantor, G. 1: 9, 13, 16, 47, 49, 50, 201, 228, 721; 2A: 404
Carathéodory, C. 1: $464,564,686,721$; 2A: 94, 117, 200, 238, 239, 314, $315,323,324,455,578,583,595$, 596; 4: 321, 692
Carbery, A. 3: 684, 698
Cardano, G. 2A: 4

Carey, A. L. 3: 387, 698
Carl, S. 1: 485, 721
Carleman, T. 1: 433, 721; 4: 160, 186, 192, 534, 692
Carlen, E. A. 3: $652,653,698$
Carleson, L. 1: 153, 721; 2A: 194, 596; 3: 172,$698 ; 4: 389,490,692$
Carmona, R. 1: 329, 721; 3: 294, 653, 698
Carroll, L. 1: 1, 721; 4: 430, 686, 692, 693
Cartan, É. 4: 446, 693
Cartan, H. 1: 48, 101, 350, 721; 2A: 57, $239,247,568,574,584,585,596 ; \mathbf{3}$: 274, 276, 698
Casanova, G. 3: 160
Casher, A. 4: 218, 687
Casorati, F. 2A: 128, 596
Cassels, J. W. S. 2A: 477, 596
Cataldi, P. 2A: 304
Cauchy, A-L. 1: 6, 26, 32, 47, 49, 112, $117,193,227,388,486,630,655$, 721,722 , 2A: 37, 39, 47, 49, 68, 86, 87, 100, 180, 214, 332, 457, 499, 569,$596 ; 4: 17,693$
Cavalieri, B. 1: 288, 722
Cayley, A. 1: 26, 722; 4: 17, 443, 693
Čech, E. 1: 101, 722; 4: 412, 693
Cellérier, Ch. 1: 156, 722
Chacon, R. V. 3: 86, 698
Chae, S. B. 1: 225, 228, 722
Champernowne, D. G. 3: 97, 698
Chandler, R. E. 4: 412, 693
Chandrasekharan, K. 1: 230, 574, 722; 2A: 477, 597
Chang, Y-C. 3: 684, 701
Chapman, R. 2A: 215, 597
Chattopadhyay, A. 4: 353, 693
Chavel, I. 4: 605, 693
Chebyshev, P. 2A: 305
Chebyshev, P. L. 1: 227, 433, 628, 644, $653,655,722 ; 4: 241,266,693$
Cheeger, J. 2A: 21, 597
Cheema, M. S. 2A: 535, 597
Chemin, J.-Y. 3: 585, 698
Chen, J. 2A: 152, 597
Cheney, E. W. 4: 267, 693
Chernoff, P. R. 1: 102, 722; 4: 629, 693
Chevalley, C. 1: 48, 102, 722
Chihara, T. S. 4: 231, 693
Cho, Y. 3: 172, 698

Cholesky, A-L. 1: 135
Choquet, G. 1: $464,465,566,722,723$; 3: 274, 698
Choquet-Brohat, Y. 2A: 12, 597
Chousionis, V. 3: 603, 698
Chow, Y. S. 1: 617, 723
Christ, M. 3: 172, 603, 684, 698, 699
Christensen, O. 3: 401, 699
Christiansen, J. 4: 267, 693
Christoffel, E. B. 2A: 351, 597; 3: 291, 699
Chung, K. L. 1: 327, 617, 674, 723; 3: 155, 699
Ciesielski, K. 1: 14, 327, 723
Cima, J. A. 2A: 188, 597; 3: 489, 699
Clarke, F. H. 3: 652, 691
Clarkson, J. A. 1: 388, 444, 723
Clausen, M. 2A: 112, 595
Clebsch, A. 2A: 518, 597
Coddington, E. A. 4: 569, 693
Cohen, P. J. 1: 13, 723
Cohn, D. L. 1: 230, 723
Coifman, R. R. 3: 433, 534, 535, 614, 699, 719, 720
Collatz, L. 1: 675, 723
Conlon, J. G. 3: 669, 699
Constantinescu, C. 3: 177, 699; 4: 44, 314, 694
Constantinescu, T. 2A: 305, 593, 597
Conway, J. B. 2A: 323, 324, 468, 579, 597
Cooley, J. W. 1: 155, 723
Copeland, A. H. 3: 97, 699
Copson, E. T. 2A: 214, 597
Cordes, H. O. 3: 367, 614, 699; 4: 534, 694
Córdoba, A. 1: 539, 723; 3: 48, 685, 699
Corduneanu, C. 4: 419, 694
Cornea, A. 3: 177, 699
Cornu, A. 2A: 214
Cotes, R. 2A: 59, 597
Cotlar, M. 3: 83, 542, 613, 699
Coulomb, J. 1: 48
Courant, R. 1: 606, 723; 2A: 57, 323, 597,$605 ; \mathbf{3}: 17,699 ; 4: 109,118$, 603, 694
Cowling, M. 1: 563, 723
Cox, D. A. 2A: 533,597
Craig, W. 2A: 377, 597; 3: 291, 295, 297, 699
Cramér, H. 1: 654, 656, 666, 723

Cramer, G. 4: 17, 694
Crépel, P. 3: 160, 699
Croft, H. T. 3: 49, 50, 700
Cronin, J. 1: 485, 487, 724
Crowdy, D. 2A: 351, 597
Crum, M. M. 4: 129, 694
Crummett, W. P. 1: 150, 762
Császár, A. 4: 255, 694
Curtis, C. W. 4: 443, 446, 694
Cwikel, M. 3: 534, 669, 700; 4: 161, 694
Cycon, H. L. 3: 294, 700; 4: 217, 218, 538, 694
d'Alembert, J. 2A: 37, 87, 597
da Silva Dias, C. 2A: 230, 598
Dacorogna, B. 1: 453, 724
Dahlberg, B. E. J. 3: 274, 700
Dajani, K. 3: 123, 700
d'Alembert, J. 1: 150, 606, 724
Dalzell, D. P. 1: 724
Damanik, D. 3: 293, 700
Damelin, S. B. 3: 401, 700
Daniell, P. J. 1: 229, 269, 724
Darboux, J-G. 1: 74; 2A: 165, 438, 574, 598; 3: 291, 700
Daston, L. 1: 628, 724
Daubechies, I. 3: 401, 403, 433, 434, 700
Dauben, J. 1: 16, 724
David, G. 3: 602, 700
Davidson, K. 4: 314, 695
Davies, E. B. 3: 336, 622, 650, 653, 700, 701; 4: 323, 601, 632, 695
Davis, B. 2A: 556, 598; 3: 162, 514, 693, 701
Davis, C. 4: 218, 695
Davis, K. M. 3: 684, 701
Davis, P. J. 2A: 405, 421, 598
Day, M. M. 1: 444, 724
de Boor, C. 4: 695
de Branges, L. 2A: 89; 4: 353, 666, 695
de Bruijn, N. G. 3: 99, 701
de Guzmán, M. 3: 25, 701
de la Vallée Poussin, Ch. J. 1: 82, 161, 162, 725; 2A: 469; 3: 64, 701; 4: 267, 695
de Leeuw, K. 3: 472, 701; 4: 490, 691
de Moivre, A. 2A: 437, 598
de Moor, B. 4: 135, 712
de Snoo, H. S. V. 4: 601, 666, 702
de Wolf, R. 3: 654, 693
Deans, S. R. 1: 548, 724
de Branges, L. 1: 466, 724

Dedekind, R. 1: 9, 724; 2A: 315
De Giorgi, E. 1: 453, 724
Deift, P. A. 1: $630,715,724 ; 2 A: 152$;
4: 57, 218, 695
de Jonge, E. 1: 269, 724
Del Pino, M. 3: 582, 701
del Rio, R. 1: 702, 725; 3: 514, 701; 4: 344, 695
Dellacherie, C. 3: 161, 701
Delort, J.-M. 1: 539, 725
Delsarte, J. 1: 48
Demange, B. 3: 337, 695
Demengel, F. 3: 583, 701
Demengel, G. 3: 583, 701
de Moivre, A. 1: 628, 653, 654, 656, 725
de Monvel, B. 1: 514
Denisov, S. A. 3: 293, 701
Denjoy, A. 1: 230, 725; 2A: 152, 194, 598; 3: 99, 701
Denker, J. 3: 373, 701
Deny, J. 3: 177, 274, 276, 694, 698, 701; 4: 627, 690, 695
Deprettere, E. F. 4: 135, 695
de Rham, G. 1: $117,164,512,513,538$, 725; 2A: 26, 598
Derriennic, Y. 3: 145, 702
Desargues, G. 2A: 282, 598
Descartes, R. 1: 26, 725
Deuschel, J-D. 3: 652, 654, 702
DeVore, R. A. 1: 84, 725; 3: 534, 694
DeWitt-Morette, C. 2A: 12, 597
Diaconis, P. 3: 653, 702; 4: 443, 695
Diamond, F. 2A: 550, 598
DiBenedetto, E. 2A: 12, 598; 3: 50, 702
Dienes, P. 2A: 57, 598
Dieudonné, J. 1: 48, 350, 443, 458, 487, 501, 711, 712, 725; 2A: 239; 4: 217, 695
Dillard-Bleick, M. 2A: 12, 597
Dineen, S. 2A: 585, 598
Dinghas, A. 2A: 57, 598
Dini, U. 1: $138,152,202,226,228,231$, 486, 725
Dirac, P. A. M. 1: 725
Dirichlet, P. G. 1: 68, 140, 150, 151, 228,$726 ; \mathbf{2 A}: 87,304,315,598 ; \mathbf{3}$: 273
Ditkin, V. A. 4: 504, 695
Ditzian, Z. 1: 84, 726
Dixmier, J. 4: 314, 695
Dixon, A. C. 4: 41, 56, 695

Dixon, J. D. 2A: 143, 598
Dobrushin, R. 1: 629
Doeblin, W. 1: 658, 726; 3: 124, 702
Doetsch, G. 2A: 177, 598
Dolbeault, J. 3: 582, 701
Dollard, J. D. 1: 607, 726
Dominici, D. 2A: 437, 598
Donaldson, S. 2A: 589, 599
Donoghue, W. F. 4: 128, 343, 353, 606, 688, 696
Donoho, D. 3: 339, 702
Donsker, M. D. 1: 328, 726
Doob, J. L. 1: 230, 327, 656, 726; 3: 84, $160,161,165,177,276,702$
Doran, R. S. 4: 428, 696
Douglas, R. G. 4: 199, 218, 692, 696
Driscoll, T. A. 2A: 350, 351, 599
Du Val, P. 2A: 477, 599
du Bois-Reymond, P. 1: 14, 49, 152, 201, 726
Dudley, R. M. 1: 239, 313, 617, 726
Duffin, R. J. 3: 401, 403, 702
Duflo, M. 3: 387, 702
Dufresnoy, J. 4: 129, 696
Dugac, P. 1: 74, 726
Dugundji, J. 1: 485, 731
Duistermaat, J. J. 3: 350, 367, 702; 4: $255,628,696$
Dummit, D. S. 2A: 8, 599
Duncan, J. 4: 357, 691
Dunford, N. 1: 275, 487, 726; 2A: 88, 599; 3: 86, 702; 4: 69, 186, 192, 568, 569, 696
Dunham, W. 2A: 88, 395, 599
Dunnington, G. W. 2A: 29, 599
Duoandikoetxea, J. 1: 149, 726
Duran, A. 4: 255, 696
Duren, P. 3: 439, 464, 513, 702
Durrett, R. 1: 327, 617, 726; 3: 162, 163, 702
Dvir, Z. 3: 685, 702
Dvoretzky, A. 1: 328, 726
Dym, H. 1: 126, 537, 574, 726, 727; 3: 337, 702
Dynkin, E. B. 1: 629, 674, 727
Dzhuraev, A. 2A: 585, 593
Eastham, M. S. P. 4: 569, 696
Ebbinghaus, H.-D. 2A: 397, 599
Eberlein, W. F. 2A: 397, 477, 479, 536, 592, 599
Ebin, D. G. 2A: 21, 597

Eckart, C. 4: 135, 696
Edgar, G. 1: 700, 727
Edmunds, D. E. 4: 198, 602, 696
Effros, E. G. 4: 218, 696
Eggleston, H. G. 1: 387, 727
Egorov, D. 1: 226, 249, 727
Egorov, Y. V. 3: 367, 368, 703
Ehrenfest, P. 3: 80, 703
Ehrenfest, T. 3: 80, 703
Ehrenpreis, L. 1: 607, 727; 2A: 584, 599
Ehresmann, C. 1: 48
Eidelheit, M. 2A: 405, 599
Eilenberg, S. 2A: 26, 599
Einsiedler, M. 3: 79, 123, 126, 703
Einstein, A. 1: 326, 606, 727; 2A: 266
Eisenstein, G. 2A: 315, 517, 599
Ekholm, T. 3: 669, 703
Emerson, R. W. 1: 1, 727; 2A: 1, 599; 3: 1, 703; 4: 1, 697
Émery, M. 3: 652, 653, 692, 703
Enderton, H. B. 1: 14, 727
Enflo, P. 1: 488, 727; 4: 100, 697
Engel, F. 4: 628, 710
Enss, V. 4: 321, 697
Epple, M. 1: 49, 727
Epstein, B. 2A: 468, 603
Epstein, D. B. A. 2A: 324,599
Erdős, L. 4: 218, 697
Erdos, J. A. 4: 128, 187, 697
Erdős, P. 1: 153, 328, 646, 726, 727; 3: 97, 291, 292, 699, 703
Erlang, A. K. 1: 666, 727
Ermenko, A. 2A: 574, 578, 599, 600; 3: 218, 703
Eskin, G. I. 3: 368, 703
Esseen, C. G. 1: 656, 727
Essén, M. 3: 177, 488, 691, 703
Estermann, T. 2A: 101, 600
Euclid 2A: 306, 600
Euler, L. 1: 26, 47, 150, 727, 728; 2A: $4,59,87,214,215,222,255,282$, 304, 393-395, 419, 438, 517, 533, 600
Evans, G. C. 3: 273, 274, 703
Evans, G. W. 1: 728
Evans, L. C. 1: 453, 606, 700, 728
Evans, W. D. 4: 198, 602, 696
Ewald, P. 1: 567, 728
Ewing, G. M. 1: 728
Exner, P. 4: 630, 697

Faber, G. 2A: 58,$600 ;$ 3: 291, $703 ; 4$: 268, 697
Fabes, E. B. 3: 653, 704
Fabian, M. 1: 357, 444, 728
Fabry, E. 2A: 58, 600
Fagnano, C. G. 2A: 516, 600
Falconer, K. 1: 156, 700, 702, 728
Fan, K. 1: 630, 728; 4: 135, 697
Farey, J. 2A: 332, 601
Faris, W. G. 3: 654, 704; 4: 601, 632, 697
Farkas, H. M. 2A: 267, 533, 534, 589, 601, 615; 3: 316, 704
Fatou, P. 1: 161, 226, 249, 728; 2A: 180; 3: 59, 704
Favard, J. 4: 241, 697
Federbush, P. 3: 651, 704
Federer, H. 1: 700, 728
Fefferman, C. 1: 539, 723; 3: 48, 172, $336,498,514,534,603,669,682$, 684, 685, 704; 4: 228, 697
Fefferman, R. 3: 48, 699
Feichtinger, H. G. 3: 390, 704
Fejér, L. 1: 82, 139, 142, 152, 153, 728; 2A: 315, 455, 596; 3: 434, 704; 4: 285, 321, 697
Fekete, M. 4: 268, 697
Feller, W. 1: 617, 656, 657, 728; 3: 48, 697
Fermat, P. 1: 628; 2A: 518
Fermi, E. 1: 453, 728
Ferreira, P. J. S. G. 1: 569, 720
Feynman, R. P. 1: 588, 728; 4: 27, 630, 697
Figalli, A. 3: 654, 704
Figotin, A. 3: 294, 723
Fillmore, P. A. 4: 199, 692
Finch, S. R. 2A: 579, 601
Findley, E. 3: 292, 704
Fischer, E. 1: 150, 153, 226, 728; 4: 109, 604, 697
Fischer, G. 2A: 267, 601
Fischer, H. 1: 654, 728
Fisher, S. D. 2A: 378, 601
Flandrin, P. 3: 433, 704
Fock, V. 1: 538, 729
Foias, C. 4: 322, 722
Fokas, A. S. 2A: 351, 591
Folland, G. B. 1: 149, 538, 606, 729; 3: $333,338,342,704$
Fomenko, A. T. 2A: 479, 594

Fomin, S. 1: 629
Foote, R. M. 2A: 8, 599
Ford, J. W. M. 4: 83, 697
Ford, L. R. 2A: 282, 289, 304, 333, 335, 601; 3: 127, 705
Formin, S. V. 4: 603, 707
Forster, O. 2A: 266, 267, 589, 601
Fourier, J. 1: 150, 151, 546, 607, 729; 2A: 499
Fournier, J. J. F. 1: 563, 729; 3: 583, 691
Fox, L. 4: 266, 697
Fröhlich, J. 1: 608, 730
Fraenkel, A. A. 1: 13, 729
Frank, R. L. 3: 564, 669, 670, 703, 705
Franks, J. 1: 230, 729
Fréchet, M. 1: 6, 47, 49, 60, 61, 74, 75, $118,125,229,363-365,501,630$, 729; 2A: 470; 3: 40, 705
Fredholm, I. 1: 47, 729; 2A: 601; 4: 41, 99, 182, 697, 698
Fremlin, D. H. 1: 269, 729
Fresnel, A. 2A: 214
Freudenthal, H. 1: 269, 485, 487, 729; 4: 600,698
Freund, G. 3: 292, 705
Friedman, A. 1: 606, 730
Friedrichs, K. O. 1: 512; 3: 367, 581, 705; 4: 27, 600, 698
Frink, O. 1: 102, 722; 4: 254, 603, 698, 708
Fristedt, B. 1: 313, 617, 730; 3: 162, 705
Fritzsche, K. 2A: 585, 602
Frobenius, F. G. 2A: 404, 568
Frobenius, G. 1: 675, 730; 4: 18, 387, 444, 445, 698
Froese, R. G. 3: 294, 700; 4: 217, 218, 538, 694
Frostman, O. 3: $273,274,276,705$
Fubini, G. 1: 288, 730
Fuchs, L. 2A: 568
Fuglede, B. 2A: 424, 601
Fukamiya, M. 4: 428, 698
Fukushima, M. 3: 177, 276, 705
Fulton, W. 2A: 23, 601; 4: 443, 698
Füredi, Z. 3: 50, 705
Furi, M. 1: 485, 720
Furstenberg, H. 1: 51, 730; 3: 84, 123, $145,146,705,706$

Gabor, D. 3: 334, 386, 401, 706

Gagliardo, E. 3: 582, 681, 706
Gaier, D. 2A: 450, 609
Galois, É 2A: 499
Galton, F. 1: 648, 730
Gamelin, T. W. 2A: 157, 367,$601 ; \mathbf{3}$: 316, 706; 4: 389, 489, 490, 698
Gantmacher, F. R. 1: 675, 730; 2A: 85, 601
Garban, C. 3: 650, 706
Gardiner, S. J. 2A: 137, 601; 3: 177, 692
Gårding, L. 1: 513, 607, 715, 762; 2A: $167,173,400,601$
Gariepy, R. F. 1: 700, 728
Garling, D. J. H. 1: 387, 615, 730; 3: $161,166,547,601,650,706 ; 4$: 187, 698
Garnett, J. B. 2A: 378, 601; 3: 274, $439,534,706 ; 4: 389,490,698$
Garsia, A. M. 3: 49, 50, 83, 86, 91, 161, 706
Gateaux, R. 1: 365, 730
Gauss, C. F. 1: $26,567,628,653,730$; 2A: 20, 37, 87, 315, 419, 517, 533, 602; 3: 124, 197, 273, 706; 4: 17, 698
Gay, R. 2A: 469, 593
Gel'fand, I. M. 1: $341,513,538,548$, 629,$730 ; 3: 402,706 ; 4: 56,57,69$, $128,357,387,388,399,405,406$, $428,447,467,489,504,698,699$
Gençay, C. 3: 433, 706
Georgescu, V. 4: 321, 666, 688, 699
Geronimus, Ya. L. 2A: 306, 602; 4: 231, 282-284, 699
Gesztesy, F. 4: 87, 344, 352, 353, 602, 666, 689, 699
Getoor, R. K. 3: 177, 695
Getzler, E. 4: 217, 699
Gibbs, J. W. 1: 148, 156, 157, 387, 730
Gilbard, D. 1: 606, 731
Gilbarg, D. 3: 177, 276, 706
Gilbert, D. J. 4: 570, 699
Gilkey, P. B. 4: 217, 699
Gillman, L. 4: 412, 700
Gilmore, R. 3: 386, 706
Ginibre, J. 3: 683, 706
Giradello, L. 3: 386, 401, 693
Girondo, E. 2A: 589, 602
Glaisher, J. W. L. 2A: 536, 602
Glasner, E. 3: 99, 706

Glauber, R. J. 3: 385, 386, 707
Gleason, A. M. 4: 392, 490, 700
Glicksberg, I. 2A: 101, 602; 4: 490, 700
Glimm, J. 1: 329, 731; 3: 651, 654, 656, 707; 4: 428, 700
Gnedenko, B. V. 1: 658, 659, 731
Godement, R. 2A: 568, 602; 3: 386, 707; 4: 468, 504, 700
Goebel, K. 1: 485, 731
Goh'berg, I. C. 3: 603, 707; 4: 134, 152, $153,187,192,217,218,601,700$
Goldberg, M. 3: 683, 707
Goldberg, S. 4: 187, 700
Goldberger, M. L. 4: 683, 691
Goldstine, H. H. 1: 444, 731
Golub, G. H. 4: 135, 700
Gomez-Ullate, D. 4: 255, 700
Gonçalves, P. 1: 702, 713
González-Diez 2A: 589, 602
Gordon, A. 3: 296, 707
Gordon, A. Ya. 4: 344, 700
Gordon, C. 4: 605, 700
Górniewicz, L. 1: 485, 720
Gosset, W. S. 1: 666
Goursat, E. 1: 485, 486, 731; 2A: 68, 602
Gowers, W. T. 4: 44, 100, 700, 701
Grätzer, G. 1: 11, 731
Graev, M. I. 1: 513, 548, 730
Grafakos, L. 1: 149, 731; 3: 534, 535, 603, 682, 684, 707
Graham, L. 1: 249, 731
Graham, R. L. 2A: 333, 602
Gram, J. P. 1: 132, 134, 731
Granas, A. 1: 485, 731
Grassmann, H. 1: 9, 731
Grattan-Guiness, I. 1: 150, 372, 731
Grauert, H. 2A: 585, 602
Gray, J. 1: 37, 731; 2A: 36, 68, 117, $314,335,475,517,594,602$
Gray, L. 1: 313, 617, 730; 3: 162, 705
Green, B. 3: 683, 707
Green, G. 1: 606, 731; 2A: 315, 602; 3: 197, 273, 707
Greene, R. E. 2A: 156, 468, 602
Greenleaf, A. 3: 682, 707
Greenleaf, F. P. 1: 486, 731
Griffiths, P. A. 2A: $267,589,602$
Grimmett, G. 1: 617, 731
Gröchenig, K. 3: 403, 707
Groemer, H. 1: 167, 731, 732

Grolous, J. 1: 387, 732
Gronwall, T. H. 1: 732
Gross, L. 3: 650, 652-654, 656, 701, 707, 708
Grossmann, A. 3: 368, 386, 387, 401, 402, 692, 700, 708
Grosswald, E. 2A: 222, 615
Grothendieck, A. 1: 182, 413, 514, 732; 2A: 230, 602; 4: 144, 186, 701
Grubb, G. 4: 601, 602, 701
Grümm, H. R. 4: 153, 701
Grünbaum, F. A. 4: 255, 696, 701
Guckenheimer, J. 3: 99, 708
Gudermann, Chr. 2A: 440, 602
Guggenheimer, H. 2A: 21, 603
Guionnet, A. 3: 622, 650, 654, 708
Gundy, R. F. 3: 162, 697
Gunning, R. C. 2A: 585, 589, 603
Guo, B.-N. 2A: 447, 622
Gustafson, K. 4: 198, 701
Güttinger, P. 4: 27, 701
Gvishiani, A. D. 4: 217, 707
Haar, A. 1: 350, 732; 3: 434, 708; 4: 267, 701
Habala, P. 1: 357, 444, 728
Hacking, I. 1: 628, 732
Hadamard, J. 1: 75, 238, 487, 500, 501, $512,601,607,732 ; \mathbf{2 A}: 50,58,118$, $177,419,430,468-470,574,603 ; \mathbf{3}$: 437, 582, 708
Hahn, H. 1: $205,269,364,408,424$, 732; 4: 254, 313, 701
Hahn, L-S. 2A: 468, 603
Hahn, W. 4: 255, 701
Haine, L. 4: 255, 701
Hairer, E. 2A: 305, 603
Hájek, P. 1: 357, 444, 728
Hales, T. C. 2A: 164, 603
Hall, B. C. 4: 628, 701
Halmos, P. R. 1: 13, 211, 230, 257, 732; 3: 79, 517, 708; 4: 218, 299, 313, 314, 536, 701
Hamburger, H. 1: 433, 732; 4: 658, 701
Hamilton, W. R. 4: 17, 702
Hammersley, J. M. 3: 145, 708
Han, Q. 3: 177, 708
Hanche-Olsen, H. 2A: 75, 603
Hancock, H. 2A: 477, 536, 603
Handscomb, D. C. 4: 266, 711
Hankel, H. 1: 9, 202, 228, 732, 733
Hanner, O. 1: 388, 733

Hansen, W. 3: 177, 695
Hardy, G. H. 1: 156, 394, 569, 582, 645, 733 ; 2A: 12, 603; 3: 36, 46, 52, 98, $213,335,337,444,458,464,487$, $488,557,559,562,564,709 ; 4$: 367, 505, 506, 605, 702
Harish-Chandra 1: 513, 733
Harnack, A. 1: 228; 3: 198, 709
Haros, C. 2A: 332, 603
Haroske, D. 3: 583, 709
Harriot, T. 2A: 272
Harris, J. 2A: 267, 589, 602; 4: 443, 698
Hartman, P. 1: 645, 733; 3: 83, 536, 709
Hartogs, F. 2A: 583, 603; 3: 213, 709; 4: 489, 702
Hasselblatt, B. 3: 84, 713
Hassi, S. 4: 601, 666, 702
Hatch, D. 2A: 335, 604
Hatcher, A. 1: 487, 733; 2A: 23, 24, 26, $142,165,604$
Hausdorff, F. 1: 35, 47, 48, 50, 60, 61, $210,336,364,563,645,700,733 ; 4$: 628, 702
Havil, J. 2A: 420, 421, 604
Havin, V. 3: 333, 709
Havinson, S. Ya. 2A: 378, 604
Hawkins, T. 1: 225, 228, 733; 4: 443, 446, 702
Hayes, B. 2A: 333, 604
Hayman, W. K. 3: 177, 253, 709
Haynsworth, E. V. 4: 208, 702
Heaviside, O. 1: 512, 733
Hedlund, G. A. 3: 125, 709
Heikkilä, S. 1: 485, 721
Heil, C. 3: 401, 403, 434, 710; 4: 100, 702
Heilbronn, H. 2A: 152, 604
Heine, E. 1: 9, 68, 73, 201, 228, 733
Heins, M. 2A: 292, 604
Heinz, E. 4: 606, 703
Heisenberg, W. 3: 333, 710
Helemskii, A. Ya. 4: 44, 703
Helgason, S. 1: 548, 733
Hellegouarch, Y. 2A: 533, 604
Hellinger, E. 1: 408, 413, 433, 733, 734; 4: 299, 313, 703
Hellman, H. 4: 27, 703
Hellwig, G. 1: 606, 734
Helly, E. 1: 238, 363, 364, 408, 424-426, 447, 734
Helmer, O. 2A: 406, 604

Helms, L. L. 1: 453, 734; 3: 177, 710
Helson, H. 4: 489
Hempel, R. 4: 603, 703
Henderson, R. 1: 387, 734
Henrici, P. 2A: 57, 604
Hensley, D. 2A: 304, 604; 3: 123, 125, 710
Henstock, R. 1: 230, 734
Herbert, D. 3: 291, 710
Herbst, I. W. 3: 564, 710; 4: 572, 703
Herglotz, G. 1: 564, 565, 734; 2A: 239, 394, 604; 3: 463, 513, 710
Herival, J. 1: 151, 734
Hermes, H. 2A: 397, 599
Hermite, Ch. 1: 26, 137, 175, 193, 734; 2A: 227, 305, 400, 479, 499, 568, 574, 604
Hernández, E. 1: 519, 734; 3: 433, 710
Herz, C. 3: 684, 710
Hess, H. 4: 627, 628, 703
Hewitt, E. 1: 157, 734; 4: 443, 468, 504, 505, 703
Hewitt, R. E. 1: 157, 734
Hida, H. 2A: 550, 604
Higgins, J. R. 1: 568, 569, 720, 734
Hilbert, D. 1: 15, 17, 59, 117, 125, 371, 387, 447, 514, 606, 723, 734; 2A: 157, 238, 246, 266, 368, 604; 3: 273, 316, 487, 710; 4: 41, 42, 56, 99, 108, 118, 192, 299, 603, 694, 703
Hildebrandt, T. H. 4: 43, 703
Hilden, H. M. 4: 118
Hill, G. W. 4: 41, 703
Hille, E. 2A: 12, 157, 404, 605; 4: 99, 192, 703
Hirschman, I. I. 3: 335, 710
Hirzebruch, F. 2A: 397, 599
Hockman, M. 2A: 333, 605
Høegh-Krohn, R. 1: 290, 734; 3: 652, 729
Hoffman, K. 4: 357, 489, 703
Hölder, E. 1: 372, 387, 734
Hölder, O. 2A: 404, 419, 605
Hollenbeck, B. 3: 489, 710
Holmes, P. 3: 99, 708
Hopf, E. 3: 81-83, 89, 91, 125, 710
Hopf, H. 1: 48, 60, 106, 714; 2A: 20, 26, 605
Hörmander, L. 1: 513, 606, 608, 734, $735 ; \mathbf{2 A}: 400,585,601,605 ; \mathbf{3}$:
$213,350,366,367,370,603,613$,
$683,691,702,710,711 ; 4: 667,703$
Horn, A. 1: 394, 735
Horváth, J. 1: 443, 735; 3: 614, 711
Howard, P. 1: 13, 735
Howe, R. 3: 336, 368, 614, 711
Hrǔščev, S. V. 3: 514, 711
Hubbard, B. B. 3: 434, 711
Humphreys, J. E. 4: 443, 704
Hundertmark, D. 3: 669, 670, 711; 4: 603, 628, 683, 685, 704
Hunt, G. A. 3: 177, 276, 711
Hunt, R. A. 1: 153,$735 ; \mathbf{3 :} 172,556$, 711
Hunzicker, W. 4: 666, 704
Hurewicz, W. 2A: 26, 605
Hurwitz, A. 1: 167, 350, 735; 2A: 57, 246, 304, 404, 605
Husemoller, D. 2A: 477, 518, 605
Husimi, K. 3: 386, 712
Huxley, M. N. 4: 605, 704
Huygens, C. 1: 607, 628, 735
Hwang, I. L. 3: 614, 712
Iagolnitzer, D. 1: 539, 720
Ichinose, T. 4: 630, 704
Iftimovici, A. 4: 666, 699
Igusa, J. 2A: 534, 605
Ikehara, S. 4: 506, 704
Ince, E. L. 2A: 12, 605
Indrei, E. 3: 654, 712
Ingham, A. E. 2A: 214, 605; 4: 504, 513, 704
Ionescu Tulcea, A. 3: 161, 683, 712
Ionescu Tulcea, C. 3: 161, 712
Iosevich, A. 3: 682, 712
Iosifescu, M. 2A: 304, 605; 3: 123, 712
Isaacs, M. I. 4: 443, 704
Ishii, K. 3: 294, 712
Ismail, M. E. H. 1: 135, 735; 4: 231, 255, 704
Issac, R. 3: 161, 712
Istrăţescu, V. I. 1: 485, 735
Its, A. 4: 218, 695
Ivanov, V. I. 2A: 350, 605
Ivriĭ, V. Ja. 4: 604, 704
Iwamura, T. 4: 467, 726
Iwaniec, T. 2A: 128, 605
Izu, S. 3: 337, 339, 712
Jackson, D. 1: 81, 156, 163, 735; 4: 267, 704

Jacobi, C. G. 1: 567,$735 ; 2$ A: 87, 304, 305, 315, 419, 450, 477, 497-499, $517,533,534,550,605,606 ; 4: 17$, 241, 704, 705
Jaffe, A. 1: 329, 731; 3: 651, 654, 707
Jager, H. 3: 125, 696
James, G. 4: 443, 705
James, I. M. 1: 367, 735
Janson, S. 3: 653, 712
Janssen, A. J. E. M. 3: 402, 403, 700, 712
Jarchow, H. 1: 706, 735
Javrjan, V. A. 4: 344, 705
Jensen, A. 4: 534, 694
Jensen, J. L. 1: 387, 666, 735; 2A: 102, 450, 606
Jentzsch, R. 2A: 239, 606; 3: 654, 712
Jerison, M. 3: 161, 712; 4: 412, 700
Jessen, B. 3: 48, 712
Jiang, B. 1: 485, 720
Jitomirskaya, S. 1: 702, 725; 3: 294, 296, 514, 701, 712; 4: 344, 695
Johansson, K. 1: 630, 715
John, F. 1: 606, 608, 736; 3: 17, 534, 699, 712; 4: 603, 694
Johnson, B. E. 4: 388, 705
Johnson, W. B. 1: 357, 736
Jonas, P. 4: 353, 705
Jones, G. A. 2A: 281, 333, 606
Jones, P. W. 4: 389, 705
Jones, R. 3: 291, 710
Jones, R. L. 3: 84, 713
Jordan, C. 1: 26, 50, 74, 152, 193, 269, 318, 736; 2A: 87, 164, 606; 4: 135, 603, 705
Jordan, P. 1: 113, 117, 736
Jorgensen, P. 3: 433, 696
Joricke, B. 3: 333, 709
Joseph, A. 2A: 306, 606
Jost, J. 1: 453, 606, 736; 2A: 21, 589, 606
Jost, R. 1: 513, 736; 2A: 195, 606
Joukowski, N. 2A: 350, 606
Journé, J-L. 3: 602, 700
Julia, G. 2A: 573, 574, 606
Junek, H. 1: 443, 736
Kérchy, L. 4: 322, 722
Kac, I. 4: 570, 705
Kac, M. 1: 328, 736; 3: 85, 713; 4: 504, $605,630,705$
Kadec, M. Г̆ 3: 406, 713

Kadison, R. V. 1: 92, 93, 736; 4: 128, 314, 428, 700, 705, 706
Kahan, W. 4: 135, 700
Kahane, J.-P. 1: 153, 156, 736; 2A: 58, 606; 3: 437, 713; 4: 392, 706
Kahn, J. 3: 652, 654, 713
Kaiser, G. 3: 433, 713
Kakeya, S. 3: 684, 713
Kakutani, S. 1: 89, 92, 211, 238, 298, 328, 444, 447, 486, 608, 726, 736, 737; 3: 83, 734; 4: 43, 706
Kalai, G. 3: 652, 654, 713
Kalf, H. 4: 569, $627,696,706$
Kalikow, S. 3: 79, 84, 97, 713
Kalisch, G. K. 4: 129, 706
Kallenberg, O. 1: 617, 737
Kalton, N. J. 1: 357, 365, 444, 490, 713, 716, 737
Kamae, T. 3: 145, 713
Kamran, N. 4: 255, 700
Kaniuth, E. 4: 357, 389, 706
Kannai, Y. 1: 487, 737
Kannappan, Pl. 1: 118, 737
Kantor, J-M. 1: 249, 731
Kaplansky, I. 4: 314, 406, 706
Karamata, J. 3: 689, 713; 4: 506, 706
Karatzas, I. 1: 327, 737; 3: 161, 713
Karunakaran, V. 2A: 214, 606
Kasner, E. 2A: 38, 606
Kato, T. 2A: 131, 606; 3: 337, 614, 713; 4: 27, 70, 217, 343, 352, 353, 536, 537, 548, 600, 601, 627, 629, 706, 707
Katok, A. 3: 84, 713
Katok, S. 2A: 335, 606; 3: 127, 713
Katz, N. H. 3: 685, 696, 713
Katznelson, Y. 1: 149, 153, 737; 3: 145 , 439, 713; 4: 357, 367, 369, 707
Kaufman, R. 3: 84, 713
Kawohl, B. 3: 36, 713
Keane, M. 3: 83, 123, 124, 145, 714
Kechris, A. S. 1: 313, 737
Kečkić, J. D. 2A: 214, 611
Keel, M. 3: 683, 714
Keller, W. 3: 433, 714
Kelley, J. L. 1: 48, 98, 102, 106, 367, 464, 737; 4: 428, 707
Kellogg, O. D. 3: 177, 273, 274, 714
Kelton, N. J. 4: 218, 707
Kelvin, Lord 2A: 17, 315; 3: 196, 273
Kemeny, J. G. 1: 674, 737

Kemp, T. 3: 653, 714
Kennard, E. H. 3: 334, 714
Kennedy, P. B. 3: 177, 253, 709
Kerber, A. 4: 443, 705
Kesavan, S. 3: 36, 714
Kesten, H. 3: 145, 706
Khinchin, A. Ya. 1: $227,628,645,658$, 737; 2A: 304, 606; 3: 83, 90, 123, 124, 714
Khoshnevisan, D. 1: 617, 737
Khrushchev, S. 2A: 305, 306, 607
Killing, W. 2A: 404
Killip, R. 3: 293, 700; 4: 284, 707
Kim, S-h. 2A: 333, 607
King, J. L. 3: 99, 714
King, R. B. 2A: 479, 607
Kingman, J. F. C. 3: 145, 714
Kirchberger, P. 4: 266, 707
Kirchoff, G. R. 1: 607, 737
Kirillov, A., Jr. 4: 217, 628, 707
Kirk, W. A. 1: 485, 731, 737
Kirsch, W. 3: 294, 700; 4: 217, 218, 538, 694
Kiselev, A. 1: 703, 737; 3: 172, 698, 699, 714; 4: 666, 707
Klauder, J. R. 3: 385, 387, 401, 692, 693, 714
Klaus, M. 4: 683, 707
Klee, V. L. 1: 458, 737, 738
Klein, F. 2A: 23, 266, 272, 282, 283, 292, 368, 404, 476, 480, 550, 568, 607
Knapp, A. W. 2A: 477, 607; 3: 613, 714; 4: 443, 628, 707
Knaster, B. 1: 50, 408, 738
Knopp, K. 2A: 12, 420, 607; 3: 125, 714
Knörrer, H. 2A: 267, 595
Knuth, D. E. 2A: 333, 602
Kobayashi, S. 2A: 21, 607
Kober, H. 2A: 350, 608
Koblitz, N. 2A: 477, 550, 608
Koch, H. 2A: 368, 608
Kodaira, K. 1: 211, 737
Kodama, L. K. 4: 490, 707
Koebe, P. 2A: 238, 314, 367, 368, 608; 3: $197,316,715$
Koh, E. 3: 172, 698
Kohn, J. J. 3: 367, 715
Koksharov, R. 4: 707
Kolk, J. A. C. 2A: 398, 593; 4: 628, 696

Kolmogorov, A. N. 1: $61,126,153,227$, 298, 364, 627-629, 645, 658, 659, 674, 731, 738; 3: 35, 65, 79, 162, 167, 463, 488, 715; 4: 228, 388, 603, 699, 707
Kondrachov, V. I. 3: 582, 715
Kondratiev, Yu. 1: 313, 713
König, H. 1: 608, 738; 4: 187, 708
Koopman, B. O. 3: 79-82, 125, 695, 715
Koosis, P. 3: 439, 513, 534, 715; 4: 389, 708
Koplienko, L. S. 4: 353, 708
Koralov, L. B. 1: 617, 738
Korevaar, J. 4: 506, 708
Körner, T. W. 1: 107, 149, 151, 355, 409, 738
Korovkin, P. P. 1: 83, 738; 4: 267, 708
Koshmanenko, Y. D. 4: 666, 708
Kotani, S. 3: 296, 715
Kotelnikov, V. A. 1: 567, 739
Köthe, G. 1: 443, 706, 711, 739; 2A: 230, 608
Kovalevskaya, S. 2A: 404
Kowa, S. T. 4: 17, 708
Kozhan, R. 2A: 456, 608
Kozitsky, Yu. 1: 313, 713
Kra, I. 2A: 267, $533,589,601 ;$ 3: 316, 704
Kraaikamp, C. 2A: 304, 605; 3: 123, 700, 712
Krall, H. L. 4: 254, 708
Krantz, S. G. 1: 486, 700, 739; 2A: 156, $323,362,468,585,602,608 ;$ 3: 47, 715
Krasnosel'skiĭ, M. 1: 388, 739; 3: 36, 715
Krasovsky, I. 4: 218, 695
Kreicherbauer, T. 1: 724
Krein, M. G. 1: 92, 126, 433-435, 444, $464,465,713,739 ; 4: 134,152$, $153,192,218,343,353,467,468$, 600, 601, 658, 687, 700, 708
Krein, S. G. 1: 89, 92, 739; 3: 556, 715
Krengel, U. 3: 79, 145, 715
Kronecker, L. 1: 13, 15, 487, 739; 2A: 58; 3: 98, 715
Krupnik, N. 3: 603, 707; 4: 187, 700
Kubrusly, C. S. 1: 230, 739
Kufner, A. 3: 336, 557, 715, 722
Kühnel, W. 2A: 21, 608
Kuipers, L. 3: 123, 715

Kumano-go, H. 3: 367, 716
Kunen, K. 1: 14, 739
Kunugi, K. 2A: 152, 608
Kunze, R. A. 1: 563, 739
Kurasov, P. 4: 666, 687, 708
Kuratowski, K. 1: 13, 48, 50, 60, 313, 407, 408, 738-740
Kuroda, S. T. 4: 353, 534, 600, 666, 694, 707, 708
Kurzweil, J. 1: 230, 740
Kuttler, K. 3: 50, 716
Kuzmin, R. 3: 124, 716
Kythe, P. K. 2A: 350, 608
Łaba, L. 3: 685, 716
Lacey, M. 3: 172, 716
Lacroix, J. 3: 294, 698
Laczkovich, M. 2A: 305, 608
Lagrange, J.-L. 1: 26, 150, 486, 740; 2A: 57; 3: 273; 4: 17, 708
Laguerre, E. N. 2A: 469, 474, 608
Lakey, J. 3: 337, 339, 712
Lalesco, T. 4: 163, 709
Lam, T. Y. 4: 446, 709
Lambert, J. H. 2A: 305, 608
Lamson, K. W. 1: 364, 740
Landau, E. 1: 9, 82, 162, 163, 740; 2A: $12,63,118,128,238,450,468,534$, 577-579, 594, 596, 608, 609; 3: 557, 716; 4: 513, 605, 709
Landau, H. J. 3: 337, 338, 716
Landkof, N. S. 1: 453, 740; 2A: 324, 609; 3: 177, 276, 716
Lang, A. 1: 660
Lang, S. 1: 350, 351, 740; 2A: 8, 12, 477, 609
Lapidus, M. L. 4: 630, 709
Laplace, P.-S. 1: 150, 606, 628, 653, 654,$740 ; 3: 124,249,273,716 ; 4$: 17, 709
Laptev, A. 3: 340, 669, 670, 705, 711, 716
Larsen, R. 4: 357, 709
Last, Y. 1: 702, 703, 725, 737, 740; 2A: 564, 592; 3: 292, 514, 692, 701, 716; 4: 666, 709
Laura, P. A. A. 2A: 350,617
Lavrentiev, M. A. 4: 489, 709
Lawler, G. F. 1: 327, 740
Lax, P. D. 1: 185, 186, 225, 740; 3: 367, 705; 4: 217, 600, 709
Lay, S. R. 1: 387, 740

Le Cam, L. 1: 654, 657, 741
Lebesgue, H. 1: 74, 82, 204, 229, 249, $257,318,408,546,701,740,741 ; 3$: 59, 231, 273, 716, 717; 4: 256, 489, 709
Lebowitz, A. 2A: 477, 615
Lee, S. 3: 172, 682, 698, 717
Lee, T. D. 2A: 239, 240, 609
Legendre, A.-M. 2A: 304, 307, 419, 498, 517, 609; 3: 249, 273, 717
Leibniz, G. W. 4: 17, 709
Leibowitz, G. M. 2A: 157, 609; 4: 489, 709
Leighton, R. B. 1: 588, 728
Leinfelder, H. 4: 627, 709
Lemarié, P. G. 3: 434, 717
Lemmermeyer, F. 2A: 479, 609
Lenard, A. 3: 344, 717
Lennes, N. J. 1: 50, 741
Lenz, D. 1: 411, 741
Leoni, G. 2A: 165, 609; 3: 583, 717
Leray, J. 1: 487, 741; 2A: 568
Lerch, M. 1: 82, 741
Lesky, P. 4: 255, 709
Lévy Véhel, J. 1: 702
Levi, B. 1: 249, 741
Levin, D. 3: 669, 717
Levin, E. 3: 292, 717
Levinson, N. 4: 513, 569, 693, 709
Levitan, B. M. 4: 419, 569, 710
Lévy, P. 1: 327, 628, 654-659, 741, 742; 2A: 470; 3: 124, 162, 717; 4: 388, 710
Lévy Véhel, J. 1: 713
Lewis, J. L. 2A: 574, 600; 3: 218, 703, 717
Lewy, H. 1: 608, 742
Li, B. R. 4: 314, 710
Li, P. 3: 669, 717
Li-Jost, X. 1: 453, 736
Liao, M. 1: 659, 742
Lidskii, V. B. 4: 186, 710
Lie, S. 2A: 404; 4: 628, 710
Lieb, E. H. 1: 249, 275, 394, 454, 563, 719, 742; 3: $36,275,386,563,564$, $653,669,691,696,698,705,711$, 717, 718; 4: 683, 710
Lifshitz, I. M. 4: 353, 710
Liggett, T. M. 1: 327, 742; 3: 145, 161, 718
Light, W. 4: 267, 693

Lin, F. 1: 700, 742; 3: 177, 708
Lindeberg, J. W. 1: 654, 656, 742
Lindelöf, E. 1: 52, 60, 74, 485, 742; 2A: $12,172,173,177,214,239,609,613$
Lindenstrauss, J. 1: 357, 444, 716, 736, 742; 4: 43, 710
Lindley, D. 3: 250, 718
Linial, N. 3: 652, 654, 713
Lions, J.-L. 1: 514; 2A: 177, 609; 3: 556,$718 ; 4: 129,600,710$
Liouville, J. 2A: 87, 497, 610; 4: 109, 721
Littlewood, J. E. 1: 154, 249, 394, 582, $645,733,742 ; \mathbf{2 A : 5 6 2 ; ~ 3 : ~ 3 6 , ~ 4 6 , ~}$ $52,98,213,458,464,488,557,562$, $564,603,709,718 ; 4: 367,506$, 702, 710
Livio, M. 2A: 499, 610
Lizorkin, P. I. 3: 583, 718
Loeb, P. A. 3: 50, 705
Loève, M. 1: 617, 655, 659, 742
Loewner, K. 4: 606, 710
Löfström, J. 3: 556, 583, 694
Lohwater, A. J. 2A: 578, 610
Łojasiewicz, S. 1: 608, 743
Lomonosov, V. I. 1: 488, 743; 4: 117, 118, 710
Loomann, H. 2A: 68, 610
Loomis, L. H. 1: 350, 565, 743; 2A: 12, 17, 610; 3: 513, 718; 4: 468, 504, 710
López Safont, F. 3: 556, 718
Lorch, E. R. 1: 425, 743; 4: 69, 313, 710
Lorentz, G. G. 1: 83, 84, 490, 725, 743; 3: 36, 37, 556, 718
Lorentz, H. A. 1: 630; 4: 603, 710
Loss, M. 1: 275, 742; 3: 36, 275, 564, 717
Loupias, G. 3: 368, 708
Low, F. E. 3: 402, 718
Löwig, H. 1: 117, 425, 743
Lu, G. 3: 682, 712
Lubinsky, D. S. 2A: 564, 610; 3: 292, 717, 718
Lucretius 1: 326, 743
Luecking, D. H. 2A: 229, 230, 233, 405, 610
Lumer, G. 4: 489
Lusin, N. 1: 226, 743
Luttinger, J. M. 1: 394, 719; 3: 563, 696

Lützen, J. 1: 513, 743; 2A: 87, 499, 610
Luxemburg, W. A. J. 1: 269, 388, 743
Lyapunov, A. M. 1: 628, 653, 655, 743
Lyons, R. 1: 582, 743
Lyubarskii, Y. I. 3: 401, 718

Mac Lane, S. 1: 562, 744
Mackey, G. W. 1: 443, 744; 4: 314, 443, 711
Maclaurin, C. 2A: 438, 610; 4: 17, 711
MacRobert, T. M. 3: 177, 718
Maggi, F. 3: 654, 704
Makarov, N. G. 3: 274, 718, 719; 4: 344, 695
Malamud, M. 4: 87, 699
Malgrange, B. 1: 514, 607, 744
Maligranda, L. 1: 372, 388, 744; 3: 336, 557, 715
Mallat, S. 3: 433, 434, 719
Malliavin, P. 1: 230, 744
Mandelbrojt, S. 1: 48
Mandelbrot, B. B. 1: 679, 700, 744
Mandelkern, M. 1: 62, 744
Manheim, J. H. 1: 35, 744
Mansuy, R. 1: 327, 744; 3: 160, 719
Mantoiu, M. 4: 666, 711
Marcellán, F. 4: 255, 711
Marcinkiewicz, J. 3: 48, 603, 712, 719
Marcon, D. 3: 654, 712
Marcus, M. 3: 336, 697
Markov, A. 1: 81, 227, 238, 433, 486, $628,653,655,674,744 ; \mathbf{2 A}: 305 ; 4$: 241, 267, 711
Marks, R. J., II 1: 568, 744
Markus, A. S. 1: 394, 744
Markushevich, A. I. 2A: 323, 502, 517, 574, 610
Marshall, A. W. 1: 394, 744
Marshall, D. E. 3: 274, 706; 4: 389, 705
Martínez-Finkelshtein, A. 1: 453, 745
Martin, A. 4: 605, 711
Martin, G. 2A: 128, 605
Martin, J. 1: 630, 718
Martin, R. S. 3: 276, 719
Martinelli, E. 2A: 584, 610
Marty, F. 2A: 239, 252, 610
Mascheroni, L. 2A: 420
Maslov, V. P. 3: 368, 719
Mason, J. C. 4: 266, 711
Masters, W. 1: 329, 721
Mather, J. N. 2A: 324, 610

Matheson, A. L. 2A: 188, 597; 3: 489, 699
Mattila, P. 1: 700, 745
Maurey, B. 1: 514; 4: 44, 100, 700, 701
Maz'ya, V. 2A: 470, 610; 3: 583, 719; 4: $228,603,711$
Mazo, R. M. 1: 327, 745
Mazur, S. 1: 357, 388, 458, 501, 716, $745 ; 4$: 357, 387, 711
Mazurkiewicz, S. 1: 205, 745
McCarthy, J. 1: 165, 745
McCutcheon, R. 3: 79, 97, 713
McKean, H. P. 1: 327, 537, 574, 727, 745; 2A: 477, 610; 3: 337, 702
McLauglin, K. T. R. 1: 724
Medvedev, F. A. 1: 155, 745
Meehan, M. 1: 485, 713
Megginson, R. E. 1: 444, 745; 4: 100, 711
Mehrtens, H. 1: 269, 745
Melas, A. D. 3: 49, 719
Mellin, H. 1: 548
Melnikov, A. 2A: 306, 606
Menchoff, D. 2A: 68, 610
Menger, K. 1: 701, 745
Menshov, D. 3: 172, 719
Meray, C. 1: 9, 745
Mercer, J. 4: 182, 711
Mergelyan, S. N. 2A: 156, 610; 4: 489, 711
Meyer, P.-A. 1: 465, 723; 3: 161, 177, 276, 701, 719
Meyer, Y. 3: 433, 434, 614, 699, 719, 720
Meyer-Nieberg, P. 1: 269, 745
Mhaskar, H. N. 1: $83,84,745 ; 4$: 267, 711
Michaels, A. J. 4: 119, 711
Michal, A. D. 1: 365, 745
Michlin, S. G. 3: 603, 720
Mikhailov, V. P. 1: 606, 745
Mikosch, T. 1: 659, 716
Mikusinski, J. G. 4: 129, 711
Milgram, A. N. 4: 600, 709
Miller, W. J. 4: 443, 711
Milman, D. P. 1: 444, 464, 739, 745
Milnor, J. 1: 487, 745; 4: 605, 712
Milson, R. 4: 255, 700
Minda, D. 2A: 378, 610
Minkowski, H. 1: 371, 387, 464, 574, 745, 746; 2A: 246, 404

Minlos, R. A. 1: 565, 629, 746
Miranda, R. 2A: 267, 589, 611
Mišik, L., Jr. 1: 702, 746
Mitrea, M. 4: 87, 602, 689, 699
Mitrinović, D. S. 1: 388, 720; 2A: 214, 611
Mittag-Leffler, G. 2A: 400, 404, 409, 611
Miyake, T. 2A: 550, 611
Mizohata, S. 1: 608, 746
Mizuta, Y. 3: 177, 720
Möbius, A. F. 2A: 272, 282, 611
Mockenhaupt, G. 3: 49, 683, 684, 720
Mohapatra, A. N. 4: 353, 720
Molien, T. 4: 446, 712
Moll, V. 2A: 477, 610
Mollerup, J. 2A: 420, 594
Monge, G. 2A: 272
Montanaro, A. 3: 654, 720
Montel, P. 1: 74; 2A: 68, 238, 611
Montesinos, V. 1: 357, 444, 728
Montgomery, H. L. 3: 123, 129, 720
Montiel, S. 3: 17, 720
Moonen, M. S. 4: 135, 712
Moore, C. D. 2A: 304, 611
Moore, E. H. 1: 98, 746
Moore, G. H. 1: 48, 746
Moore, R. L. 1: 106, 746
Moral, L. 4: 284, 692
Moran, W. 1: 582, 720
Morawetz, C. S. 3: 682, 720
Mordell, L. J. 2A: 58, 64, 518, 611
Morera, G. 2A: 87, 611
Morgan, F. 1: 700, 746
Morgan, G. W. 3: 337, 720
Morgan, J. 3: 654, 720
Morlet, J. 3: 386, 387, 708
Morrey, Ch. B., Jr. 3: 581, 720
Morris, S. A. 2A: 68, 602
Morse, A. P. 3: 50, 720
Morse, M. 3: 83
Mörters, P. 1: 327, 328, 746
Morton, P. 4: 370, 692
Mosak, R. D. 4: 357, 712
Moschovakis, Y. N. 1: 14, 746
Moser, J. 3: 653, 720
Moslehian, M. S. 4: 44, 712
Moyal, J. E. 3: 370, 386, 720
Mueller, P. 3: 407, 433, 733
Muir, T. 4: 17, 712
Muirhead, R. F. 1: 394, 746; 3: 36, 720

Mumford, D. 2A: 281, 335, 611
Munkres, J. R. 1: 61, 746
Müntz, C. 2A: 456, 458, 611
Murnaghan, F. D. 4: 82, 726
Murphy, G. 4: 314, 712
Murray, F. J. 1: 182, 425, 746; 4: 43, 712
Muscalu, C. 3: 682, 721
Mushtari, D. H. 1: 313, 746
Muskhelishvili, N. I. 3: 603, 721
Mycielski, J. 1: 12, 746; 3: 335, 694
Myers, D. L. 1: 230, 762
Myland, J. 2A: 214, 612
Naboko, S. 4: 87, 699
Nachbin, L. 1: 350, 514, 746
Nadkarni, M. G. 3: 79, 721
Nagata, J. 1: 61, 746
Nagumo, M. 4: 56, 69, 357, 712
Nahin, P. J. 2A: 17, 611
Naimark, M. A. 4: 357, 399, 405, 406, $428,447,504,569,659,699,712$
Najmi, A-H. 3: 433, 721
Nakano, H. 4: 313, 712
Napier, T. 2A: 589, 611
Narasimhan, R. 2A: 17, 68, 585, 589, 612; 4: 389, 712
Narcowich, F. 3: 433, 695
Narici, L. 1: 443, 706, 746
Nash, J. 3: 582, 653, 721
Nason, G. P. 3: 433, 721
Naumann, J. 3: 581, 721
Nazarov, F. L. 3: 337, 721
Nehari, Z. 2A: 350, 362, 612; 3: 535, 721
Neidhardt, H. 4: 353, 630, 697, 712
Nekrasov, P. A. 1: 674, 746
Nelson, E. 1: 327, 329, 747; 3: 197, 651, 652,$721 ; 4: 323,600,630,712$
Neretin, Y. A. 1: 538, 747
Netuka, I. 3: 197, 721
Neuenschwander, E. 2A: 87, 128, 612
Neumann, C. G. 2A: 131, 612; 3: 273, 275, 721; 4: 56, 118, 712
Nevai, P. 4: 282, 689
Nevanlinna, F. 3: 444, 457, 721
Nevanlinna, R. 1: 60, 433, 747; 2A: 451, 612, 3: 197, 444, 457, 513, 721; 4: 658, 713
Neveu, J. 3: 161, 722
Neville, E. H. 2A: 477, 612
Newcomb, S. 3: 100, 722

Newman, D. J. 4: 43, 390, 713
Newman, F. W. 2A: 419, 612
Newton, I. 1: 453, 486, 747; 2A: 518
Niederreiter, H. 3: 123, 715
Nievergelt, Y. 2A: 68, 612; 3: 433, 722; 4: 389,712
Nigrini, M. J. 3: 100, 722
Nikishin, E. M. 4: 231, 713
Nikodym, O. 1: 257, 364, 747; 3: 581, 722
Nikolsky, S. M. 4: 603, 713
Nirenberg, L. 3: 352, 367, 534, 582, 712, 715, 722
Nittka, R. 4: 604, 688
Noether, E. 2A: 26, 612; 3: 543
Noether, F. 4: 216, 713
Nomizu, K. 2A: 21, 607
Nonnenmacher, S. 4: 605, 713
Norris, J. R. 1: 674, 747
Novinger, W. P. 2A: 150, 323, 592
Nyquist, H. 1: 567, 747
O'Neil, R. 3: 557, 722
O'Regan, D. 1: 485, 713
Oberhettinger, F. 1: 630, 747
Odake, S. 4: 255, 713
Oguntuase, J. A. 3: 557, 722
Ogura, K. 1: 569, 747; 2A: 221, 612
Ohtsuka, M. 2A: 323, 612
Oldham, K. 2A: 214, 612
Olds, C. D. 2A: 304, 612
Olkiewicz, R. 3: 653, 722
Olkin, I. 1: 394, 744
Opic, B. 3: 336, 557, 722
Orlicz, W. 1: 388, 501, 717, 745, 747; 3: 36, 722
Ornstein, D. S. 3: 65, 83, 86, 97, 698, 722
Ortega-Cerdà, J. 3: 406, 722
Ortner, N. 1: 608, 747
Osborne, M. S. 1: 443, 747
Oscledec, V. I. 3: 145, 722
Osgood, B. 2A: 117, 612
Osgood, W. F. 1: 407, 747; 2A: 79, 87, $128,238,314,323,612$
Östlund, S. 2A: 333, 607
Ostrowski, A. 2A: 315, 613
Otto, F. 3: 654, 722
Outerelo, E. 1: 487, 747
Oxtoby, J. C. 1: 408, 747
Pai, D. V. 1: $83,84,745 ; 4: 267,711$

Painlevé, P. 1: 74; 2A: 323, 574, 613
Pajot, H. 2A: 128, 378, 613
Pál, J. 1: 84, 747
Palais, R. S. 3: 367, 722
Paley, R. E. A. C. 1: 328, 747; 2A: 58, $135,562,613$; 3: 406, 464, 603, $718,722,723 ; 4: 367,467,713$
Palmer, T. W. 4: 357, 713
Pareto, V. 1: 658, 747
Parker, I. B. 4: 266, 697
Parks, H. R. 1: 486, 700, 739
Parry, W. 3: 79, 123, 723
Parseval, M.-A. 1: 150, 607, 748
Parzen, E. 1: 126, 748
Pascal, B. 1: 628
Pastur, L. A. 3: 294, 723
Patashnik, O. 2A: 333, 602
Patodi, V. K. 4: 217, 689
Paul, T. 3: 386, 708
Pauli, W. 4: 27, 713
Peano, G. 1: 9, 26, 748; 4: 603, 713
Pearcy, C. 1: 488, 748; 4: 119, 713
Pearson, D. B. 4: 666, 713
Pečarić, J. E. 1: 387, 748
Pedersen, G. K. 1: 350, 748; 4: 314, 713
Peetre, J. 3: 556, 718, 723
Peirce, C. S. 1: 9, 748
Peller, V. V. 3: 536, 723; 4: 218, 353, 713
Percival, D. B. 3: 433, 723
Perelman, G. 3: 654, 723
Perelomov, A. M. 3: 386, 401, 723
Peres, Y. 1: 327, 328, 746
Pérez Carreras, P. 1: 443, 748
Perron, O. 1: 230, 675, 748; 2A: 583; 3: 212, 231, 273, 723
Persson, L. E. 3: 336, 557, 715, 722
Pesic, P. 2A: 499, 613
Peter, F. 4: 447, 713
Peter, W. 4: 604, 688
Petersen, K. 3: 79, 83, 145, 714, 723
Petersen, P. 2A: 21, 613
Petronilho, J. 4: 255, 711
Pettis, B. J. 1: 275, 341, 444, 726, 748
Peyrière, J. 1: 582, 748
Phelps, R. R. 1: 387, 465, 468, 749; 4: 489, 714
Philipp, W. 3: 123, 723
Phillips, J. 3: 387, 723
Phillips, R. S. 1: 443, 749; 3: 83, 723; 4: $43,45,714$

Phong, D. H. 3: 336, 704; 4: 228, 697
Phragmén, E. 2A: 172, 173, 613
Picard, É. 1: 74, 82, 161, 485, 749; 2A: $12,409,573,613 ; \mathbf{3}: 197,723 ; 4$: 83, 134, 714
Pichorides, S. K. 3: 488, 723
Pick, G. 3: 513, 723
Pier, J.-P. 1: 486, 749
Pietsch, A. 1: 363, 443, 447, 749
Pinkus, A. 1: 81, 83, 156, 749
Pinsky, M. A. 3: 433, 723
Pisier, G. 1: 511, 513, 514, 759; 4: 100, 187, 714
Pitt, H. R. 4: 504, 714
Plamenevskii, B. A. 3: 367, 723
Plancherel, M. 1: 151, 546, 749
Plato 2A: 1, 613
Plemelj, J. 1: 512, 749; 3: 489, 724; 4: 172, 714
Plesner, A. I. 3: 463, 724; 4: 314, 714
Poincaré, H. 1: 37, 47, 355, 486, 656, $705,749, \mathbf{2 A}: 23,25,37,272,282$, 292, 314, 367, 368, 469, 568, 584, 613,$614 ;$ 3: 80, 85, 212, 231, 273, $275,316,581,724 ; 4: 192,355$, 628, 714
Poisson, S. D. 1: 567, 606, 607, 644, $666,749,750 ; 2 A: 180,419,614 ; \mathbf{3}$: 197, 273, 724
Polishchuk, A. 2A: 534, 614
Pollak, H. O. 3: 337, 338, 716, 729
Pollicott, M. P. 3: 79, 724
Poltoratski, A. 3: 64, 514, 724
Pólya, G. 1: 153, 394, 653, 654, 657, 733,$750 ; \mathbf{2 A}: 214,387,468,614 ; \mathbf{3}$ $36,488,557,564,709 ; 4: 282,714$
Pommerenke, C. 2A: $323,324,378$, $578,610,614$
Pompeiu, D. 2A: 78, 194, 614
Ponce, G. 4: 534, 694
Poncelet, J.-V. 2A: 272
Pontryagin, L. S. 4: 367, 467, 714
Port, S. C. 1: 608, 750; 3: 177, 724
Porter, M. B. 2A: 58, 238, 614
Possel, R. 1: 48
Post, K. A. 3: 99, 701
Potapov, V. P. 2A: 456, 614
Povzner, A. Ya. 1: 565, 750; 4: 467, 714
Pratelli, A. 3: 654, 704
Pressley, A. 2A: 21, 614
Priestley, H. A. 1: 230, 750

Pringsheim, A. 2A: 63, 68, 405, 583, 614
Privalov, I. I. 3: 489, 724
Prokhorov, A. 1: 629
Prokhorov, Yu. V. 1: 313, 750
Proschan, F. 1: 387, 748
Prössdorf, S. 3: 603, 720
Prüfer, H. 2A: 305
Prym, F. E. 2A: 430, 615
Ptolemy, C. 2A: 272
Puiseux, V. A. 2A: 113, 164, 266, 615
Pushnitski, A. 4: 344, 352, 353, 699
Putnam, C. R. 4: 666, 715
Qi, F. 2A: 447, 622
Quéfflec, M. 3: 97, 724
Quesne, C. 4: 255, 715
Rabinovich, V. S. 4: 666, 715
Rademacher, H. 1: 574, 750; 2A: 222, 304, 333, 615; 3: 409, 725
Radjavi, H. 4: 119, 715
Radó, T. 1: 153; 2A: 266, 315, 356, 615
Radon, J. 1: 229, 257, 548, 750
Raghunathan, M. S. 3: 145, 725
Raikov, D. 1: 564, 565, 666, 750; 4: 357, 387, 399, 406, 447, 467-469, 489, 504, 699, 715
Rajchman, A. 1: 582, 751
Rakhmanov, E. A. 3: 292, 725
Ramachandran, M. 2A: 589, 611
Ramey, W. 3: 177, 692
Range, R. M. 2A: 584, 585, 615
Ranicki, A. 2A: 164, 615
Ransford, T. 1: 453, 751; 2A: 324, 615; 3: 177, 274, 725
Rao, M. M. 1: 230, 751; 3: 161, 725
Rauch, H. E. 2A: 477, 534, 615
Rauzy, G. 3: 123, 725
Ravetz, J. R. 1: 150, 751
Rayleigh, Lord 4: 27, 109, 603, 715
Read, C. J. 1: 488, 751
Reed, M. 1: 538, 566, 675, 751; 3: 654, 683,$725 ; 4: 27,353,568,569,600$, 629, 667, 715
Regev, O. 3: 654, 693
Reich, S. 1: 485, 751
Reid, C. 2A: 369, 615; 4: 41, 43, 715
Reiner, I. 4: 443, 694
Reingold, N. 3: 83, 725
Reinov, O. 4: 187, 715
Reinsch, C. 4: 135, 700

Reiter, H. 4: 468, 715
Rellich, F. 1: 122, 751; 3: 582, 725; 4: $27,228,536,548,603,715,716$
Remling, C. 3: 293, 725
Remmert, R. 2A: 58, 87, 159, 227, 315, 405, 420, 579, 615
Renardy, M. 1: 606, 751
Rentschler, R. 2A: 306, 606
Rényi, A. 1: 646, 727
Resnick, S. 1: 659, 716
Retherford, J. R. 4: 134, 716
Revuz, D. 1: 327, 674, 751
Rezende, J. 3: 669, 695
Ribarič, M. 4: 200, 716
Rice, A. 2A: 477, 615
Richards, I. 1: 518, 751
Rickart, C. E. 4: 357, 405, 716
Rickman, S. 2A: 574,$615 ;$ 3: 218, 725
Riemann, G. F. B. 1: $142,193,228$, $546,607,751 ; 2 A: 21,37,38,50$, 117, 127, 265, 314-316, 323, 534, $568,589,615,616 ; 3: 197,273$, 274, 725
Riesz, F. 1: 6, 47, 50, 51, 74, 92, 117, $122,124,125,150,153,193,226$, 229, 238, 249, 250, 269, 275, 363, 364, 371, 372, 447, 565, 581, 751, 752; 2A: 315; 3: 46, 51, 59, 212, 213, 273, 274, 434, 444, 457, 463, $513,562,725,726 ; 4: 43,69,83$, $100,118,299,321,716$
Riesz, M. 1: $153,238,424,433,563$, 752; 2A: 177, 242, 404, 616; 3: 274, 276, 457, 487, 488, 497, 603, 726; 4: 228, 716
Ringrose, J. R. 1: 444, 752; 4: 127, 128, 314, 705, 716
Rinow, W. 2A: 20, 605
Ritz, W. 4: 109, 716
Rivlin, T. J. 4: 266, 267, 716
Robert, D. 4: 228, 604, 716
Roberts, A. W. 1: 387, 752
Robertson, A. P. 1: 706, 752
Robertson, H. P. 3: 82, 334, 726
Robertson, W. 1: 706, 752
Robin, G. 1: 453, 752; 3: 274, 726
Robinson, A. 1: 487, 717
Robinson, D. W. 4: 314, 601, 605, 691, 716
Robinson, R. M. 2A: 577
Rockafellar, R. T. 1: 387, 752

Rockett, A. M. 3: 123, 726
Röckner, M. 1: 313, 713
Röding, E. 2A: 378, 616
Roepstorff, G. 1: 327, 752
Rogava, D. L. 4: 630, 716
Rogers, C. A. 1: 487, 700, 702, 753; 3: 564, 726
Rogers, L. J. 1: 372, 753
Rogers, R. C. 1: 606, 751
Rogosinski, W. W. 2A: 182, 616
Rohlin, V. A. 4: 314, 714
Rollnik, H. 4: 683, 717
Romberg, J. 3: 339, 698
Ros, A. 2A: 578, 616; 3: 17, 720
Rosay, J.-P. 1: 607, 753
Rosen, J. 3: 653, 726
Rosenblatt, J. M. 3: 84, 713
Rosenbloom, P. C. 1: 608, 753
Rosenblum, M. 4: 353, 717
Rosenthal, A. 4: 489, 702
Rosenthal, P. 4: 119, 715
Ross, K. A. 4: $443,468,504,505,703$
Ross, W. T. 2A: 188, 597; 3: 489, 699
Rossi, H. 2A: 585, 603
Rota, G-C. 3: 161, 406, 695, 726
Roth, A. 4: 490, 717
Rothaus, O. S. 3: 652, 726
Rothe, H. A. 2A: 534, 537, 616
Rouché, E. 2A: 100, 616
Routh, E. 4: 254, 717
Roy, R. 2A: 419, 421, 534, 535, 592; 4: 231, 254, 688
Royer, G. 3: 650, 726
Rozenbljum, G. V. 3: 669, 726
Rubel, L. A. 2A: 161, 229, 230, 233, 405, 610, 616
Rubin, J. E. 1: 13, 735
Ruch, D.-K. 3: 433, 726
Rudin, W. 1: 565, 753; 2A: 194, 195, 585,$616 ; 3: 439,472,701,726 ; 4$: $43,357,369,468,504,505,717$
Ruelle, D. 3: 145, 726; 4: 321, 717
Ruiz, J. M. 1: 487, 747
Rumin, M. 3: 670, 727
Runde, V. 1: 486, 753
Runge, C. 2A: 156, 409, 616
Runst, T. 3: 583, 727
Ruston, A. F. 4: 183, 717
Rutickii, Ya. 1: 388, 739; 3: 36, 715
Ryll-Nardzewski, C. 3: 124, 727

Saalschütz, L. 2A: 430, 616
Sadosky, C. 3: 603, 614, 727
Saff, E. B. 1: 453, 753; 4: 695
Sagan, H. 1: 204, 753
Sagher, Y. 3: 534, 700
Saint-Raymond, X. 3: 367, 727
Saitoh, S. 1: 126, 753
Sakai, S. 4: 314, 429, 717
Saks, S. 1: 238, 753; 2A: 149, 157, 238, 574, 616; 3: 64, 727
Salminen, P. 1: 327, 719
Saloff-Coste, L. 3: 653, 702
Sands, M. 1: 588, 728
Sarason, D. 3: 534, 727; 4: 128, 490, 658, 687, 717
Sargsjan, I. S. 4: 569, 710
Sasaki, R. 4: 255, 713
Sasvári, Z. 2A: 447, 617
Sato, M. 3: 350, 727
Schaefer, H. H. 1: 269, 706, 753
Schaeffer, A. C. 3: 401, 403, 702
Schatten, R. 1: 182, 753; 4: 143, 152, 717
Schatz, J. 4: 428, 717
Schauder, J. 1: 408, 487, 741, 753; 4: $43,100,118,717$
Schechter, E. 1: 12, 753
Schechter, M. 4: 717
Scheffé, H. 1: 249, 753
Scheidemann, V. 2A: 584, 585, 617
Schiefermayr, K. 4: 267, 718
Schiff, J. L. 2A: 573, 574, 578, 617
Schiffer, M. 1: 126, 717
Schinzinger, R. 2A: 350, 617
Schlag, W. 3: 682, 683, 707, 712, 721
Schlömilch, O. 2A: 419, 617
Schmüdgen, K. 4: 602, 718
Schmeisser, G. 1: 569, 720
Schmidt, E. 1: 117, 122, 132, 134, 753; 4: $83,99,100,108,134,299,718$
Schmincke, U.-W. 4: 627, 718
Schneider, R. 1: 167, 732
Schönflies, A. M. 1: 15, 50, 74, 117, 754; 2A: 404
Schottky, F. 2A: 394, 404, 577, 578, 617
Schoutens, W. 1: 659, 754
Schrader, R. 4: 627, 628, 703
Schrödinger, E. 1: 607, 754; 2A: 266; 3: 334, 727; 4: 27, 718
Schulze, B.-W. 3: 367, 703

Schur, I. 1: $175,350,394,444,754 ; 2 A$: $239,305,617$; 3: 488, 727; 4: 163, 208, 446, 718
Schwartz, J. T. 1: 487, 726; 3: 86, 702; 4: 186, 192, 568, 569, 600, 696, 718
Schwartz, L. 1: 126, 512, 513, 565, 711, 712, 725, 754; 2A: 562, 617
Schwarz, H. A. 1: 112, 117, 754; 2A: 117, 180, 181, 194, 283, 314, 351, 404, 568, 617; 3: 273
Schwerdtfeger, H. 2A: 281, 617
Schwinger, J. 4: 682, 718
Sebestyén, Z. 4: 601, 702
Seco, L. A. 4: 603, 703
Seebach, J. A., Jr. 1: 408, 756
Seeger, A. 3: 684, 720
Seeley, R. T. 3: 367, 727
Segal, I. E. 1: 538, 754; 3: 385, 652, 683, 727; 4: 299, 428, 429, 447, 504, 718
Segal, S. L. 2A: 468, 502, 617
Seidel, W. 2A: 161, 617
Seifert, H. 1: 106, 754
Seiler, E. 4: 161, 172, 192, 718, 719
Seiler, R. 4: 217, 689
Seip, K. 3: 401, 406, 722, 728
Seiringer, R. 3: 669, 705
Selberg, A. 2A: 419, 617
Selçuk, F. 3: 433, 706
Semenov, E. M. 3: 556, 715
Seneta, E. 1: 674, 755
Series, C. 2A: 281, 333, 335, 611, 617; 3: $126,696,728$
Serre, J.-P. 2A: 550, 617; 4: 443, 719
Serrin, J. 2A: 87, 618
Severini, C. 1: 249, 755
Shafer, G. 3: 160, 694
Shakarchi, R. 1: 149, 409, 756; 3: 487, 682, 730
Shannon, C. E. 1: 567,$755 ;$ 3: 334, 728
Shapiro, H. S. 4: 719
Shaposhnikova, T. 2A: 470, 610
Sharpley, R. 3: 534, 556, 583, 694
Shelley, P. B. 3: 319, 728
Shen, A. 1: 14, 755; 3: 160, 694
Shenitzer, A. 4: 603, 719
Shields, A. L. 1: 488, 748; 4: 119, 713
Shilov, G. E. 1: 513, 548, 730; 4: 69, 357, 387, 389, 406, 467, 489, 504, 699, 719
Shiryayv, A. N. 1: 617, 755

Shmulyan, V. 1: 447, 755
Shohat, J. A. 1: 434, 755
Shoikhet, D. 1: 485, 751
Shokrollahi, M. A. 2A: 112, 595
Shreve, S. E. 1: 327, 737; 3: 161, 713
Shterenberg, R. 4: 602, 689
Shubin, M. A. 3: $367,368,371,728$
Shurman, J. 2A: 550, 598
Shvartsman, P. 3: 534, 700
Sickel, W. 3: 583, 727
Siegel, C. L. 1: 574, 755; 2A: 477, 618
Siegmund-Schultze, R. 1: 562, 755
Sierpinski, W. 1: 60, 740; 3: 97, 98, 728; 4: 605, 719
Šikić, H. 1: 519, 734
Silbermann, B. 4: 218, 691
Silva, C. E. 3: 79, 728
Silverman, J. H. 2A: 518, 550, 618
Silverstein, M. L. 3: 162, 697
Simader, C. G. 4: 627, 709
Simon, B. 1: 135, 290, 327-329, 387, $388,394,411,434-436,443,453$, $454,464,465,537,538,564,566$, $582,617,675,702,703,721,725$, $734,737,742,751,755, \mathbf{2 A}: 58,59$, 239, 241, 242, 286, 289, 306, 335, $350,535,564,592,595,618$; 3: 36, 127, 146, 197, 250, 291-297, 336, 340, 386, 387, 472, 514, 563, 650-654, 669, 670, 683, 689, 692, 699-701, 704, 705, 711, 712, 716, $724,725,728,729 ; 4: 27,134,152$, 161, 172, 187, 192, 217, 218, 228, 231, 267, 282, 284, 285, 323, 344, $352,353,443,446,509,534,538$, 568-570, 600-604, 606, 608, 609, 626-629, 658, 659, 666, 667, 682, 683, 685, 687-689, 691, 693-695, $699,703,704,707,709,715$, 718-720
Simon, L. 1: 700, 755
Sims, B. 1: 737
Sinai, Ya. G. 1: $617,629,738 ;$ 3: 79 , 729
Singer, I. M. 4: $100,128,217,489,689$, 706, 720
Singerman, D. 2A: 281, 333, 606
Sinha, K. B. 4: 218, 353, 354, 688, 693, 720
Sitaram, A. 3: 333, 338, 342, 704
Sjöstrand, J. 1: 539, 756; 4: 605, 713

Skolem, T. 1: 13, 756
Slepian, D. 3: 338, 729
Sleshinskii, I. V. 1: 655, 756
Smart, D. R. 1: 485, 756
Smirnov, V. I. 3: 470, 729
Smirnov, Yu. 1: 61, 756
Smith, C. 3: 250, 729
Smith, H. J. S. 1: 201, 756
Smith, H. L. 1: 98, 746
Smith, K. T. 1: 487, 715; 3: 276, 681, 692; 4: 627, 688
Smith, P. A. 3: 80, 695
Smithies, F. 2A: 39, 618; 4: 172, 192, 721
Smulian, V. 1: 465, 739
Snell, J. L. 1: 674, 737
Sobczyk, A. 1: 425, 718
Sobolev, S. L. 1: 512, 607, 756; 3: 562, 582, 729, 730
Sodin, M. 2A: 578
Sodin, M. L. 3: 218, 703; 4: 256, 721
Sogge, C. D. 3: 564, 684, 720, 730
Sokhotskii, Yu. V. 1: 512, 756; 2A: 128, 618
Solomyak, M. 3: 340, 669, 716, 717; 4: 160, 353, 690, 721
Solovay, R. M. 1: 211, 756
Sommerfeld, A. 4: 603, 721
Song, R. 3: 162, 701
Soper, H. E. 1: 666, 756
Sørensen, H. K. 2A: 499, 618
Sorokin, V. N. 4: 231, 713
Soukhomlinoff, G. 1: 425, 756
Souslin, M. Y. 1: 227
Spanier, J. 2A: 214, 612
Spanne, S. 3: 489, 730
Spencer, J. H. 1: 617, 714
Spencer, T. 1: 608, 730
Spitzer, F. 3: 164, 730
Spivak, M. 2A: 17, 21, 618
Spivey, M. Z. 2A: 444, 618
Springer, G. 2A: 267, 589, 618
Srinivasa Rao, K. N. 2A: 214, 618
Srinivasan, G. K. 2A: 421, 426, 618
Stade, E. 1: 149, 756
Stahl, H. 1: 453, 756; 3: 291, 293, 730; 4: 231, 721
Stam, A. J. 3: 652, 730
Stark, P. 3: 339, 702
Steele, J. M. 1: 373, 756
Steele, M. J. 3: 145, 730

Steen, L. A. 1: 408, 756
Steenrod, N. E. 1: 98; 2A: 26, 599
Steffens, K-G. 4: 267, 721
Stegeman, J. D. 4: 468, 715
Steif, J. 3: 650, 706
Stein, E. M. 1: 149, 409, 563, 739, 756;
2A: 177, 618; 3: 25, 48, 49, 251, 368, 487, 489, 513, 514, 534, 563, $564,601,603,613,681,682,704$, 708, 714, 730, 731
Stein, P. 3: 488, 492, 731
Steinberg, B. 4: 443, 721
Steiner, F. 4: 604, 688
Steinhaus, H. 1: 364, 408, 570, 629, $716,756,757 ; 2 A: 58,618$
Stellmacher, K. 1: 607, 757
Stens, R. L. 1: 569, 575, 720; 2A: 443, 595
Steprans, J. 4: 603, 719
Stern, M. A. 2A: 333, 618
Sternberg, S. 2A: 12, 17, 21, 610, 619
Stewart, G. W. 4: 135, 721
Stieltjes, T. 1: 193, 194, 433, 757; 2A: $222,227,238,305,440,619 ; 4$: 241, 658, 721
Stigler, S. M. 1: 630, 757
Stillwell, J. 2A: 518, 619
Stirling, J. 2A: 437, 438, 619
Stollmann, P. 1: 411, 741
Stone, C. J. 1: 608, 750; 3: 177, 724
Stone, M. H. 1: 88, 92, 117, 435, 466, 757 ; 3: 81-83, 336, 731; 4: 56, 160, 241, 299, 387, 388, 412, 534, 554, 600, 658, 721
Stout, E. L. 2A: 157, 619; 4: 489, 721
Stout, W. F. 1: 645, 757
Strauss, W. A. 3: 682, 720
Streater, R. F. 1: 513, 757; 2A: 195, 619
Strichartz, R. S. 1: 493, 757; 3: 682, 683, 731
Strizaker, D. R. 1: 617, 731, 757
Strohmer, T. 3: 390, 704
Strömberg, J.-O. 3: 49, 434, 730, 731
Stromberg, K. R. 1: 211, 327, 757
Stroock, D. W. 1: 230, 327, 617, 674, 757; 3: 650, 652-654, 702, 704, 731
Stubbe, J. 3: 669, 695
Stubhaug, A. 2A: 400, 619
Student 1: 666, 757
Study, E. 1: 49

Stummel, F. 4: 538, 721
Sturm, C. 4: 109, 721
Sudarshan, E. C. G. 3: 385, 386, 731
Suidan, T. M. 1: 630, 715
Sullivan, J. M. 3: 50, 731
Sunada, T. 4: 605, 721
Sunder, V. S. 4: 314, 721
Sylvester, J. J. 1: 26, 757; 4: 135, 721, 722
Symanzik, K. 1: 329, 758
Sz.-Nagy, B. 4: 27, 70, 322, 722
Szász, O. 2A: 456, 458, 619
Szankowski, A. 4: 100, 722
Szegő, G. 1: 126, 129, 135, 153, 758; 2A: $58,350,619 ; \mathbf{3}: 291,731 ; 4$: 231, 240, 268, 282, 284, 285, 714, 722
Szüsz, P. 3: 123, 726
Tédone, O. 1: 607, 758
Tait, P. G. 3: 196, 250, 732
Takagi, T. 1: 164, 758
Takakazu, S. 2A: 437, 619
Takesaki, M. 4: 314, 722
Talenti, G. 3: 582, 731
Tamarkin, J. D. 1: 434, 755; 4: 192, 535, 703, 722
Tamura, Hideo 4: 604, 605, 630, 704, 722
Tamura, Hiroshi 4: 630, 704
Tanaka, T. 4: 468, 722
Tao, T. 1: 6, 9, 758; 3: 49, 339, 556, 557, 682-685, 696, 698, 713, 714, 731
Tarski, A. 1: $13,206,210,716,758$
Tartar, L. 3: 583, 731
Tauber, A. 4: 505, 723
Taylor, A. E. 1: 230, 500, 501, 758; 4: 69, 723
Taylor, B. 1: 32, 150, 654, 758; 2A: 57, 619
Taylor, E. H. 2A: 323, 612
Taylor, J. L. 4: 69, 723
Taylor, M. E. 1: 230, 327, 606, 702, 758; 3: 367, 371, 731; 4: 534, 694
Taylor, S. J. 1: 702, 753
Teicher, H. 1: 617, 723
Temme, N. M. 2A: 214, 619
Teschl, G. 4: 602, 689
Thiele, C. 3: 172, 716
Thirring, W. 3: 669, 717, 718; 4: 683, 710

Thomas, L. E. 3: 669, 711
Thomas, L. H. 1: 453, 758
Thomas-Agnan, C. 1: 126, 717
Thompson, S. P. 3: 250, 732
Thomson, W. 3: 196, 250, 273, 732
Thorin, O. 1: 563, 758; 2A: 177, 619
Thouless, D. J. 3: 291, 732
Threlfall, W. 1: 106, 754
Tian, G. 3: 654, 720
Tietze, H. 1: 57, 60, 61, 75, 86, 758; 2A: 583
Titchmarsh, E. C. 1: 563, 583, 758, 759; 2A: 214, 468, 579, 619; 4: 129, 569, 723
Todd, M. J. 1: 485, 759
Toeplitz, O. 1: $175,408,413,564,734$, 759; 4: 299, 321, 703, 723
Tolsa, X. 3: 603, 698
Tomares, Y. 4: 218, 689
Tomas, P. A. 3: 682, 732
Tonelli, L. 1: 288, 453, 759; 3: 581, 732; 4: 267,723
Tong, Y. L. 1: 387, 748
Torchinsky, A. 1: 607, 759
Totik, V. 1: 84, 453, 726, 753, 756; 3: 291-293, 730, 732; 4: 231, 721
Tracy, C. A. 1: 630, 759
Trefethen, L. N. 2A: 350, 351, 599; 4: 267, 723
Trefftz, E. 2A: 350, 620
Trèves, F. 1: 182, 511, 513, 514, 606, 706, 759; 3: 367, 732
Triebel, H. 1: 149, 759; 3: 557, 583, 709, 732
Trotter, H. F. 1: 656, 759; 4: 628, 723
Trubetskov, M. K. 2A: 350, 605
Trudinger, N. 1: 606, 731
Trudinger, N. S. 3: 177, 276, 706
Tsirelson, B. S. 4: 100, 723
Tsuji, M. 1: 453, 759; 3: 177, 274, 732
Tukey, J. W. 1: 13, 155, 458, 723, 759
Turán, P. 1: 153; 3: 291, 292, 703
Turner, L. E. 2A: 381, 619
Tychonoff, A. 1: 54, 60, 61, 63, 99, 101, $443,487,608,759,760 ; 4: 412,723$
Tzafriri, L. 1: 444, 742; 4: 43, 710
Ueno, K. 2A: 267, 620
Uhlenbeck, D. A. 4: 627, 628, 703
Ulam, S. M. 4: 33, 536, 723
Ullman, J. L. 3: 291, 732
Ullrich, D. C. 2A: 333, 573, 620

Unterberger, A. 3: 367, 733
Urysohn, P. 1: 51, 55, 61, 74, 227, 714, 760

Vaccaro, R. J. 4: 135, 723
Vaillancourt, R. 3: 614, 697
Valiron, G. 1: 74
Van Assche, W. 3: 292, 733
van Brunt, B. 1: 453, 760
van den Berg, J. C. 3: 433, 733
van der Corput, J. G. 3: 123, 733
Van Fleet, P.-J. 3: 433, 726
van Kampen, E. R. 4: 467, 723
van Rooij, A. C. M. 1: 269, 724
van Winter, C. 4: 666, 723
Vandermonde, A. 4: 17, 723
Varadarajan, V. S. 2A: 395, 620
Varadhan, S. R. S. 1: 313, 760
Varberg, D. E. 1: 387, 752
Vargas, A. 3: 682, 717
Varopoulos, N. Th. 3: 653, 733
Vasilesco, F. 3: 274, 733
Vasić, P. M. 1: 388, 720
Vaught, R. 4: 428, 707
Veblen, O. 2A: 164, 620; 3: 82
Veech, W. A. 2A: 315, 333, 573, 620
Velázquez, L. 4: 284, 692
Velo, G. 3: 683, 706
Verbitsky, I. 3: 489, 710
Verblunsky, S. 4: 282, 284, 723
Vereshchagin, N. K. 1: 14, 755
Veselov, A. P. 1: 607, 760
Veselý, J. 3: 197, 721
Vidakovic, B. 3: 407, 433, 733
Vidav, I. 4: 200, 716
Vietoris, L. 2A: 26, 620
Vilenkin, N. Ya. 1: $513,538,548,730$
Villani, C. 3: 654, 722
Ville, J. 3: 160, 370, 733
Vinogradov, S. A. 3: 514, 711
Vishik, M. I. 4: 601, 723
Visser, C. 4: 83, 723
Vitali, G. 1: 210, 249, 760; 2A: 238, 620; 3: 49, 59, 733
Vivanti, G. 2A: 63, 620
Voit, J. 1: 658, 760
Volterra, V. 1: 82, 201, 202, 229, 607, 760; 2A: 585, 620
von Helmholtz, H. 1: 607, 760
von Kármán, T. 2A: 350, 620
von Koch, H. 2A: 48, 620; 4: 41, 723, 724
von Mangoldt, H. G. F. 2A: 404
von Mises, R. 1: 629, 675, 760
von Neumann, J. 1: 113, 117, 153, 174, $182,210,257,350,364,443,485$, 486, 667, 736, 746, 760, 761; 3: 80, $82,125,336,401,733 ; 4: 43,82$, $143,152,197,299,314,323,353$, $367,534,535,548,568,600,606$, 712, 717, 724
Vougalter, V. 4: 218, 697
Výborný, R, 2A: 75, 620

Waelbroeck, L. 4: 69, 724
Wagner, P. 1: 608, 747, 761
Wagon, S. 1: 210, 761
Walden, A. T. 3: 433, 723
Walker, J. S. 1: 149, 761
Walker, R. C. 4: 412, 724
Wall, H. S. 1: 434, 761; 2A: 304, 305, 620
Wallen, L. J. 4: 118
Wallis, J. 1: 32, 761; 2A: 4, 282, 304, $305,516,620$
Wallstén, R. 3: 401, 728
Walnut, D. F. 3: 433, 434, 710, 733
Walsh, J. B. 1: 327, 723
Walsh, J. L. 2A: 102, 152, 157, 161, 617, 620; 3: 83, 291, 733; 4: 489, 724
Walter, J. 4: 627, 706
Walters, P. 3: 79, 733
Wang, F-Y. 4: 603, 724
Wanner, G. 2A: 305, 603
Ward, T. 3: 79, 123, 126, 703
Warner, F. W. 2A: 17, 620
Warzel, S. 3: 513, 691
Washington, L. C. 2A: 477, 620
Wasserman, R. H. 2A: 17, 621
Watanabe, K. 4: 666, 724
Watson, C. 3: 250, 733
Watson, G. N. 1: 412, 761; 2A: 57, 214, 438, 516, 621
Webb, D. 4: 605, 700
Wecken, F. 4: 313, 724
Wedderburn, J. H. M. 2A: 401, 621
Weidl, T. 3: 669, 670, 705, 711, 716, 734
Weidman, J. 4: 198, 701
Weierstrass, K. 1: 47, 49, 73, 77, 81, 83, $86,88,156,365,761 ; \mathbf{2 A :} 58,64$, $86,117,123,128,314,400,403$, $404,419,497,498,517,518,621$

Weil, A. 1: $48,350,367,564,565,761$;
2A: $470,477,518,574,621 ; \mathbf{3}$:
402, 734; 4: 367, 467, 724
Weinstein, A. 4: 343, 724
Weintraub, S. H. 4: 443, 724
Weiss, B. 3: $83,84,99,145,706,713$, 722
Weiss, G. 1: 519, 734; 3: 251, 433, 513, $535,563,564,699,710,730,731$
Weiss, P. 1: 575, 761
Weissler, F. B. 3: 652, 734
Welsh, D. J. A. 3: 145, 708
Wendroff, B. 4: 283, 724
Wermer, J. 3: 177, 734; 4: 489, 490, 700, 724
Wessel, C. 2A: 4
West, T. T. 4: 128, 725
Weyl, H. 1: 47, 350, 394, 761, 762; 2A: $47,266,283,368,568,621 ; 3: 98$, 122, 334, 336, 368, 488, 734; 4: $134,164,197,299,353,443,446$, 447, 568, 604, 713, 725
Wheeler, G. F. 1: 150, 762
Whitaker, L. 1: 666, 762
Whitcher, B. 3: 433, 706
Whitehead, A. N. 4: 515, 725
Whitley, R. 1: 465, 762; 4: 45, 725
Whitney, H. 1: 182, 762; 3: 83
Whittaker, E. T. 1: 567, 568, 762; 2A: 57, 438, 621
Wicks, K. 2A: 333, 606
Widder, D. V. 1: 608, 753, 762; 3: 83
Widom, H. 1: 630, 759; 3: 292, 338, 716, 734
Wiedijk, F. 3: 125, 696
Wielandt, H. 1: 675,$762 ; \mathbf{2 A :} 305,420$; 4: 506, 725
Wiener, N. 1: 326-328, 364, 513, 537, 567, 747, 762; 2A: 135, 555, 562, 613, 622; 3: 49, 83, 84, 231, 273, 334, 406, 722, 734; 4: 388, 467, 504, 506, 713, 725
Wierdl, M. 3: 84, 713
Wightman, A. S. 1: 513, 757, 762; 2A: 195, 619
Wigner, E. P. 3: 370, 734; 4: 443, 725
Wik, I. 3: 534, 734
Wilbraham, H. 1: 157, 762
Wilcox, H. 1: 230, 762
Wilder, R. L. 1: 50, 762
Willard, S. 1: 48, 61, 106, 367, 762

Willard, W., Jr. 3: 401, 700
Willemsma, A. D. I. 4: 666, 702
Williams, D. 1: 617, 763
Williams, R. J. 4: 603, 726
Williamson, J. 4: 135, 726
Wilson, E. N. 1: 519, 734
Wintner, A. 1: $514,645,733,763 ; 4$: 82, 534, 569, 726
Wirsing, E. 3: 125, 734
Wirtinger, W. 1: 167; 2A: 37, 622; 4: 56, 726
Wise, M. N. 3: 250, 729
Wohlers, M. R. 2A: 562, 593
Wolff, M. P. 1: 706, 753
Wolff, T. 3: 685, 734; 4: 344, 720
Wolpert, S. 4: 605, 700
Wong, R. 2A: 419, 536, 593; 4: 231, 255, 689
Wright, D. 2A: 281, 335, 611
Wright, E. M. 2A: 535, 603, 622
Wronski, J. M. H. 2A: 66
Wu, J-L. 4: 603, 724
Wüst, R. 4: 536, 726
Wyman, M. 1: 365, 745
Wyneken, M. F. 3: 291, 732, 734
Xu, C.-J. 3: 585, 698
Yafaev, D. R. 4: 353, 690, 726
Yamada, A. 2A: 378, 622
Yandell, B. H. 2A: 368, 369, 622
Yang, C. N. 2A: 239, 240, 609
Yang, X. 1: 700, 742
Yau, S. T. 3: 669, 717
Yavryan, V. A. 4: 353, 708
Yood, B. 4: 217, 726
Yor, M. 1: 327, 511, 513, 744, 751, 759
Yosida, K. 1: 92, 763; 3: 83, 734; 4: 129, 467, 726
Young, G. 4: 135, 696
Young, R. M. 2A: 393, 622; 3: 401, 406, 734; 4: 100, 726
Young, W. H. 1: 365, 372, 563, 763
Yuditski, P. 2A: 378; 4: 256, 721
Yukich, J. E. 3: 652, 703

Zaanen, A. C. 1: 269, 388, 743, 763; 3: 36, 735
Zabreĭko, P. P. 1: 408, 763
Žáčik, T. 1: 702, 746
Zagrebnov, V. A. 4: 630, 697, 704, 712
Zak, J. 3: 401, 402, 692, 696, 735
Zalcman, L. 2A: 578, 622
Zame, W. R. 4: 69, 726
Zamfirescu, T. 1: 411, 763
Zaremba, S. 1: 126, 763; 3: 231, 273, 735
Zegarlinski, B. 3: 622, 650, 653, 654, 708, 722
Żelazko, W. 4: 357, 387, 392, 706, 726
Zermelo, E. 1: 13, 763
Zhang, F. 4: 208, 726
Zhang, Q. S. 3: 654, 735
Zhao, Z. X. 1: 327, 723
Zheng, S.-Q. 2A: 447, 622
Zhikov, V. V. 4: 419, 710
Zhislin, G. M. 4: 666, 726
Zhou, X. 2A: 152
Zhou, Z.-F. 3: 653, 735
Zhu, K. 1: 538, 763
Zhu, K. H. 4: 314, 726
Zhukovsky, N. 2A: 350
Zichenko, M. 3: 514, 724
Ziegler, L. 3: 291, 732
Zinchenko, M. 4: 267, 693
Zitarelli, D. E. 1: 50, 763
Zizler, V. 1: 357, 444, 728
Zorn, M. 1: 13, 763
Zou, H. 2A: 87, 618
Zucker, I. J. 3: 402, 696
Zund, J. D. 3: 81, 735
Zworski, M. 4: 605, 713, 726
Zygmund, A. 1: 149, 328, 581, 582, 747, 763 ; 2A: $58,149,157,238,562$, $574,613,616$; 3: 36, 48, 172, 463, $464,489,556,601,684,697,712$, 723,$735 ; 4: 367,390,713,726$

Index of Capsule Biographies

Abel, N. H. 2A: 498

Baire, R.-L. 1: 407
Banach, S. 1: 364
Bernoulli, Daniel 2A: 437
Bernoulli, Jakob 2A: 437
Bernoulli, Johann 2A: 437
Bernstein, S. N. 1: 82
Birkhoff, G. D. 3: 82
Blaschke, W. 2A: 455
Bloch, A. 2A: 579
Bochner, S. 1: 566
Borel, E. 1: 74
Calderón, A. 3: 601
Cantor, G. 1: 201
Carathéodory, C. 2A: 200
Cartan, H. 2A: 584
Cauchy, A. L. 2A: 38
Chebyshev, P. L. 1: 644
Cotlar, M. 3: 613
d'Alembert, J-B. 2A: 37
Dedekind, R. 4: 444

Egorov, D. 1: 249
Euler, L. 2A: 394
Fejér, L. 1: 153
Fourier, J. 1: 151
Fréchet, M. 1: 501

Frobenius, F. G. 4: 446

Gel'fand, I. M. 4: 387
Hadamard, J. 2A: 469
Hardy, G. H. 3: 46
Hartogs, F. 2A: 583
Hausdorff, F. 1: 48
Helly, E. 1: 424
Hermite, C. 1: 537
Hilbert, D. 4: 42
Hörmander, L. 3: 368
Hurewicz, W. 2A: 26
Hurwitz, A. 2A: 246
Jacobi, C. G. 2A: 534
Jensen, J. L. 1: 387
John, F. 3: 534
Jordan, C. 2A: 164
Kato, T. 4: 537
Kelvin, Lord 3: 250
Klein, F. 2A: 282
Koebe, P. 2A: 368
Kolmogorov, A. N. 1: 629
Krein, M. G. 4: 601

Landau, E. 2A: 470
Laurent, P. 2A: 123
Lebesgue, H. 1: 230
Lévy, P. 1: 659

Liouville, J. 2A: 499
Littlewood, J. E. 3: 47
Luzin, N. 1: 226
Lyapunov, A. M. 1: 655
Marcinkiewicz, J. 3: 556
Markov, A. 1: 674
Minkowski, H. 1: 371
Mittag-Leffler, G. 2A: 400
Möbius, A. F. 2A: 283
Montel, P. 2A: 239
Noether, F. 4: 216
Paley, R. E. A. C. 2A: 562
Picard, E. 2A: 574
Poisson, S. D. 2A: 180
Riemann, G. F. B. 2A: 315
Riesz, F. 1: 238
Riesz, M. 3: 489
Runge, C. 2A: 155

Schmidt, E. 4: 108
Schur, I. 2A: 305
Schwartz, L. 1: 513
Schwarz, H. 2A: 117
Stieltjes, T. J. 1: 193
Stone, M. H. 1: 93
Szegő, G. 4: 282
Tietze, H. 1: 61
Urysohn, P. 1: 61
Verblunsky, S. 4: 283
Vitali, G. 2A: 239
von Neumann, J. 4: 534
Weierstrass, K. 2A: 404
Weyl, H. 2A: 266
Wiener, N. 1: 327
Zygmund, A. 3: 601

Barry Simon is currently an IBM Professor of Mathematics and Theoretical Physics at the California Institute of Technology. He graduated from Princeton University with his Ph.D. in physics. In 2012 Simon won the International Association of Mathematical Physics' Poincaré Prize for outstanding contributions to mathematical physics. He has authored more than 400 publications on mathematics and physics.
Receive updates about the set and hear from the author himself at www.facebook.com/simon.analysis.

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis.

The set includes the following parts:

Part 1: Real Analysis

Part 2A: Basic Complex Analysis

Part 2B: Advanced Complex Analysis

Part 3: Harmonic Analysis

Part 4: Operator Theory

Each part can be purchased either individually or as part of the set.
To order the books, please visit www.ams.org/simon-set.

[^0]: ${ }^{1}$ Interview with D. J. Albers, The College Mathematics Journal, 25, no. 1, January 1994.
 ${ }^{2}$ M. Reed and B. Simon, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972.

[^1]: ${ }^{3}$ U. Bottazzini and J. Gray, Hidden Harmony-Geometric Fantasies. The Rise of Complex Function Theory, Springer, New York, 2013.
 ${ }^{4}$ V. I. Arnol'd, On teaching mathematics, available online at http://pauli.uni-muenster. de/~munsteg/arnold.html.
 ${ }^{5}$ S. M. Stigler, Stigler's law of eponymy, Trans. New York Acad. Sci. 39 (1980), 147-158.
 ${ }^{6}$ H. C. Kennedy, Classroom notes: Who discovered Boyer's law?, Amer. Math. Monthly 79 (1972), 66-67.
 ${ }^{7}$ C. B. Boyer, A History of Mathematics, Wiley, New York, 1968.
 ${ }^{8}$ J. R. Newman, The World of Mathematics, Simon \& Schuster, New York, 1956.

[^2]: ${ }^{9}$ E. Goursat, A Course in Mathematical Analysis: Vol. 1: Derivatives and Differentials, Definite Integrals, Expansion in Series, Applications to Geometry. Vol. 2, Part 1: Functions of a Complex Variable. Vol. 2, Part 2: Differential Equations. Vol. 3, Part 1: Variation of Solutions. Partial Differential Equations of the Second Order. Vol. 3, Part 2: Integral Equations. Calculus of Variations, Dover Publications, New York, 1959 and 1964; French original, 1905.

[^3]: ${ }^{1}$ L. Gillman, P. R. Halmos, H. Flanders, and B. Shube, Four Panel Talks on Publishing, Amer. Math. Monthly 82 (1975), 13-21.

[^4]: ${ }^{2}$ http://www.merriam-webster.com/dictionary/kvetch
 ${ }^{3}$ Quoted by Max Delbruck, Mind from Matter? An Essay on Evolutionary Epistemology, Blackwell Scientific Publications, Palo Alto, CA, 1986; page 167.

[^5]: ${ }^{4}$ See, e.g., V. Bogachev, Measure Theory, Springer, 2007.

[^6]: ${ }^{5}$ P. Lax, Functional Analysis, Wiley, 2002.

[^7]: ${ }^{1}$ See B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, second edition, revised and enlarged edition, Universitext, Springer, New York, 2010.

[^8]: ${ }^{2}$ See Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, New York, 1972.

