Appendix D

Solutions to Selected Exercises

Exercise 1.5.6 part (8) Prove that f is a regulated function on I = [a, b] if and only if both the limits

$$\lim_{x \to c+} f(x) \text{ and } \lim_{x \to c-} f(x)$$

exist for every $c \in (a, b)$. (See section VII.6 of Dieudonné [**D**]).

Proof. Suppose that f is a regulated function defined on [a, b]. Given ε there exists a step function g such that $|f(x) - g(x)| < \varepsilon$ for all $x \in [a, b]$. Let $A = \lim_{x \to c+} g(x)$ so

$$A-\varepsilon \leq \liminf_{x \to c+} f(x) \leq \limsup_{x \to c+} f(x) \leq A+\varepsilon.$$

Hence

$$\limsup_{x \to c+} f(x) - \liminf_{x \to c+} f(x) < 2\varepsilon$$

Since this holds for arbitrary positive ε we conclude $\limsup_{x \to c+} f(x) = \liminf_{\substack{x \to c+\\ \text{same.}}} f(x)$ so $\lim_{x \to c+} f(x)$ exists. The argument for $\lim_{x \to c-} f(x)$ is the same.

Conversely suppose the limits

$$L_y^+ = \lim_{x \to y+} f(x) \text{ and } L_y^- = \lim_{x \to y-} f(x)$$

1

exist for every $y \in (a, b)$. Define f(x) for $x \notin [a, b]$ by setting f(x) = f(a) for x < a and f(x) = f(b) for x > b. Suppose $\varepsilon > 0$ is given. Then for each $y \in [a, b]$ there is a $\delta_y > 0$ such that $|L_y^- - f(x)| < \varepsilon$ for $x \in (y - \delta_y, y)$ and $|L_y^+ - f(x)| < \varepsilon$ for $x \in (y, y + \delta_y)$.

We define a step function g_y by

$$g_y(x) = \begin{cases} L_y^-, & \text{if } x \in (y - \delta_y, y) \\ L_y^+, & \text{if } x \in (y, y + \delta_y) \\ f(y), & \text{if } x = y \\ 0, & \text{otherwise.} \end{cases}$$

Notice that for all x in the open interval $U_y = (y - \delta_y, y + \delta_y)$ we have $|g_y(x) - f(x)| < \varepsilon$.

The collection $\{U_y\}$ for $y \in [a, b]$ is an open covering of the compact interval [a, b]. Hence there is a finite subcovering $\{U_{y_i}\}_{i=1}^n$. Let $U_i = U_{y_i}$ and $g_i = g_{y_i}$.

Define $\mathfrak{X}_i(x) = 1$ if $x \in U_i$ and 0 otherwise and let

$$N(x) = \sum_{i=1}^{n} \mathfrak{X}_{i}(x)$$

so N(x) is the number of U_i 's which contain x. Note that N(x) is a step function and $N(x) \ge 1$. Also we define $f_i(x) = f(x)\mathfrak{X}_i(x)$ observe that $|f_i(x) - g_i(x)| < \varepsilon$ for all $x \in [a, b]$ since $f_i = f$ on U_i and both f_i and g_i are 0 outside U_i . Moreover we observe

$$f(x) = \frac{1}{N(x)} \sum_{i=1}^{n} f_i(x).$$

because there are N(x) values of i where $f_i(x) = f(x)$ and $f_i(x) = 0$ for the others.

Finally we define a step function

$$g(x) = \frac{1}{N(x)} \sum_{i=1}^{n} g_i(x).$$

Notice that g(x) is just the average of the N(x) values $\{g_i(x)\}$ corresponding to the U_i 's containing x. Since each of these values $g_i(x)$ is

within ε of f(x) so is their average. More formally

$$|f(x) - g(x)| = \left|\frac{1}{N(x)}\sum_{i=1}^{n} f_i(x) - \frac{1}{N(x)}\sum_{i=1}^{n} g_i(x)\right|$$
$$= \left|\frac{1}{N(x)}\sum_{i=1}^{n} (f_i(x) - g_i(x))\right|$$
$$\leq \frac{1}{N(x)}\sum_{i=1}^{n} |f_i(x) - g_i(x)|$$
$$\leq \frac{1}{N(x)} N(x) \varepsilon = \varepsilon.$$

Hence for any ε we have found a step function g uniformly within ε of f. So f is regulated.

Exercise B.2.11 part (8) Outer measure μ^* is not in general additive. Prove however that if $U = \bigcup_{n=1}^{\infty} U_n$ is a countable union of pairwise disjoint open intervals $\{U_n\}$ and A is a bounded subset of \mathbb{R} then

$$\mu^*(A \cap U) = \sum_{n=1}^{\infty} \mu^*(A \cap U_n)$$

Proof. Countable subadditivity of μ^* implies

$$\mu^*(A \cap U) \le \sum_{n=1}^{\infty} \mu^*(A \cap U_n).$$

Given $\varepsilon > 0$ we choose a countable cover $\{W_j\}_{j=1}^{\infty}$ of $A \cap U$ by pairwise disjoint open intervals W_j such that

$$\sum_{j=1}^{\infty} \operatorname{len}(W_j) < \mu^*(A \cap U) + \varepsilon.$$

It exists by part (4) of Exercise B.2.11.

Let $V_{jn} = U_n \cap W_j$ so $\{V_{jn}\}$ is also a cover of $A \cap U$ by pairwise disjoint open intervals. Since $W_j = \bigcup_n V_{jn}$ we may conclude from part (7) of Exercise B.2.11 that

$$\sum_{n=1}^{\infty} \mu^*(V_{jn}) = \mu^*(W_j)$$

and hence that

(D.1.1)
$$\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \mu^*(V_{jn}) = \sum_{j=1}^{\infty} \mu^*(W_j) \le \mu^*(A \cap U) + \varepsilon.$$

But $\{V_{jn}\}_{j=1}^{\infty}$ is a cover of $A \cap U_n$ for each fixed n and hence

$$\mu^*(A \cap U_n) \le \sum_{j=1}^{\infty} \mu^*(V_{jn})$$

 So

$$\mu^*(A \cap U) \le \sum_{n=1}^{\infty} \mu^*(A \cap U_n) \le \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \mu^*(V_{jn}) \le \mu^*(A \cap U) + \varepsilon$$

by inequality (D.1.1). Since this holds for every $\varepsilon > 0$ we conclude

$$\sum_{n=1}^{\infty} \mu^*(A \cap U_n) = \mu^*(A \cap U).$$

Exercise B.3.5 Let \mathcal{S} denote the collection of all subsets A of \mathbb{R} such that

$$\mu^*(A \cap J) + \mu^*(A^c \cap J) = \mu^*(J)$$

for every interval J = [a, b] in \mathbb{R} .

(1) Prove that if $A \in \mathcal{S}$ and U is an open subset of \mathbb{R} . then

$$\mu^*(A \cap U) + \mu^*(A^c \cap U) = \mu^*(U).$$

Proof. We first observe that

$$\mu^*(A \cap U) + \mu^*(A^c \cap U) = \mu^*(U)$$

for every open interval U = (a, b) in \mathbb{R} as a consequence of part (1) of Exercise B.2.11 since $J = [a, b] = U \cup \{a, b\}$.

Let U be an arbitrary open subset of \mathbb{R} . Then by Theorem (A.6.3) $U = \bigcup_{n=1}^{\infty} U_n$, a countable union of pairwise disjoint open intervals U_n . By part (8) of Exercise B.2.11

$$\mu^*(A \cap U) = \sum_{n=1}^{\infty} \mu^*(A \cap U_n).$$

4

Similarly

$$\mu^*(A^c \cap U) = \sum_{n=1}^{\infty} \mu^*(A^c \cap U_n) \text{ and } \mu^*(U) = \sum_{n=1}^{\infty} \mu^*(U_n)$$

Hence

$$\mu^{*}(U) = \sum_{n=1}^{\infty} \mu^{*}(U_{n}) = \sum_{n=1}^{\infty} \mu^{*}(A \cap U_{n}) + \mu^{*}(A^{c} \cap U_{n})$$
$$= \sum_{n=1}^{\infty} \mu^{*}(A \cap U_{n}) + \sum_{n=1}^{\infty} \mu^{*}(A^{c} \cap U_{n})$$
$$= \mu^{*}(A \cap U) + \mu^{*}(A^{c} \cap U).$$

(2) Use (1) to prove that if $A \in \mathcal{S}$ and X is any bounded subset of \mathbb{R} then

 $\mu^*(A \cap X) + \mu^*(A^c \cap X) = \mu^*(X).$

Proof. Let X be an arbitrary bounded subset of \mathbb{R} . By the regularity of outer measure there is a sequence of open sets U_n such that $X \subset U_n$ and $\lim_{n\to\infty} \mu^*(U_n) = \mu^*(X)$. Defining $V_m = \bigcap_{n=1}^m U_n$ we observe that V_m is open, $V_{m+1} \subset V_m$ and $\lim_{m\to\infty} \mu^*(V_m) = \mu^*(X)$.

If $A \in \mathcal{S}$ monotonicity implies $\mu^*(A \cap V_m) \ge \mu^*(A \cap X)$ and $\mu^*(A^c \cap V_m) \ge \mu^*(A^c \cap X)$ for each $m \in \mathbb{N}$. So

$$\mu^*(X) = \lim_{m \to \infty} \mu^*(V_m)$$

=
$$\lim_{m \to \infty} \mu^*(A \cap V_m) + \mu^*(A^c \cap V_m) \text{ by part (1)}$$

$$\geq \mu^*(A \cap X) + \mu^*(A^c \cap X).$$

The fact that $\mu^*(X) \leq \mu^*(A \cap X) + \mu^*(A^c \cap X)$ follows from subadditivity of outer measure. Hence $\mu^*(X) = \mu^*(A \cap X) + \mu^*(A^c \cap X)$. \Box

Exercise 4.2.6 part (5) Egorov's theorem: If $\{f_n : I \to \mathbb{R}\}$ is a sequence of measurable functions converging pointwise to $f : [0,1] \to \mathbb{R}$, prove that for any $\varepsilon > 0$ there is a set $A \subset I$ with $\mu(A) < \varepsilon$ such that $\{f_n\}$ converges uniformly to f on A^c . This is sometimes referred to as the third of Littlewood's three principles.

 $\mathbf{Proof.}$ Consider the sets

$$E(n,m) = \bigcup_{k=n}^{\infty} \left\{ x \mid |f_k(x) - f(x)| \ge \frac{1}{m} \right\}.$$

Since

$$\lim_{k \to \infty} f_k(x) = f(x)$$

 $\lim_{k \to \infty} f_k(x) = f(x)$ for each x, it follows that $|f_k(x) - f(x)| < 1/m$ for all sufficiently large k and hence $\bigcap_{k=1}^{\infty} E(k,m) = \emptyset$.

The sets E(k,m) satisfy $E(k+1,m)\subset E(k,m)$ so

$$\lim_{k\to\infty}\mu(E(k,m))=0.$$

Thus for each *m* there is n_m such that $\mu(E(n_m, m)) < \frac{\varepsilon}{2^m}$.

Let $A = \bigcup_{m=1}^{\infty} E(n_m, m)$. Then

$$\mu(A) = \mu \big(\bigcup_{m=1}^{\infty} E(n_m, m)\big) < \sum_{m=1}^{\infty} \frac{\varepsilon}{2^m} = \varepsilon.$$

If $x \in A^c$, then $x \notin E(n_m, m)$ for every m > 0 so $|f_k(x) - f(x)| < 1/m$ for all $k > n_m$. This implies that f_k converges uniformly to f on $A^c.$