
Updates and additional information on “Seifert Fiberings”

p. 38, 2.6.4.
See the discussion in this updates (p.373) for a precise definition of lens

spaces.

p. 42, Exercise 2.7.10

Last formula qx̂ = h−1 ◦ x̂ should change to qx̂ = h−1 • x̂

p.50, Proof of Lemma 3.1.11.

We do not need ′S
1

since π1(M) is torsion free and so evx∗ is either injective

or trivial. So use S1 itself instead of ′S
1

throughout the proof.

p.51, Line 5. .... commute. (insert) [See Corollary 2.3.6.] Thus, .....

p. 52, after Corollary 3.1.17
Theorem 3.1.16 and Corollary 3.1.17 are also valid for closed aspherical

cohomology manifolds over Z. In fact, many places in the book, results for manifolds
remain valid when manifold is replaced by cohomology manifold because many of
the properties of manifolds are solely cohomological in nature, and consequently
are also enjoyed by cohomology manifolds.

p. 53, Add to Remark 3.1.19.
In a recent preprint : arXiv:1108, 2321v1 [math.GT] Aug 11 2011, Syl-

vian Cappell, Shmuel Weinberger, and Min Yan show that in any dimension ≥ 6,
there are closed aspherical manifolds (CAM) with fundamental groups having Z as
centers, yet do not possess any non-trivial topological circle actions. Thus their
theorem is a negative answer to the first question in 3.1.19 (2). This question was
first proposed in [CR 69]. See also the Remark 11.7.5, page 249.

To construct such a manifold M , they form the mapping torus T (h) ,where
h is a self homeomorphism ofN . N is a CAM with centerless fundamental group and
h∗ is a non-conjugation automorphism of π1(N) of order 2. This N is a refinement
of a CAM N ′ constructed by Jonathon Block and Shmuel Weinberger (B-W) , On
the generalized Nielsen realization problem, Comment. Math. Helv. 83 (2008)
21-33, for which the Nielsen realization problem fails. (See 11.3 especially p.217
and 11.3.13.). Now if M = T (h) admits a circle action, it is easy to see that the
action is homologically injective, 11.6. By 11.6.2, M would fiber equivariantly over
the circle and its fiber N would admit a Z2 involution inducing h∗ as an outer
automorphism. In (B-W) it is shown that neither N ′, nor any ANR homology
manifold N ′′ homotopically equivalent to N ′, admits an involution inducing h∗ or
a conjugate of h∗.

The major technical arguments are the modification of N ′ to N and any
ANR homology manifold homotopy equivalent to it will have the desired properties
to yield a contradiction to the existence of a circle action on M .

The universal covering of N is contractible but may fail to be Euclidean
space. However, the universal covering of M is homeomorphic to Euclidean space.
This follows from Manifolds covered by Euclidean space, Topology 14 (1975) by
Ronnie Lee and Frank Raymond where it is shown that the universal covering
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of a CAM ,of dimension > 4, whose fundamental group has a non-trivial finitely
generated normal abelian subgroup is homeomorphic to Euclidean space..

p. 53, Add to Remark 3.1.20.
Mike Davis, in his book The Geometry and Topology of Coxeter Groups

Princeton University Press (2008), presents a detailed account of his and his collab-
orators’ techniques in constructing closed aspherical manifolds that are very unlike
those arising from discrete subgroups of Lie groups. This accessible and well written
book covers many topics of current interest in aspherical manifold theory.

p. 54 Line 9 of the proof of Proposition 3.1.21.
The fact that CG∗(Π) is Abelian comes from the general fact p.103, Corol-

lary 5.5.3.

p. 56 Theorem 3.2.5 (2).
Add an assumption that Fix(G,M) 6= ∅. Only then the evaluation map

(at a fixed point) θ : G→ Aut(Φ) is defined.

p.56, Add just before Definition 3.2.4

Theorem 3.2.5 states which conclusions of Theorem 3.2.2 still holds when the space
M (which is not assumed to be a manifold) is A-admissible. Let us strengthen p-
admissible to now mean a space M for which the only periodic homeomorphisms of

M̃ of period a power of a prime p that commute with the covering transformations
are elements of the center of π1(M). This is the same as saying that Zpn × π1(M)

does not act effectively on M̃ , or equivalently that the p-torsion of the center of
π1(M) injects onto the p-torsion of the centralizer of π1(M) in G∗. With this
strengthening, the conclusions (2), (3), (4) of Theorem 3.2.2 hold for p-groups G
and conclusion (1) of 3.2.2 holds for G compact and connected.

Theorem 3.3.1 (page 59) also has an analogue for the strengthened p-
admissible spaces M . Replace M by a connected closed orientable ANR Zp-
cohomology m-manifold. Let f : M → K(Γ, 1) be a map with Γ p-torsion free.
Suppose f∗ : Hm(K(Γ, 1);Zp) → Hm(M ;Zp) is onto. Then M is strengthened
p-admissible and consequently the conclusions of 3.2.2 holds for p-groups as we have
just described above. Note also if π1(M) has no p-torsion, then we get the same
conclusion without assuming Γ is p-torsion free. When p = 2, the fixed set may
have (dimM)−1 = m−1 dimension. The map Hm(Z2\M ;Z2)→ Hm(M ;Z2) = Z2

is still trivial since Hm(Z2\M ;Z2) = 0 because the m-th local cohomology group
of Z2\M , with coefficients in Z2, is trivial at each x in the image of an m − 1
dimensional component of the fixed set and is Z2 otherwise. The sheaf of Z2-local
cohomology groups over Z2\M is locally constant away from the m−1 dimensional
components of the fixed set of dimension m − 1. Therefore the sheaf fails to have
a non trivial section and hence Hm(Z2\M ;Z2) = 0.

p. 59. Line −3 and Line −5
Replace f by f∗

p. 59. Proposition 3.2.14.
Is the converse true? That is: If N is admissible and M covers N , is M

admissible?
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p. 61, Lemma 3.3.7. Line 8

π1(XH , x
′) is an epimorphism. By [MY57, Corollary 1] or [Bre72, II-6.2],

p. 67 Line −10

The second X ′ should read X̃.

p. 67 Line −9

X ′ should read X̃.

P 67, Theorem 3.5.2.
Line 2 below diagram, π1(T k, x′) should read π1(T k, 1).

P 67, Add after Theorem 3.5.2.
The proof of this theorem does not require the finite generation of the

center of the fundamental group of X. The splitting was proved earlier in [CR 69
section 7] for aspherical manifolds.

As an illustration where the center is not finitely generated, consider the
mapping telescope T of a sequence of circles each being mapped onto the next by
a 2-fold covering. The fundamental group of the telescope is the set of rationals
of the form Q′ = {m/2n : m and n integers}. T is a K(Q′, 1)-space. There is an
obvious injective circle action on the telescope with orbit space the interval [0,∞].
The action is free over [0, 1) , of isotropy group Z2 over [1, 2), and isotropy Zn2 over
[n− 1, n) for each n.

The splitting action (S1, TZZ) = (S1, S1 × W ) where W is a tree. To
understand this tree W , consider the pre-telescope Tn, i.e., the telescope for the
first n maps of the circle. Starting with the identity over 0, we get the pre-telescope
over [0, 1]. This is a circle action on the Möbius band which lifts to a splitting action
where W1 is an arc with a Z2 action – a reflection across the middle. The next stage
W2 is homeomorphic to the capital letter H, where Z4 = Z22 acts freely everywhere
except for the crossbar of the H where the isotropy subgroup is Z2 except for the
middle where it is Z4. One then continues inductively to construct the action of Q′

on the tree, limWn, with quotient [0,∞). At each stage one constructs the covering
action of Zn2 on S1 ×Wn commuting with the lifted free S1 action. One can also
construct a similar telescope to be a K(Q, 1)-space with an injective circle action
with properties similar to T .

p. 68 Corollary 3.5.3.
Insert (cf. [CR 69 , 7.2]).

p. 90 Second display (Line 15)
first line of this display: Replace Z2 × Z2 with H.

p. 91 Line 3 of third paragraph

Replace “the subgroup” by “a subgroup”

p. 103 Line 2–3

Replace “g(E) is a subgroup” by “of t(E)”.

p. 105 Line 6

Replace “(β)” by “η(β)”
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p. 147, Example 8.3.13 Line 4

change Go (Z2 × Z2) to Go (Z4 o Z2).

p. 156 Line 18

Replace “N” by “Z(N)”.

p. 169 Line −5

Replace “Q” by “Q0”.

p. 170 Line −6
Aut(Γ) should read Out(Γ).

p. 177 Line −3 and −1

Replace “(Q\W )” by “(Q0\W )”.

p. 196 Line −4 (in the short exact sequence)

Replace “T k” by “T k”.

p. 197 Line 6 of Proof 6 (i.e., Line 21)

Replace “over P” by “P over W”.

p. 198 Line 2
“bbrk” should read Rk.

p. 200 Line 4 of Proposition 10.4.9

into an E[P,Q], which is not split. That is, no θ : E → E[P,Q], which is
not split, exists. Moreover, there are, over each ...

p. 201 Line 7

Replace “hqZ” by “h0
Z”

p. 201 Line 1 of 10.5
Ep,q should read Ep,q.

p. 203 Line −3

Replace in the last term, “Q\W” by “Q”

p. 220. 11.3.13.
The CAM N of Block and Weinberger as discussed in the addenda to 3.1.19

is an admissible CAM manifold which has an admissible extension which can not
be realized by an action.

p.225–226, 11.3.29

(Nothing wrong, more explanation) The embedding Zk n−→ Zk induced

by multiplication by n, induces the homomorphism H3
ψ(F ;Zk)

n−→ H3
ψ(F ;Zk) also

given by multiplication by n. If we rewrite H3
ψ(F ; 1

nZ
k) as H3

ψ(F ;Zk), then α∗
is multiplication by n. Then di, in the argument on page 226, is the Bocktein
differential di : Hi(F ;T k) −→ Hi+1(F ; (Zn)k) induced from the exact sequence
0→ (Zn)k → T k → T k/(Zn)k ∼= T k → 0.

p. 226 Line 13 (in the second diagram)
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Replace “(αψ)” by “o(ψ)”

p. 226 Line −2 from Theorem 11.3.30

Replace “H3(G;Z3)” by “H3(G;Zk)”

p. 237 Line 3

Replace “X” by “M”

p.237 (after Theorem 11.6.2 (Splitting Theorem) [CR-71])

Remark. The Halperin-Carlsson Torus Conjecture states that if
there exists an almost free torus action T k on an n-dimensional space X, then

2k ≤
n∑
i=0

dimQHj(X;Q).

Recently, Y. Kamishima and M. Nakayama [KN] showed the conjecture
holds for homologically injective torus actions. This easily follows from the Splitting
Theorem [CR71] as formulated in 11.6.2. For, from the splitting (T k, T k ×Φ N) of
the (T k, X) action, we have the commutative diagram, where N can be chosen to
be path-connected:

T k ←−−−−
p1

T k ×N p2−−−−→ N

ν1

y/Φ ν

y/Φ\ ν2

y/Φ\
T k/Φ

N←−−−−
p1

T k ×N Tk\−−−−→
p2

N

We see, using the Künneth theorem, that

Hi(T
k;Z)⊗H0(N ;Z) −−−−→

p1∗
Hi(T

k;Z) −−−−→
ν1∗

Hi(T
k/Φ;Z)

is injective which implies Hi(T
k;Z)⊗H0(N ;Z) −−−−→

p1∗
Hi(X;Z) is also injective

for each i. Since 2k =
∑k
i=1 rankHi(T

k;Z) ≤
∑k
i=1 rankHi(X;Z), the result fol-

lows.
As corollaries, we see that the conjecture holds for all closed flat mani-

folds, all closed non-positively curved Riemannian manifolds, and almost free torus
actions on homologically Kählerian manifolds because these torus actions are all
homologically injective as stated in 11.6.9.

In [Pu], Volker Puppe shows that the conjecture holds for k ≤ 3, and for
any k ≥ 3 one has

∑∞
i=1 dimQHi(X;Q) ≥ 2(k + 1).

For k ≤ 2, the conjecture holds by an elementary spectral sequence argu-
ment.

Reference.
[KN] Y. Kamishima, M. Nakayama, Torus Actions and the Halperin-Carlsson Con-
jecture, Jun 22 2012 math.GT arXiv:1206.4790v1.
[Pu] Volker Puppe, Multiplicative aspects of the Halperin-Carlsson Conjecture, Geor-
gian Math J. 16 (2009), no.2 369–379.

p. 247 11.16.14 Replace Lines 1–3 of second paragraph
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The elements a ∈ H1(H\Y ;G) with G the sheaf of germs of continuous
functions of H\Y into G, represent the principal G-bundles (G,X) over G\X. The
elements b ∈ H1(H\Y ;H) with H the sheaf of germs of continuous functions of
H\Y into H, represent the principal H-bundles over H\Y . Since a is represented

p. 247 11.6.15 Line 3
H should read H.

p. 247 11.6.15 Line 6
“The set” should read “The cardinality of this set”

p. 248 Line −11
“π1(M,p(b))” should read “π1(MH , b)”.

p. 249 11.7.5.
See the addenda to 3.1.19 above.

p. 253 Line −12
Delete “is”.

p. 253 Line −12 and Line −9 (in the diagram)
“GL(n,R)” should read“GL(s,R)”.

p. 258 Line −12
After the end of 6, add

Let h : S1 × G∗6 → S1 × G6 be a homeomorphism and ψ∗ : Zn → S1 × G∗6,
ψ : Zn → S1 × G6 be embeddings of Zn into their respective first S1 factors. As
translational actions, the free Zn actions are locally smooth by default. Then the
action h(ψ∗(Zn)) is conjugate in S1 ×G6 to the action of ψ(Zn) by an element of
Aff(S1×G6). This conjugation can never be extended to the action of h(ψ∗(S1)).

p. 319 Line 8
the first ”m” should read “−m”

p. 322 14.8.1, Line 5

change (Z2 × Z2)\SO(3)/SO(3) to (Z2 × Z2)\SO(3)/SO(2).

p. 322 14.8.2, Line 2
gΓ should read Γg.

p. 326 Line −14

Replace “gcd” by “lcm”

p. 326 Line −6

Replace “G” by “G = G1”

p. 326 last line
G should read Gr

p. 327 Line 7
p−1

1 (Γ1)/G∞ should read p−1
1 (Γ1)\G∞

p. 336 Line 2 and 3
αj should read aj .
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p. 336 Line 6

“si” should read “sj”

p. 337 Line −1

−e(Σ(2, 3, 9)) =
54

182
=

1

6
=

3

2
− 4

3
.

p. 338 (ii) Add
We note that M is not homogeneous.

p. 350 Line 1 below diagram
Clearly, ν−1 restricted to D2 − ∂D2 =

p. 350 Line 3 below diagram
M should read M ′.

p. 360 Line −7

Replace “(z1, ξ
xi , rz2ξ)” by “(z1ξ

xi , rz2ξ)”

p. 365 Line 5

Replace “alpha” by “α”

p. 366, 15.3.1 second paragraph

Line −4 change L(r, 1) to L(−r, 1)
Line −3 change “positive” to “negative”

( See the update for page 273.)

p. 367, 15.3.2(b) last line should be

space −L(2m, 2m− 1) = L(2m, 1)

p. 368, second line above (e)

change L(β, 1) to L(−β, 1)

p. 368, two lines above Exercise 15.3.3.
course by 15.3.1, L(p, q) has some Seifert fibering of the form 〈(1, 0), (m,β), (m, r − β)〉,
where mr = p. Note...

p. 369, 15.3.4. In 4th line below the diagram

change Q\P2r to Q\P2

p. 371 Line −16

Replace second “P2·3n·k” by “P2·3n”

p. 373, Line 16

change ′′e2(γ) = −1 to ′′e2(γ) = 1
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p. 373. Lens spaces.
Lens spaces are the quotients of free linear actions by finite abelian groups

on spheres. The 3-dimensional lens spaces L(p, q) are defined on p. 373. The lens
space L(p, q) admits an S1-action with a circle of fixed points and one singular E-
orbit with slice invariant (µ, ν) where µ = p and νq ≡ 1 mod p. This is described in
14.5.1 on p. 312. The lens spaces L(p, q) are oriented according to our conventional
orientation. For example, L(p, 1) is the principal S1-bundle over S2 with euler class
−p. These lens spaces are classified up to orientation preserving homeomorphisms
by

L(p, q) ≈ L(−p,−q) ≈ L(p, q′) ≈ −L(p,−q) ≈ −L(p, p− q)
where qq′ ≡ 1 mod p or q ≡ q′ mod p, and ≈ denotes orientation preserving
homeomorphism.
Using Orlik’s formula (as corrected) on p. 368, but with invariants in Chapter 15,
we actually obtain, as to be expected, the oriented lens space L(−p, q) ≈ −L(p, q).
On pp. 366–368, several lens spaces have the wrong sign if we insist on orientation
preserving homeomorphisms. In the updates for pages 368-368 we have listed which
signs must be changed to give the correct orientations.

p. 374 15.4.1 (2)
gT2 = · · · e(gT1) = 0 should read e(gT2) = 0
gT3 = · · · e(gT1) = 0 should read e(gT3) = 0

p. 376 Line 5
Lemma 10.1.7 should read Lemma 10.1.8

p.376 Add before 15.6.

Remarks to 15.5.3 and 15.4.2 and cf. 15.7

We wish to determine the groups Π, and E(P,G) which embed in TOPS1(P ),
where G = Q′/Q is the simple group of order 168 which acts on the surface Σ3 of
genus 3, and P is any principal S1-bundle over Σ3. That is, we wish to find the
injections θ in the diagram 10.1.1 on page 181, where S1 is T k, F is a finite cyclic
group, and the role of Q is our group G.

Referring to the notation of 15.5.2, (S1,Mγ′) = {g = 0; (1, 0), (2,−1), (3, 1), (7, 1)}
is the unit tangent bundle of the orbifold Q′\R2, (14.8.3). Mγ is the pullback
Seifert fibering induced by the orbifold map Q\R2 → Q′\R2. The induced Seifert
fibering will be the unit tangent bundle of the surface, Σ3 of genus 3, whose eu-
ler class is 2 − 2g = −4 = − 1

42 · 168. Z = H2(Q′;Z) and γ′ is the generator,

Mmγ′ = {g = 0; (1, 0), (2,−m), (3,m), (7,m)} has e(Mmγ′) = − 1
42m = me(Mγ′).

The principal circle action on Mγ commutes with the free G = Q′/Q action on
the unit tangent bundle of Σ3 which is induced by the differential of the G action on
Σ3. By dividing by the free central Zm ⊂ S1-action on Mγ , we obtain an induced
G-action on the principal bundle Mmγ whose euler class is −4m.

If m is relatively prime to 42, the G-action on Mmγ is free, and if not relatively
prime to 42, the G-action will be branched over |Mmγ′ |, where |X| is the topological
space underlying the orbifold X, (see line 11 p.358). In the latter case, the reduced
Seifert invariants of the induced S1-action on |Mmγ′ | are determined by 15.2.15. If
γ′ is the other generator of H2(Q′;Z), then e(Mmγ′) = −e(Mmγ′). Therefore, it
suffices to consider only non-positive euler classes.
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Let Pn denote the principal S1-bundle over Σ3 with euler class −n. Then P1 is
a Zn-central covering of Pn and Mγ is P4. The principal S1-action on P1 descends to
the principal S1/Zn-action on Pn since Pn is just obtained by dividing by Zn ⊂ S1.
Thus, the lift of the S1-action on Mγ′ to Mγ = P4 is the S1/Z4 fiber action on P4.
The evaluation homomorphism evx∗ : π1(S1/Z4)→ π1(P4) is an isomorphism on to
the center of π1(P4), by 11.7.3. Therefore, this circle action cannot be lifted to P1.
However, the 4-fold central covering group S1 of S1/Z4 does lift to the principal
S1-action on P1. For clarity, we will write S1 for the principal S1-action on P1

and S1/Zn, the descent of this S1-action to the principal action on Pn. Since the
G-action on Σ3 lifts to an action of G as bundle automorphisms on P4, there is a
Z4-centrally extended action of G, call it G∗ as bundle automorphisms on P1. We
will show that this G∗-action is not split over G and this G-action on Σ3 is split
over each E(P4n, G) but not split on E(P4n, G) with n 6≡ 0 mod 4.

As in 15.4.2, examine the terms of low degrees of the ′E and ′′E spectral
sequences. We have

0→ H1(G;M(Σ3, S
1))

e1−→ H1(G;S1)
e2−→ H0(G;H1(Σ3;S1))

d−→ H2(G;M(Σ3, S
1))

e3−→ H2(G;S1).
This becomes, using the technique of 15.4.2,

0→ H2(G;Z)
e1−→ H2(G;Z)

e2−→ H2(Σ3;Z)G
d−→ H3(G;Z)

e3−→ H3(G;Z).

(It is important to keep in mind the interpretation of these exact sequences
especially 10.3.13).

The group Hi(G,Z) = 0, for i = 1 and 2, because G is perfect and H3(G;Z) =
0 from the horizontal exact sequence on page 204. H2(G;Z) is identical with
H2(Q′;Z) ∼= Z by [CR 72b, 3.10] as indicated in 15.4.2. Clearly, H2(Σ3;Z)G is also
Z and is generated by the euler class −1 of P1. Therefore, e2 is an injection and d is
the homomorphism onto the quotient group. H2(G;Z) corresponds to the principal
G-bundles P over Σ3 for which E(P,G) splits. Therefore P4 is mapped by e2 to
its euler class −4 in H2(Σ3;Z)G. But the generator of H2(G;Z) = H2(Q′;Z) =
H2(Q′;Z) corresponds to Mγ′ = G\P4, and so e2 is exactly multiplication by 4.
This means that the image of d is Z4.

If a is the generator ofH2(Σ3;Z)G, corresponding to P1, d(a) is the generator of
Z4. Thus, the central extension 0→M(Σ3, S

1)→ E(P1, G)→ G→ 1, represented
by d(a) is not split. Hence the extension 0→ Z4 → G∗ → G→ 1 is also not split.
Note that d(na) 6= 0 if n 6= 0 mod 4 and E(P4n, G) is always split.

We observe thatHi(G;H1(Σ3;Z)) = 0 for all i ≥ 0. Therefore, Hi(G;M0(Σ3, S
1))

→ Hi(G;M(Σ3, S
1)) is an isomorphism for all i ≥ 0. Consequently, we have ana-

lyzed the terms and verified the claims about the two exact sequences.
Using the universal coefficient theorem for cohomology, we have H2(G;Zs) =

H3(G;Z) ∗ Zs = Z4 ∗ Zs = Zgcd(4,s), a subgroup of Z4 (“∗” is the torsion product

in the universal coefficient theorem: H2(G;Zs) = H2(G;Z)⊗ Zs ⊕H3(G;Z) ∗ Zs).
This group is Z4 if and only if s is a multiple of 4.

Consider the embedding problem addressed in 10.1.1, page 181 for the principal
S1-bundle P1 over Σ3 with euler class −1. We have
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0 −−−−−→ Zs −−−−−→ Π −−−−−→ G −−−−−→ 1, a ∈ H2(G;Zs) ∼= Zs ∗ Z4yi yi y=

yi
0 −−−−−→ S1 −−−−−→ S1·Π=E −−−−−→ G −−−−−→ 1, i∗a ∈ H2(G;S1)y` yθ y=

y
0 −−−−−→ M(Σ3,S

1) −−−−−→ E(P1, Q) −−−−−→ G −−−−−→ 1, (`◦i)∗a∈H2(G;M(Σ3,S
1))∼=Z4y=

y∩ yρ
0 −−−−−→ M(Σ3,S

1) −−−−−→ TOP
S1 (P1) −−−−−→ TOP(Σ3)

where ` sends S1 to the constant map `(t). Here the groups are viewed as cohomol-
ogy classes. That is, a, i∗a and (` ◦ i)∗a are the cohomology classes representing
the group extensions on the horizontal lines.

We saw that the cohomology class representing the third horizontal exact
sequence is the generator of Z4 coming from the d image of the generator of
H2(Σ3;Z)G, the euler class of P1. This means that θ is injective if and only if
s is a multiple of 4. In fact, Π is G∗ when s = 4.

We may factor Z4n = Zs to describe E(Pn, G), cf. 15.7. The group S1 ·G∗ can
be identified with S1 ×Z4

G∗ which is injected by θ into E(P1, G), where Π = G∗

and s = 4. Clearly G∗\P1 is homeomorphic to Mγ′ . The central subgroup Z4n ⊂ S1

can be factored by dividing by Z4 and then by Zn or alternatively by dividing first
by Zn and then by the quotient Z4. We have the commutative diagram

(Π,P1)
Zn\−−−−→ (Π/Zn, Pn)yZ4\

yZ4\

Π/Z4\P4
Zn\−−−−→ (G,P4n)

It is now clear that Π\P1, Π/Zn\Pn, G\P4n are all homeomorphic to |Mnγ′ |.
This has been a complete analysis in the spirit of 15.7. As an exercise, do a

similar analysis for the Fuchsian group Q′ whose signature is (o; 2, 3, 8). The group
Q′ has a torsion free normal subgroup Q of index 48.

Reference. An important paper was inadvertently left out in the reference.
G. Hamrick and D. Royster, Flat Riemannian manifolds are boundaries, Invent.
Math. 66(1982), 405–413.

p. 393

“admissible group, 217” should read “admissible extension, 217”


