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Thanks for bringing typos, errors, and corrections to my attention goes to David

Pengelley and Frank Williams.

1. Corrections

I will not list punctuation mistakes or font errors unless they are too distracting.
• Page 37, Line -2

Replace F[V ]i by Ai.
• Page 93, Line -11

The second half of the proof of Theorem 4.2.4 does not prove the desired statement.
Starting at line -11 the proof should read as follows.

By hypothesis p 6 |d = e0 · · · em−1 so p 6 ||
(
· · ·

(
Σem−1 o Σem−2

)
· · · o Σe1

)
oΣe0 | and

hence the restriction of the Noether map

η : F[Ω](···(Σem−1 oΣem−2)···oΣe1)oΣe0 −→ F[V ]G

is an epimorphism. We need to show that

F[Ω](···(Σem−1 oΣem−2)···oΣe1)oΣe0

is generated by multipolarized elementary symmetric polynomials.
This is done with an iterated application of the first fundamental theorem of

invariant theory and induction on m.
For m = 1 this is a consequence of the first fundamental theorem for the sym-

metric group Σe0 , cf. page 87. So suppose m > 1 and we have shown that for the
defining representation Ω of

(
· · ·

(
Σem−2 o Σem−3

)
· · · o Σe1

)
oΣe0 and any k ∈ N the

algebra F[t
k

Ω](···(Σem−2 oΣem−3)···oΣe1)oΣe0 is generated by multipolarized elementary

symmetric polynomials. Note that

F[Ω](···(Σem−1 oΣem−2)···oΣe1)oΣe0 =
(
F[Ω]

(
×e0(···(Σem−1 oΣem−2)···oΣe2)oΣe1 )

))Σe0
.

Let c = d/e0. If Γ is the natural permutation representation for Σc, then

Ω = Γ t · · · t Γ←−−−−−−→e0

as Σc-set. Therefore

F[Ω]
(
×e0(···(Σem−1 oΣem−2)···oΣe2)oΣe1 )

)
= ⊗

e0

F[t
k

Γ](···(Σem−1 oΣem−2)···oΣe2)oΣe1 .

Γ regarded as a
(
· · ·

(
Σem−1 o Σem−2

)
· · · o Σe2

)
oΣe1-set is the defining representation

so t
k

Γ is a
(
· · ·

(
Σem−1 o Σem−2

)
· · · o Σe2

)
oΣe1-set to which our induction hypothesis

can be applied. We therefore conclude that

F[t
k

Γ](···(Σem−1 oΣem−2)···oΣe2)oΣe1

is generated by multipolarized elementary symmetric polynomials. Set

A = F[t
k

Γ](···(Σem−1 oΣem−2)···oΣe2)oΣe1 .
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Then

F[Ω]

(
×e0(···(Σem−1 oΣem−2)···oΣe2)oΣe1

)
= ⊗

e0

F[t
k

Γ](···(Σem−1 oΣem−2)···oΣe2)oΣe1 = ⊗
e0

A

and the action of Σe0 on ⊗e0A is by permutation of the factors. Therefore by
Theorem 4.1.2 and the inductive hypothesis we obtain

F[Ω](···(Σem−1 oΣem−2)···oΣe1)oΣe0 =
(
F[Ω]

(
×e0(···(Σem−1 oΣem−2)···oΣe2)oΣe1 )

))Σe0

=
(
⊗e0 A

)Σe0

is generated by multipolarized elementary symmetric polynomials. Hence F[V ]G

is generated by their images under the Noether map η, i.e., by fine orbit Chern
classes. �
• Page 146, Line -3

stabilizer
• Page 149, Line -14

The invariant q = x1x3+x2x5 is missing from the list of generators of F[x1, . . . , x5]Z/2.
• Page 193, Line -4

Replace V p′ by Vp′ .
• Page 195, Line 6

The second part of the proof of Theorem 7.2.2 is wrong. It can be corrected as
follows.

Theorem 7.2.2 : Let ρ : G ↪→ GL(n, F) be a representation of a finite group
G over the field F. Assume that F[V ]G = F[f1, . . . , fn]is a polynomial algebra.
Then the fundamental class, [F[V ]G], of the ring of coinvariants is a det−1-relative
invariant.

Proof
If G contains no transvections, then the given proof goes through.
Denote the fundamental class of F[V ]G by [F ], and assume that G contains a

transvection t. Then t generates a cyclic group < t > of order p. Moreover, by the
characterization of the fundamental class in Section 5.4 we have that

t[F ] = λt[F ]

for some λt ∈ F×. Hence

φ :< t >−→ F×, t 7→ λt

is a group homorphism. Since < t > has order p we find that λt is a p-th root of
unity and hence 1. �
• Page 197, Line 2

The matrix must look like 
1 0 0 . . . 0
0 1 0 . . . 0

. . .
0 . . . 0 1


• Page 197, Line 7

j = 1, . . . , n− 1
• Page 200, Line 10

Replace H by H.
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• Page 200, Line 11
Replace S set by Set.
• Page 200, Line 11

Add the assumption that aH = aH′ whenever s(H) = H ′.
• Page 200, Line 10

Add the conclusion s(L) = L.
• Page 200, Line -7/6

LG =
∏

H∈H(G) `
|sH |−1
sH

• Page 200, Line -4
Note that Lemma 7.2.5 is applicable because if s(Hs′) = Hs′′ then s′′ = ss′s−1 and
hence the two pseudoreflections s′ and s′′ have the same order.
• Page 224, Line 6

φ3 = x3y − xy3 = − 1
4 (ctop(x + 2y)− (x2 + y2)2 − 4x2y2)

• Page 231, Line -9
The reference [4] is incorrect. The correct one is indeed missing from the reference
list. So here it is:

J. Adem, The Relations on Steenrod Powers of Cohomology Classes, in: Alge-
braic Geometry and Topology, a symposium in honor of S. Lefschetz, pp 191-238,
Princeton University Press, Princeton NJ 1957.
• Page 249, Line -2

pn+m
W

• Page 253, Line 2
hom− codimFq [V ](M) ≥ r
• Page 258, Line -4

The correct formula in the statement of Corollary 8.6.2 is

Pqk

(dn,i) =


dn,i−1 for k = i− 1 ≥ 0,

−dn,idn,n−1 for k = n− 1 ≥ 0,

0 otherwise.

• Page 265, Line 6
The given proof of Corollary 9.1.7 relies on Lemma 9.1.6, and hence works only for
Noetherian algebras. However, direct computation shows the desired statement for
all unstable algebras:

Let f ∈
√

I. We need to show that Pi(f) ∈
√

I for all i ∈ N0. Since f ∈
√

I there
exists an s ∈ N0 such that fqs ∈ I. Therefore the Cartan formulae show that(

Pi(f)
)qs

= Piqs

(fqs

) ∈ I,

because I is P∗-invariant. Hence Pi(f) ∈
√

I. �
• Page 283, Line 14

Zarati
• Page 288, Line -8

relevance
• Page 292, Line -13

Replace D by D(n)qt

in the proof of Corollary 10.2.3 (four times).
• Page 293, Line 3

n = dim(TU(D(n)))
• Page 293, Line -3

φ : H ′′ −→ H ′
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• Page 295, Line 4
TU(H′) =
• Page 295, Line 14

H ′′ φ−→ H ′

• Page 295, Line -11
The subscript ) should be erased.
• Page 297, Line -18

finite dimensional
• Page 298ff, Line -4

In Section 10.4 sub- and superscripts of Tor have to be switched, so that the sub-
script carries the ring and the superscript the degree. This is just to make it con-
sistent with the notation elsewhere in the book.
• Page 302, Line -2

Fq[z1, . . . , zn]
• Page 305, Line 8

annihilates
• Page 306, Line 12

Lannes’s
• Page 306, Line 23

Erase line 23.
• Page 307, Line -14

the Auslander-Buchsbaum equality
• Page 310, Line -8

TU,α(TrG) :
• Page 339, Reference 161

Die Frage der...
• Page 340, Reference 181

S. Iyengar and L. Smith,
• Page 343, Reference 225

P. S. Landweber, L. Smith, and R. E. Stong,
• Page 344, Reference 246

Lannes’s T-Functor and Noetherian Finiteness
• Page 352, Reference 413

L. Smith and R. E. Stong
• Page 353, Reference 437

R. M. W. Wood
• Page 353, Reference 438

R. M. W. Wood
• Page 359, Column 1

Erase lines 13 - 17.
• Page 360, Column 1

Erase lines 11 - 12.
• Page 360, Column 1, Line 13

pseudoreflections
• Page 364, Column 1, Line -8

composite functor theorem
• Page 364, Column 2, Line -15

degree theorem
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• Page 364, Column 2, Line -6
derivation lemma
• Page 366, Column 1, Line -14

Noetherian
• Page 366, Column 1, Line -10

first fundamental theorem
• Page 366, Column 1, Line -9

first main theorem of invariant theory
• Page 368, Column 2, Line 12

Noether normalization theorem
• Page 368, Column 2, Line 20

Noetherian finiteness
• Page 370, Column 1, Line -10

formula
• Page 370, Column 1, Line -9

subgroups
• Page 371, Column 1, Line -1

W (F4)
• Page 371, Column 2, Line 1

Erase line 1.
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