Combinatorial Convexity

Errata and remarks

p. 7, in Theorem $1.10\left|U_{i}\right|=m \geq \beta^{1 / \varepsilon^{2}} n$ is the right condition. Point (ii) should read "For every choice of $W_{i} \subset U_{i}$ with $\left|W_{i}\right| \geq \varepsilon m$ for all $i \in[k]$, the subhypergraph on W_{1}, \ldots, W_{k} contains at least one edge."
p. 7 , in Exercise 1.9 should say ".. many copies of $K_{1, d}$ and $K_{d, d}$."
p. 11 , line 7 should say ".. that is, $b=\sum_{1}^{n} \beta_{i} a_{i}$ satisfying $1=\sum_{1}^{n} \beta_{i}$."
p. 15, in Exercise 3.1 should read ".. the points in A have a unique affine dependence (up to a scalar multiplier),"
p. 19, in Exercise $4.4 f$ is a map from the $d-1$ skeleton of $\Delta^{2 d}$ to $\mathbb{R}^{2 d-2}$ (and not to \mathbb{R}^{d}).
p. 25, Exercise 5.3 should say $n=(r-1) d+1$. Further, unions should be there instead of intersections. Precisely, "Show that there are disjoint sets $I_{1}, \ldots, I_{r} \subset[n]$ such that $\bigcup_{i \in I_{1}} A_{i}=\bigcup_{i \in I_{2}} A_{i}=\ldots=\bigcup_{i \in I_{r}} A_{i} \neq \emptyset . "$
p. 28 , line 20 should say "Now M is a $(n+d) \times(n+d-1)$ matrix."
p. 39, Theorem 9.1 is valid for $d=1$ as well.
p. 45, Theorem 11.1 is valid for $d=1$ as well.
p. 59, line 7-8 should read "Note that either T_{2} or T_{3} contains at least $t / 12$ points of $C_{2}^{\prime \prime}$."
p. 68, last line of Theorem 17.2 should be ".. of the Y_{i} have the same order type."
p. 68, line 15 the containments go in the other direction: $X_{i}=X_{i}^{0} \supseteq X_{i}^{1} \supseteq$ $\ldots \supseteq X_{i}^{2^{d}-1}=Y_{i}$.
p. 69, Exercise 17.5 is based on Theorem 4 in [Bárány, Valtr, Discrete and Comp. Geometry, 19 (1998)]. Unfortunately, the statement there is not right and it is not clear how to correct it. Here is a possible version of the positive
fraction Tverberg theorem and I leave it to the reader to prove or disprove it.

Theorem Assume $d, r \in \mathbb{N}, r \geq 2$ and set $n=(r-1)(d+1)+1$. Then there is a positive constant $c(r, d)$ such that given sets $X_{1}, \ldots, X_{n} \subset \mathbb{R}^{d}$, there are subsets $Y_{i} \supset X_{i}$ with $\left|Y_{i}\right| \geq c(r, d)\left|X_{i}\right|$ for every $i \in[n]$ such that every transversal of the system Y_{1}, \ldots, Y_{n} has the same set of Tverberg partitions. p. 71 , line 16 should read ".. by the lines through y_{i-1}, y_{i} and y_{i+1}, y_{i+2}."
p. 72, bottom: after introducing two partial orderings, S_{i} is to be replaced by Z_{i} four times.
p. 73, in Figure 18.3 right the picture of the outer convex chains is wrong, it should look concave. In the Solution Manual Figure 18.1 shows a proper outer convex chain.
p. 117, typo in Exercise 28.1: the inequality $(d-1) p<(q-1) d$ should go with $<\operatorname{sign}($ and not with \leq).
p. 118, two typos in Exercise 28.5, in both upper bounds. The right form is: "Show that in Fact $28.4 \nu^{*}(\mathcal{F}) \leq(d+1)\binom{d(p-1)+1}{d+1}$, and $\tau(\mathcal{F}) \leq 2^{d+1}(d+$ 1) ${ }^{d} \nu^{*}(\mathcal{F})^{d+1}$."
p. 125, a simpler and more transparent way of finishing the proof is to show that for a finite family \mathcal{H} of d-intervals $\tau(\mathcal{H}) \leq d \tau^{*}(\mathcal{H})$.
p. 127, just above Theorem 31.1 should say ".. an early (and elegant) result of Lovász."
p. 135, typo in Exercise 32.2 where K is written instead of K^{*}.
p. 141, in Theorem 33.7 the condition that each \mathcal{C}_{i} satisfies the $(p, d+1)$ property is to be replaced by the following: "Assume that whenever we choose, for each $i \in[d+1]$, distinct sets $F_{i_{1}}, \ldots, F_{i_{p}} \in \mathcal{C}_{i}$, there are subscripts $j_{1}, \ldots, j_{d+1} \in[p]$ such that $\bigcap_{i=1}^{d+1} F_{j_{i}} \neq \emptyset . "$

