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1. Introduction

In this paper, we first show that the domain decomposition methods that are
usually efficient for solving elliptic problems typically fail when applied to acoustics
problems. Next, we present an alternative domain decomposition algorithm that is
better suited for the exterior Helmholtz problem. We describe it in a formalism that
can use either one or two Lagrange multiplier fields for solving the corresponding
interface problem by a Krylov method. In order to improve convergence and ensure
scalability with respect the number of subdomains, we propose two complementary
preconditioning techniques. The first preconditioner is based on a spectral analysis
of the resulting interface operator and targets the high frequency components of the
error. The second preconditioner is based on a coarsening technique, employs plane
waves, and addresses the low frequency components of the error. Finally, we show
numerically that, using both preconditioners, the convergence rate of the proposed
domain decomposition method is quasi independent of the number of elements in
the mesh, the number of subdomains, and depends only weakly on the wavenumber,
which makes this method uniquely suitable for solving large-scale high frequency
exterior acoustics problems.

Acoustic wave propagation problems lead to linear systems that become very
large in the high frequency regime. Indeed, for most discretization methods, the
mesh size h is typically chosen as one tenth of the wavelength in order to ensure
a basic approximation of the physical phenomena. For this reason, many iterative
solvers have been and continue to be developed for the Helmholtz problem. In this
paper, we consider a domain decomposition based iterative algorithm, because of
the success encountered by such methods for the solution of elliptic problems, and
because they can be easily implemented on parallel computers.
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The problem we are interested in solving arises from the discretization of the
Helmholtz equation in a bounded domain Ω with an outgoing boundary condition
on the outside boundary Γ = ∂Ω, and can be written as follows

Problem 1 (The exterior Helmholtz problem). Let f ∈L2(Ω) and fs ∈L2(Γ).
Find u ∈ H1(Ω) so that

−4 u− k2u = f in Ω(1)

∂u

∂n
+ αu = fs on Γ(2)

2. Domain decomposition for exterior acoustics problems

2.1. Classical domain decomposition methods for elliptic problems.
For elliptic problems, non-overlapping domain decomposition methods are usually
preferred. In such methods, one splits the initial domain Ω into a finite set of N
subdomains Ωi satisfying

Ω =
N⋃
i=1

Ωi, Ωi ∩Ωj = ∅ ∀i 6= j(3)

Let Ni = {j, j 6= i, ∂Ωi ∩ ∂Ωj 6= ∅}, be the set of indices j of the subdomains Ωj
that are neighbors of Ωi. For such problems, most domain decomposition methods
require solving the restriction to each subdomain of the global equation with a set
of boundary conditions imposed on the subdomain interfaces. For a suitable choice
of boundary conditions and constraints on the subdomain interfaces, each local
problem is a well-posed one, and the local solutions ui in Ωi are the restrictions to
each subdomain of the global solution in Ω.
In the FETI method (cf. C. Farhat and F.-X. Roux [9, 10]), known also as a
dual Schur complement method, the following interface conditions are used on
Γij = ∂Ωi ∩ ∂Ωj

∂ui
∂nij

= λij = −λji = − ∂uj
∂nji

on Γij ui = uj(4)

Problem 2 (The Dual Schur problem). Let f ∈ L2(Ω). Find ui ∈ H1(Ωi)
satisfying

−4 ui = f|Ωi in Ωi(5)

∂ui
∂nij

= λij on Γij ∀j ∈ Ni(6)

under the constraint

ui − uj = 0 on Γij ∀j ∈ Ni(7)

On the other hand, the primal Schur complement method (cf. P. le Tallec [12])
uses a Dirichlet boundary condition on the subdomain interfaces, which ensures the
continuity of the solution through these interfaces with the constraint

∂ui
∂nij

+
∂uj
∂nji

= 0 sur Γij ∀j ∈ Ni(8)

For such a method and in each subdomain, on has



44 ARMEL DE LA BOURDONNAYE ET AL.

Problem 3 (Primal Schur problem). Let f ∈ L2(Ω). Find ui ∈ H1(Ωi) satis-
fying

−4 ui = f|Ωi in Ωi(9)

ui = pij (= pji) on Γij ∀j ∈ Ni(10)

under the given constraint

∂ui
∂nij

+
∂uj
∂nji

= 0 on Γij ∀j ∈ Ni(11)

Remark 4. The local solutions obtained by any of the above methods satisfy
the following continuity equations

ui − uj = 0 on Γij ∀j ∈ Ni(12)

∂ui
∂nij

+
∂uj
∂nji

= 0 on Γij ∀j ∈ Ni(13)

These two equalities ensure that the function u which is equal to ui in each subdo-
main Ωi is the solution of the global problem in H1(Ω).

If any of the two domain decomposition methods presented above is used for
solving the Helmholtz problem, the associated local problems can become ill-posed
when the wavenumber k of the given global problem corresponds to a resonant
frequency of the subdomain Laplace operator. It follows that the interface bound-
ary conditions characteristic of domain decomposition methods for strongly elliptic
problems cannot be used for the Helmholtz equation (see also [1]).

In [3] and [4], B. Desprès presents a domain decomposition method for the
Helmholtz problem where the local subproblems are well-posed, but where a simple
(and rather inefficient) relaxation-like iterative method is employed for solving the
resulting interface problem. In this paper, we formulate the interface problem in
terms of Lagrange multipliers, and develop a scalable preconditioned Krylov method
for solving it.

2.2. A new domain decomposition method for the Helmholtz prob-
lem. One way to generate well-posed local problems consists in moving the spec-
trum of the operator associated to the Helmholtz equation in each subdomain into
the complex plane. For example, one can replace the standard Dirichlet or Neu-
mann boundary conditions on the subdomain interfaces by the Robin boundary
conditions Ωi and Ωj , ∀j ∈ Ni, can be written as

∂ui
∂n

+ ikui = λij on Γij ∀j ∈ Ni(14)

∂uj
∂n

+ ikuj = λji on Γij ∀j ∈ Ni(15)

where λij − λji = 0 and n is either nij or nji. The constraint on the subdomain
interfaces is determined so that local solutions ui and uj satisfy the continuity
relations (12) and (13). Hence, this constraint can be formulated as

[
∂u

∂n
− iku] = 0 on Γij ∀j ∈ Ni(16)
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where the brackets [· · · ] denote the jump of the enclosed quantity through the
interface Γij between two subdomains. It follows that the problem to be solved in
each subdomain is

Problem 5. Let f ∈ L2(Ω) and fs ∈ L2(Γ). Find ui ∈ H1(Ωi) satisfying

−4 ui − k2ui = f|Ωi in Ωi(17)

∂ui
∂n

+ ikui = λij on Γij ∀j ∈ Ni(18)

∂ui
∂n

+ αui = fs on Γ ∩ ∂Ωi(19)

with the constraint

[
∂u

∂n
− iku] = 0 on Γij ∀j ∈ Ni(20)

Strictly speaking, the above method is correct only for a slice-wise or a checker-
board-like decomposition of Ω. For arbitrary mesh partitions, the above method is
not guaranteed to generate well-posed local problems, unless additional precaution
is taken [7]. Indeed, the variational formulation of problem (5) is

∀vi ∈ H1(Ωi),
∫

Ωi

∇ui∇vi − k2

∫
Ωi

uivi + α

∫
Γ∩∂Ωi

uivi

=
∫

Ωi

fivi +
∫

Γ∩∂Ωi

fsi vi +
∑
j∈Ni

∫
Γij

∂ui
∂nij

vi(21)

Substituting in the above equation the normal derivative with the expression de-
rived from formula (18) leads to the following Lax-Milgram lemma bilinear form∫

Ωi

∇ui∇vi − k2

∫
Ωi

uivi + α

∫
Γ∩∂Ωi

uivi − ik
∑
j∈Ni

(−1)δ
n
nij

∫
Γij

uivi(22)

where δnnij is equal to 1 if n is the outgoing normal unit vector to Ωi, and is equal
to 0 otherwise. The H1-Ellipticity of the functional is then not satisfied for some
partitions of the domain Ω and the problem becomes locally ill-posed. However,
as shown in [7] and [5], coloring techniques can be used to extend the domain
decomposition method proposed above to arbitrary mesh partitions while ensuring
well-posed local problems. Alternatively, one can address general partitions of Ω by
relaxing the equality λij−λji = 0 and introducing independent Lagrange multipliers
λij and λji. In that case, in each subdomain Ωi, n is chosen as the outgoing unit
normal vector, and the global constraint is modified so that in each subdomain the
following problem is solved

Problem 6. Let f ∈ L2(Ω) and fs ∈ L2(Γ). Find ui ∈ H1(Ωi) so that

−4 ui − k2ui = f|Ωi in Ωi(23)

∂ui
∂nij

+ ikui = λij on Γij ∀j ∈ Ni(24)

∂ui
∂ni

+ αui = fs on Γ ∩ ∂Ωi(25)
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with the double constraint

[
∂u

∂nij
+ iku] = 0 and [

∂u

∂nji
+ iku] = 0 on Γij ∀j ∈ Ni(26)

Note that the above double constraint can be derived from linear combinations
of the continuity relations (12) and (13). Indeed, one has

(26a) = (13) + ik(12)

(26b) = (13)− ik(12)

Proceeding this way, we note that by inverting (26a) and (26b), the following al-
ternative double constraint is obtained

[
∂u

∂nij
− iku] = 0 and [

∂u

∂nji
− iku] = 0 on Γij ∀j ∈ Ni(27)

Nevertheless, we prefer formula (26) because it leads to a linear system of interface
equations whose spectrum and conditioning properties are preferable for iterative
solution methods (see [8]).

Remark 7. The domain decomposition method presented here is correctly de-
fined for a strictly positive wavenumber k, but becomes singular when k goes to 0.
In the latter case, the double constraint becomes

[
∂u

∂nij
] = 0 and [

∂u

∂nji
] = 0 on Γij ∀j ∈ Ni(28)

and relation (12) coupling the traces of the local solutions on the interfaces is never
satisfied. It follows that the method presented in this section cannot be used for
solving the Laplace equation.

Notation 8. In the following, we denote by Qij the operator

Qij :
∂ui
∂nij

+ ikui 7→ ∂ui
∂nij

− ikui(29)

It is shown in [2] that Qij is a unitary operator. Furthermore, its spectrum has
an accumulation point at 1. Numerically, the density around this point is inversely
proportional to the wavenumber k.

3. Variational formulation of the proposed domain decomposition
method

3.1. A Lagrange multiplier formulation. In order to analyze the domain
decomposition method presented in this paper, we begin by rewriting the Helmholtz
problem (1) as a hybrid problem with two Lagrange multiplier fields on the subdo-
main interfaces. Following [11] for the Laplace equation, we write the variational
formulation of our target problem as follows. Let f ∈ L2(Ω) and fs ∈ L2(Γ), find
u ∈ H1(Ω) so that

∀v ∈ H1(Ω),
∫

Ω

∇u∇v − k2

∫
Ω

uv + α

∫
Γ

uv =
∫

Ω

fv +
∫

Γ

fsv(30)

Next, we consider a decomposition of Ω into N subdomains

Ω =
N⋃
i=1

Ωi, Ωi ∩Ωj = ∅ ∀i 6= j(31)
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and rewrite the variational formulation (30) as follows. Let f ∈ L2(Ω) and fs ∈
L2(Γ). Find u ∈ H1(Ω) so that

∀v ∈ H1(Ω),
N∑
i=1

∫
Ωi

∇(u|Ωi)∇(v|Ωi)− k2

∫
Ωi

(u|Ωi)(v|Ωi) + α

∫
Γ∩∂Ωi

(u|Ωi)(v|Ωi )

=
N∑
i=1

∫
Ωi

(f|Ωi)(v|Ωi) +
∫

Γ∩∂Ωi

(fs|Ωi)(v|Ωi )(32)

where (v|Ωi) is the restriction of v to Ωi. Instead of looking for a function u defined
in Ω, it is easier to look for an N -uple u∗ = (u1, · · · , uN) belonging to a space V ∗

spanned by these restrictions.

V ∗ = {v∗ = (v1, · · · , vN ), ∃v ∈ H1(Ω), ∀i, 1 ≤ i ≤ N, vi = v|Ωi}(33)

The space V ∗ can be written in terms of the space X∗ which is the product of the
spaces Xi, defined by

Xi = {vi ∈ H1(Ωi)}, X∗ =
N∏
i=1

Xi(34)

as follows

V ∗ = {v∗ = (v1, · · · , vN ) ∈ X∗, ∀i, 1 ≤ i ≤ N, ∀j ∈ Ni, vi|Γij = vj|Γij}(35)

where vi|Γij is the trace on the interface Γij of the function vi. The constraint on
the subdomain interfaces can be relaxed by introducing a double Lagrange multi-
plier (λij , λji) in the equation as presented in the previous section. This Lagrange
multiplier belongs to the space M included in

∏
1≤i≤N

∏
j∈Ni H

− 1
2 (Γij). The initial

problem is thus equivalent to the following constrained problem

Problem 9. Let f ∈ L2(Ω) and fs ∈ L2(Γ), find u ∈ V ∗ so that :

∀v ∈ V ∗ ,

N∑
i=1

∫
Ωi

∇ui∇vi − k2

∫
Ωi

uivi + α

∫
Γ∩∂Ωi

uivi

=
N∑
i=1

∫
Ωi

fivi +
∫

Γ∩∂Ωi

fsi vi(36)

and, with the notation introduced above, to the hybrid problem

Problem 10. Let f ∈ L2(Ω) and fs ∈ L2(Γ), find (u∗, λ) ∈ X∗ ×M so that

∀v∗ ∈ X∗,
N∑
i=1

∫
Ωi

∇ui∇vi − k2

∫
Ωi

uivi + α

∫
Γ∩∂Ωi

uivi

+
∑
j∈Ni

∫
Γij

(−λij + ikui|Γij)vi|Γij =
N∑
i=1

∫
Ωi

fivi +
∫

Γ∩∂Ωi

fsi vi(37)

∀v ∈ X∗,
N∑
i=1

∑
j∈Ni

∫
Γij

(λij + λji − 2ikui|Γij)vi|Γij = 0
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N∑
i=1

∑
j∈Ni

∫
Γij

(λij + λji − 2ikuj|Γij )vi|Γij = 0(38)

In the sequel, we discretize problem (10) for conforming meshes using the
method of [10].

3.2. Discretization of the governing equations. Discretizing the hybrid
formulation derived in the previous section leads to

Aiui = fi +
∑
j∈Ni

Btijλij(39)

where the matrix Ai results from the discretization of the bilinear form∫
Ωi

∇ui∇vi − k2

∫
Ωi

uivi + α

∫
Γ∪∂Ωi

uivi + ik
∑
j∈Ni

∫
Γij

ui|Γijvi|Γij(40)

and Bij represents the operator

(Bijui, λij) = (ui, Btijλij) =
∫

Γij

λijui|Γij(41)

The question that arises first is that of the choice of the space of discretization for
the constraint variables λij and λji. But, as our problem is not exactly a hybrid
one, there is no way to fulfil the Ladyzhenskaya-Babuska-Brezzi condition uniformly.
As argued in the next remark, this is not a problem in our case, and following the
analysis presented in [10], we can choose for the operator Bij the restriction to the
interface of the operator Rij . Such an approach corresponds to choosing for the
constraint fields the space of the Dirac masses that are centered on the nodes of
the subdomain interfaces. Let us recall that this choice ensures the equality of the
discrete fields on the interface for the Laplace equation. Hence, if one defines Mij

as the mass matrix on the subdomain interfaces

(MijRijui, Rjiuj) = (RtjiMijRijui, uj) =
∫

Γij

ui|Γijuj|Γij(42)

one can discretize the first constraint of problem (10)∫
Γij

(λij + λji − 2ikui|Γij)uj|Γij = 0(43)

as

(λij + λji − 2ikMijRijui, Rjiuj) = 0(44)

which can be rewritten as

Rtji(λij + λji − 2ikMijRijui) = 0(45)

Taking into account that Rij = [0 I], on can deduce

λij + λji − 2ikMijRijui = 0(46)

Applying the same treatment to the second constraint, one finally obtains
N∑
i=1

∑
j∈Ni

λij + λji − 2ikMijRijui = 0(47)
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N∑
i=1

∑
j∈Ni

λij + λji − 2ikMjiRjiuj = 0(48)

Remark 11. Adding equations (47) and (48), one obtains the following system
of equations

N∑
i=1

∑
j∈Ni

−2ikMij(Rijui −Rjiuj) = 0(49)

and thus

(Rijui −Rjiuj) = 0 ∀i and j ∈ Ni(50)

In other words, the discrete fields ui are continuous across the subdomain inter-
faces. Hence, one can assemble the local equations and show that the local discrete
solutions in each subset Ωi are indeed the restrictions of the discrete solutions of
the global problem since there is no approximation in the way the constraints are
satisfied.

Substituting ui and uj obtained in equation (39) into equation (47) and equa-
tion (48), leads to the following interface problem

N∑
i=1

∑
j∈Ni

λij + λji − 2ikMijRijA
−1
i Rtijλij = 2ikMijRijA

−1
i fi(51)

N∑
i=1

∑
j∈Ni

λij + λji − 2ikMjiRjiA
−1
j Rtjiλji = 2ikMjiRjiA

−1
j fj(52)

Denoting by λ the double Lagrange multiplier (λij , λji) defined on all the interfaces,
the previous system can be written as

Dλ = b(53)

where D is a dense, complex, regular, unsymmetric and non hermitian matrix. This
matrix is not explicitely known, and assembling it is computationally inefficient.
However, given that D is the sum over the subdomains of local matrices, its product
by a vector needs only local data (see Section 2.3.2). For these reasons, an iterative
method is the most suitable method for solving the linear system Dλ = b.

3.3. Iterative solution of the the hybrid problem.
3.3.1. The Generalized Conjugated Residuals algorithm. Among all iterative

methods, the Generalized Conjugated Residuals algorithm (GCR) is perhaps the
most efficient for solving the linear system Dλ = b where D is a complex matrix.
This algorithm minimizes ||Dλ − b||2 on the Krylov spaces Kp+1 = {go, Dg0, · · · ,
Dpg0} with growing dimension p.
Knowing at iteration p the approximate solution λp , the residual gp = Dλp − b,
the normalized descent direction vectors {w0, · · · , wp} and their product by matrix
D, {Dw0, · · · , Dwp}, the iteration p+ 1 d of the GCR algorithm goes as follows

• Compute the optimal descent cœfficient

ρp = −(gp, Dwp)(54)
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• Update the solution and the residual

λp+1 = λp + ρpwp(55)

gp+1 = gp + ρpDwp(56)

• Compute the product of Dwp by matrix D

D2wp(57)

• Determine the new descent direction by orthogonalizing with respect to the
D?D inner product the vector Dwp and all the previously computed search
directions

γpj = −(D2wp, Dwj) ∀j = 0, · · · , p(58)

wp+1 = Dwp +
p∑
j=0

γpjw
j(59)

• Compute Dwp+1

Dwp+1 = D2wp +
p∑
j=0

γpjDw
j(60)

• Normalize wp+1

wp+1 =
wp+1√

(Dwp+1, Dwp+1)
Dwp+1 =

Dwp+1√
(Dwp+1, Dwp+1)

(61)

where (w, v) represents the scalar product of the vectors w and v in L2(Γ×Γ), and
w the complex conjugate of the vector w. Using the properties of orthogonality of
the different vectors, one can show that this algorithm converges with a number of
iterations that is smaller or equal to the dimension of matrix D.

3.3.2. Cost and implementation issues. The main part of the computations is
associated with the matrix-vector product, for which one has to solve a Helmholtz
problem with radiation conditions at each iteration, and in each subdomain. The
remainder of the computation consists of scalar products and linear combinations
of vectors.
As stated previously, the product of a vector by matrix D needs only data that is
local to each processor. This product is performed by first using matrices A−1

i , Mij

and Rij which are local to the subdomains, and then assembling the result over all
the subdomains.

The fact that Ai is a symmetric matrix allows us to use a Crout factorization
so that the products by matrix A−1

i can be obtained by forward and backward
substitutions. Since matrix Rij is a restriction matrix, it does not need be stored.
Furthermore, the rank of matrix Mij is equal to the number of degrees of freedom
on the interface between two subdomains. The use of a direct local solver, and
the properties of the operator on the interface ensure that the proposed domain
decomposition method has good convergence properties and is more robust than
other iterative methods. Also note that because only local matrices are factored,
this method is more economical than direct ones.

From the implementation viewpoint, the assembly part requires exchanging
messages containing one-dimensional arrays defined on the interfaces such as de-
scent directions, or Lagrange multipliers. Therefore, the amount of data exchanged
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Figure 1. Problem definition
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Figure 2. Real and imaginary parts of the exact solution

is small compared to the amount of computations performed. In other terms, the
product of a vector by matrix D consists in local forward and backward substitu-
tions followed by data exchanges between processors, and therefore the proposed
method is easily parallelizable on any multiprocessor.

4. Numerical scalability analysis

Here, we perform a set of numerical experiments to assess the convergence of
the proposed method for an increasing problem size, and/or an increasing number
of subdomains, and/or an increasing wavenumber. More specifically, we consider
a two-dimensional rectangular waveguide problem with a uniform source located
on the west side, and reflecting boundaries at the north and south sides. The
exact solution of this sharp problem is a plane wave traveling from west to east.
The domain Ω is discretized by finite elements and partitioned in a number of
subdomains. Homogeneous Neumann boundary conditions are applied on the north
and south sides of the domain, a non-homogeneous Dirichlet condition is applied
on its west side, and an absorbing condition on its east side.

The geometry of the domain and the real and imaginary parts of the exact
solution are shown on Fig. 1 and Fig. 2.

First, we investigate the dependence of the convergence of the proposed method
on the mesh size (Fig. 3). For this purpose, we fix the wavenumber k and the
number of subdomains and consider a series of mesh sizes h, h/2, h/3, . . . . The
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Figure 3. Effect on convergence of the mesh size
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Figure 4. Effect on convergence of the wavenumber

results reported in Figure 3 show that the convergence of the proposed domain
decomposition method is only weakly dependent on the mesh size h, which is quite
impressive given that no preconditioner has yet been explicitly introduced. This
corroborates the fact that operator Qij is unitary.

The next figure depicts the varation of the convergence of the method with
respect to the wavenumber for a fixed mesh size and a fixed number of subdomains
(Figure 4). The results reported in Figure 4 reveal a sublinear dependence on the
wavenumber k. Practically, this indicates that when the frequency of the problem
is increased, the convergence of the method deteriorates.



DD METHOD FOR THE EXTERIOR HELMHOLTZ PROBLEM 53

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

96 172 234

Lo
g 

of
 r

es
id

ua
l

Iteration number

PLANE test - H=..., h=H/100, k=100

H=1/2  method alone
H=1/3  method alone
H=1/4  method alone

Figure 5. Effect on convergence of the number of subdomains
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Figure 6. Convergence with a fixed number of wavelengths per subdomain

In order to study the effect of the number of subdomains, we fix the number
of degrees of freedom in the local meshes and the wavenumber, and increase the
number of subdomains. The corresponding results (Figure 5) show a linear depen-
dence with respect to the number of subdomains. The last study (Figure 6) shows
the effect on convergence of a simultaneous variation of the wavenumber and the
number of subdomains where kH is kept constant, H being the mean diameter of
a subdomain. The results clearly show a linear dependence of convergence on kH .

In summary, the method as presented so far seems to scale with the problem
size (mesh size), but not with the wavenumber and/or the number of subdomains.
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SΩ1 Ω2

Figure 7. Geometry of the model problem

Therefore, our next objective is to develop preconditioning techniques for ensuring
scalability with respect to the number of subdomains, and improving convergence
in the high frequency regime.

5. Preconditioning techniques

5.1. Definitions. Here, we restrict our analysis to the following canonical
problem (cf Figure 7).

Let S be a bounded set of IR2 with a regular surface. Domain Ω under consid-
eration is S × [0, L]. We use two subdomains Ω1 and Ω2 defined by

Ω1 = S × [0, L1](62)
Ω2 = S × [L1, L1 + L2](63)

with 0 < L1, 0 < L2 and L1 + L2 = L. The sectional variables are denoted by
x, y, the fiber variable is denoted by z. We will also use (x, y, z) = (Y, z) = X . We
denote by ΓI = S × L1 the interface between Ω1 and Ω2.

The interesting point about this problem is that it separates the variables and
facilitates the explanation of some features of the method.

Using the previously introduced notation, the matrix D of the condensed prob-
lem can be written as

D =
[

I Q2

Q1 I

]
(64)

where Q1 (resp. Q2) is a discrete form of the unitary operator introduced in the
notation (29), associated with subdomain Ω1 (resp. Ω2). The spectrum of matrix
D spreads on the unit circle of the complex plane centered in 1 and has two accu-
mulation points : one in 0 and the other in 2 (cf. Fig. 8).

Remark 12. If the existence of areas of accumulation of eigenvalues generally
accelerates the convergence of Krylov-like methods, it is nonetheless clear that the
accumulation point located in 0 deteriorates the conditioning of matrix D.

Remark 13. Increasing the frequency for a given mesh has two effects. First, it
diminishes the density around the accumulation points and increases the dispersion
of the spectrum. Second, the numerical accumulation points move away from 0 and
2. These two properties have contradictory effects on the convergence speed and
explain the various crossings of the convergence curves.
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Figure 8. Spectral analysis

5.2. Spectral analysis. When considering our canonical problem, the solu-
tions of the Helmholtz problem in Ω1 and Ω2 may be decomposed as the sums
of

ψn(z)φn(Y )(65)

where φn are the eigenfunctions of the Laplace operator on S denoted by ∆S .
Hence, we have

∆Sφn = −(λn)2φn.(66)

Thus, the functions ψn in each of the two subdomains satisfy the ordinary differ-
ential equation

ψ′′n + [k2 − (λn)2]ψn = 0.(67)

Two cases must be distinguished
• k2 > (λn)2 : this is the propagative case. We denote k′n =

√
k2 − (λn)2 and

we have ψn(z) = aeik
′
nz + beik

′
nz.

• k2 > (λn)2 : this is the case of a vanishing wave. We denote k′n =√
−k2 + (λn)2 and we have ψn(z) = aek

′
nz + bek

′
nz.

In each case, a and b are determined from the boundary conditions at z = 0 or
z = L.

Let us interpret physically the above two cases. The first case corresponds to
a wave which oscillates slowly on the interface and propagates through the subdo-
mains. The second case corresponds to a wave which oscillates so rapidly on the
interface that it cannot propagate in the subdomains. In order to speed up conver-
gence, we develop two complementary preconditioners that target the two different
cases. The high frequency phenomena on the interface — which corresponds to
vanishing waves in the subdomains and hence local waves around the interfaces
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— will be filtered by a local preconditioner. We will construct the local precondi-
tioner as an approximate inverse of the hermitian part of D. The low frequency
phenomena — which corresponds to waves propagating in all the subdomains —
will be filtered by a global preconditioner that will be referred to in the sequel as
the Coarse Grid preconditioner. This coarse grid preconditioner is a projection on
the space orthogonal to a set of functions which are defined on the interfaces. Here,
these functions are chosen as low frequency plane waves defined locally on each
interface Γij .

5.3. The local preconditioner.
5.3.1. The principle. Here, our goal is to replace the solution of the linear

system Dλ = b by the solution of the system MDλ = Mb, where matrix M is an
approximate inverse of matrix (D + D?)/2. We denote by n the vector normal to
ΓI and pointing towards the increasing z. Thus,

Q1 :
∂u1

∂n
+ iku1 7→ ∂u1

∂n
− iku1(68)

Q2 : −∂u
2

∂n
+ iku2 7→ −∂u

2

∂n
− iku2(69)

Let us represent Q1 (resp. Q2) in the basis of the functions φn(Y ).
If u1|ΓI = φn(Y ), then, in Ω1,

u1 =
ψn(z)
ψn(L1)

φn(Y ),

and

∂nu
1 =

ψ′n(L1)
ψn(L1)

φn(Y ).

Hence,

Q1 : φn(Y ) 7→ ψ1
n
′(L1)− ikψ1

n(L1)
ψ1
n
′(L1) + ikψ1

n(L1)
φn(Y ).(70)

Similarly,

Q2 : φn(Y ) 7→ −ψ2
n
′(L2)− ikψ2

n(L2)
−ψ2

n
′(L2) + ikψ2

n(L2)
φn(Y ).(71)

In the case of Dirichlet boundary conditions on the two faces of the cylinder, one
has

• ψ1
n(z) = sin(k′nz) in the propagative case,

• ψ1
n(z) = sh(k′nz) in the vanishing case,

• ψ2
n(z) = sin(k′n(z − L)) in the propagative case,

• ψ1
n(z) = sh(k′n(z − L)) in the vanishing case.

Hence,

• ψ1
n
′

ψ1
n

(L1) = k′ncotg(k′nL1) (prop. case),

• ψ1
n
′

ψ1
n

(L1) = k′n coth(k′nL1) (van. case),

• ψ2
n
′

ψ2
n

(L2) = −k′ncotg(k′nL2) (prop. case),
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• ψ2
n
′

ψ2
n

(L2) = −k′n coth(k′nL2) (van. case).

It follows that, in the propagative case,

Q1 : φn −→ k′ncotg(k′nL1)− ik
k′ncotg(k′nL1) + ik

φn(72)

Q2 : φn −→ k′ncotg(k′nL2)− ik
k′ncotg(k′nL2) + ik

φn(73)

For the vanishing case, one has to turn the cotangent functions into hyperbolic
cotangent functions.

Let us denote by λ1
n and λ2

n the eigenvalues of Q1 and Q2 that have appeared
above. In the φn basis, operator D can be written as

D =
[

1 λ2
n

λ1
n 1

]
(74)

and its hermitian part, denoted by HD, is

HD =
[

1 (λ2
n + λ̄1

n)/2
(λ1
n + λ̄2

n)/2 1

]
.(75)

To filter the vanishing modes, that is, the modes having a spatial frequency on the
interface that is greater than the wavenumber of the problem, we are going to look
for an approximate inverse of the hermitian part of matrix D in the limit λn >> k.

In this limit, we have : coth(k′nLi) = 1 +O(1/λpn), ∀p.
Hence,

λ1
n =

(λn)2 − 2ik
√

(λn)2 − k2 − 2k2

(λn)2
(76)

and,

λ2
n =

(λn)2 − 2ik
√

(λn)2 − k2 − 2k2

(λn)2
(77)

One can deduce

(λ1
n + λ̄2

n)/2 = 1− 2
k2

(λn)2
+O(1/λpn), ∀p.(78)

Similarly,

(λ̄1
n + λ2

n)/2 = 1− 2
k2

(λn)2
+O(1/λpn), ∀p.(79)

The inverse of HD can be written as

(HD)−1 =
[

1 −(λ2
n + λ̄1

n)/2
−(λ1

n + λ̄2
n)/2 1

]
1

1− |λ
2
n + λ̄1

n

2
|2
.(80)

which simplifies to

(HD)−1 = (1/4)

 1 +
(λn)2

k2
1− (λn)2

k2

1− (λn)2

k2
1 +

(λn)2

k2

+O(1/λ2
n).(81)
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Since the functions φn are eigenfunctions of ∆S with −(λn)2 as eigenvalues,

(HD)−1 = (1/4)

 1− ∆S

k2
1 +

∆S

k2

1 +
∆S

k2
1− ∆S

k2

+ L(82)

where L is a continuous operator from Sobolev space Hs into Hs+2. We will use
the first part of the formula defining (HD)−1 as a local preconditioner.

The goal of this local preconditioner is to filter the eigenmodes associated with
the eigenvalues that are close to zero. But, as a drawback, it also changes the
behavior of the other modes, and principally the low frequency ones.
Hence, we will have to correct this drawback by designing a preconditioner that
is associated with the propagative modes in order to achieve a good convergence.
This will be done by our coarse grid preconditioner that we present and discuss
later in this paper.

5.3.2. The Preconditioned Generalized Conjugated Residual algorithm. In the
case where a preconditioner M of matrix D is known, on can use a modified Gen-
eralized Conjugated Residual algorithm to solve the linear system Dλ = b. In this
algorithm, the successive descent direction vectors are built in order to create a
D∗D orthogonal basis of the successive Krylov spaces

Kp+1 = {Mg0,MDMg0, · · · , (MD)pMg0}.
The algorithm is now presented in details.

• Initialization

λ0, g0 = Dλ0 − b, w0 = Mg0(83)

• Computation of the product of vector w0by matrix D then normalization

Dw0/(Dw0, Dw0)1/2(84)

• Iteration p+ 1 of Preconditioned generalized conjugated residuals algorithm
for p ≥ 0

– Determination of the optimal descent cœfficient

ρp = −(gp, Dwp)(85)

– Update of the solution and its residual

λp+1 = λp + ρpwp(86)

gp+1 = gp + ρpDwp(87)

– Computation of the product of vector Dwp by matrix M

MDwp(88)

– Computation of the product of MDwp by matrix D

DMDwp(89)

– Determination of the new descent direction by orthogonalizing for
D?D vector MDwp with respect to the previously computed direc-
tions

γpj = −(DMDwp, Dwj) ∀j = 0, · · · , p(90)
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wp+1 = MDwp +
p∑
j=0

γpjw
j(91)

– Determination of vector Dwp+1

Dwp+1 = DMDwp +
p∑
j=0

γpjDw
j(92)

– Normalization of the new descent direction

wp+1 =
wp+1√

(Dwp+1, Dwp+1)
Dwp+1 =

Dwp+1√
(Dwp+1, Dwp+1)

(93)

5.3.3. Cost issues. The local preconditioner described above requires only a
matrix vector multiplication on the subdomain interfaces, and therefore is eco-
nomical and parallelizable. It is reminiscent of the “lunmped” preconditioner for
elasticity problems [10].

5.4. The coarse grid preconditioner.
5.4.1. The principle. The goal of this method which was first introduced by

Farhat, Chen, and Mandel in [5] for time-dependent elasticity problems is to build
an n+1 dimensional space W for a space V called Coarse Grid, and then to perform
the iterations of GCR in a space orthogonal to W . With a good choice of the basis
functions of the coarse grid, we aim at a better convergence of the algorithm, since
it starts with the initial knowledge of n+1 descent directions. From what has been
shown above, we choose for V , the space spanned by {v0, · · · , vm} where the vi
are low frequency functions on an interface. This space will filter the eigenmodes
associated with propagative phenomena.

More details on the theory of the coarse grid preconditioner can be found
in [6]. In this paper, we implement the coarse grid preconditioner by means of
reconjugations within the GCR algorithm. Of course it is not the unique way to do
this and we could have followed a method using the definition of matrix operators
as presented in [5] for instance, but the results would not have been changed.

In order to use the projected GCR algorithm, one has to build a basis W =
{w0, · · · , wn} that is D∗D orthonormal from basis V .As matrix D is regular, if
vectors vi are linearly independent, it will be the same for vectors wi and therefore
m = n. We want to construct W so that

wi =
m∑
j=0

hjivj and (Dwi, Dwj) = 0 ∀i 6= j

In matrix notation we have

W = V H such that (DW,DW ) = I(94)

This approach produces the same effect as a QR factorization of basis V . Let us
consider a Cholesky decomposition LL∗ of matrix (DV )∗(DV ). Then the equality
(94) becomes

(DVH)∗(DV H) = H∗LL∗H = I

By identifying factors, we deduce : H = L−∗. Hence, the computation of the basis
W simply amounts to forward substitutions in the system WL∗ = V . Once all the
vectors of W are computed, we can apply the Projected GCR algorithm described
next.
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5.4.2. The projected GCR algorithm. When a D∗D orthonormal basis {w0, · · · ,
wn} is known, it is possible to use a modified GCR, where the modification amounts
to building the successive descent directions by reconjugating them with vectors
{w0, · · · , wn}. The successive steps of the algorithm are

• Initialization

λ̃0, g̃0 = Dλ̃0 − b(95)

• Re-initialization by reconjugation

ρj = (g0, Dwj) ∀j = 0, · · · , n(96)

λ0 = λ̃0 +
n∑
j=0

ρjw
j , g0 = g̃0 +

n∑
j=0

ρjDw
j(97)

• Computation of the product of vector g0 by matrix D

Dg0(98)

• Computation of the first descent direction

γj = −(g0, Dwj) ∀j = 0, · · · , n(99)

wn+1 = g0 +
n∑
j=0

γjw
j(100)

• Determination of the quantity Dwn+1

Dwn+1 = Dg0 +
n∑
j=0

γjDw
j(101)

• Normalization of the first descent direction

wn+1 =
wn+1√

(Dwn+1, Dwn+1)
Dwn+1 =

Dwn+1√
(Dwn+1, Dwn+1)

(102)

• Iteration p+ 1 of the projected GCR for p ≥ n+ 1
– Determination of the optimal descent coefficient

ρp = −(gp, Dwp)(103)

– Update of the solution and the residual

λp+1 = λp + ρpwp(104)

gp+1 = gp + ρpDwp(105)

– Computation of the product of vector Dwp by matrix D

D2wp(106)

– Determination of the new descent direction by orthogonalizing for
D?D vector MDwp with respect to the previously computed direc-
tions

γpj = −(D2wp, Dwj) ∀j = 0, · · · , p(107)
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wp+1 = Dwp +
p∑
j=0

γpjw
j(108)

– Determination of vector Dwp+1

Dwp+1 = D2wp +
p∑
j=0

γpjDw
j(109)

– Normalization of the descent direction vector

wp+1 =
wp+1√

(Dwp+1, Dwp+1)
Dwp+1 =

Dwp+1√
(Dwp+1, Dwp+1)

(110)

5.4.3. Cost issues. Here again, the major part of the computation cost re-
sides in the matrix-vector product. The reconjugations are just scalar products
and linear combinations of vectors. It follows that the computation of basis W =
{w0, · · · , wn}, obtained by D∗D orthonormalization of basis V represents an im-
portant amount of computation. It would be as expensive as the computation of
the n + 1 first directions of GCR, if basis V were not defined locally, interface by
interface. The choice made for basis V and the fact that the Lagrange multipliers
are defined on the double of the global interface restrict the computation of the
product of a vector vi by matrix D to a product by the local matrix Ai, which is a
forward-backward substitution, and to exchanges of data between neighbor subdo-
mains. The cost to build the basis W is associated with that of performing in each
subdomain Ωi as many forward-backward substitutions as the number of interfaces
of the subdomain, and this for each coarse function defined on an interface. On
a parallel processor, if the number of coarse grid functions per interface remains
constant, an increase of the number of subdomains would have no effect on the local
computational cost of basis W . The cost of the basis functions of the coarse grid
is thus small compared to the cost of the computation of the n+ 1 first directions
of the GCR algorithm.

In the following section, we present the convergence curves when the precondi-
tioners proposed here are used. These curves show that the performance of the
proposed domain decomposition method equipped with the preconditioners de-
scribed here exhibits a low dependency on the wavenumber and on the number
of subdomains.

6. Performance of the preconditioned domain decomposition method

Here, we assess the impact of the preconditioners presented in the previous
sections on the convergence of the proposed domain decomposition method. For
this purpose, we employ the same test problem as that introduced in Section 4.

In a first step we investigate the influence of the number of coarse grid basis
functions on the number of iterations (Figure 9). As stated before, the coarse grid
preconditioner aims at filtering the phenomena associated with low frequencies on
the interfaces. If we choose a number of coarse grid basis functions that is too small
compared to mmax = kπ/L, some low frequency modes will be damped but the
others will slow down the method (L is the length of the interface). If we increase
the number of basis functions per interface to exceed mmax, the coarse grid will
affect the middle and high frequency oscillations on the interfaces. In other words,
the global preconditioner will interfere with the local one. Hence, it seems more
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Figure 9. Effect of the size of the coarse problem
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Figure 10. Effect of the local preconditioner

sensible to use the coarse grid preconditioner only for low frequencies and to use the
local preconditioner for high frequency phenomena. This strategy is also justified
by the fact that the local preconditioner increases the granularity of the method
without adding reconjugations at each iteration.

In Figure 10, one can see that the local preconditioner accelerates convergence
once the low frequency modes have been filtered.

In Section 4, we have exhibited the weak dependency of our method on the
mesh size. Here, we show in Figure 11 that this dependency is even weaker when
the two preconditioners are used.
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Figure 11. Optimal convergence results

Next, we fix the size of the local meshes and the geometry of the global problem
and focus on the value of parameter mmax, where mmax denotes the largest integer
satisfying mπ < kH where H is the length of a subdomain interface. In other
words, all the functions φm(Y ) with m > mmax correspond to vanishing modes
that do not propagate on a long range. We consider a given frequency and a
given number of subdomains N . If N is increased, the mean diameter H of the
subdomains is reduced, and so is mmax. The total number of basis functions of the
coarse grid space remains unchanged, but, locally the number of basis functions per
subdomain decreases; hence, the computational cost is reduced. Figure 12 shows
that the coarse grid preconditioner achieves a weak dependence of the method on
the the number of subdomains.

Next, we stress that the number of coarse grid functions must vary with the
wavenumber k. Indeed, when the frequency is increased, one has to proportionally
increase the number mmax in order to filter all the propagative modes. Figure 13
shows that, with an appropriate variation of the number of these functions per
interface, it is possible to increase the frequency with only a small variation in the
convergence histories. If the wavelength diminishes proportionally to the size of
the subdomain, i.e. so that the product kH remains constant, one can see that the
number mmax remains constant. In other terms, in that case one does not have to
increase the number of coarse grid functions for each subdomain interface boundary
(see Figure 14). This property is important for realistic exterior acoustics problems.

In summary, the results reported herein show that the performance of the
proposed domain decomposition method equipped with the proposed local and
global preconditioners is weakly dependent on the mesh size, the subdomain size,
and the frequency of the problem, which makes this method uniquely efficient at
solving high frequency exterior acoustics problems.
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Figure 12. Effect of the coarse grid preconditioner
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Figure 13. Performance results for the high frequency regime

7. Conclusions

In this paper, we have presented a Lagrange multiplier based domain decom-
position method for solving iteratively large-scale systems of equations arising from
the finite element discretization of high-frequency exterior Helmholtz problems.
The proposed method relies on three key ideas: (1) the elimination of local res-
onance via the stabilization of each subdomain operator by a complex interface
mass matrix associated with intersubdomain radiation conditions, (2) the use of
a carefully constructed local preconditioner for filtering high frequency errors and
accelerating convergence in the presence of fine meshes, and (3) the use of a global
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Figure 14. Effect of the coarse grid size

preconditioner constructed using a coarsening theory for filtering low frequency er-
rors and accelerating convergence in the presence of fine mesh partitions. A unique
characteristic of the proposed method is that, even in the absence of both precondi-
tioners, its number of iterations grows at most polylogarithmically with the number
of elements per substructure, and grows sublinearly with the wave number. Fur-
thermore, when equipped with both the local and global preconditioners derived in
this paper, the performance of the proposed method becomes almost insensitive to
the frequency range and number of subdomains, which makes this method uniquely
efficient at solving high frequency exterior acoustics problems [5].
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