
Contemporary Mathematics
Volume 218, 1998

Additive Domain Decomposition Algorithms for a Class of
Mixed Finite Element Methods

Axel Klawonn

1. Introduction

We discuss three different domain decomposition methods for saddle point prob-
lems with a penalty term. All of them are based on the overlapping additive Schwarz
method. In particular, we present results for a mixed formulation from linear elas-
ticity which is well suited for almost incompressible materials. The saddle point
problems are discretized by mixed finite elements; this results in the solution of
large, indefinite linear systems. These linear systems are solved by appropriate
Krylov space methods in combination with domain decomposition preconditioners.
First, we discuss an indefinite preconditioner which can be formulated as an over-
lapping Schwarz method analogous to the methods for symmetric positive definite
problems proposed and analyzed by Dryja and Widlund [3]. The second approach
can be interpreted as an inexact, overlapping additive Schwarz method, i.e. a do-
main decomposition method with inexact subdomain solves. This preconditioner is
symmetric positive definite and can be analyzed as a block–diagonal preconditioner,
cf. [5]. Our third method is based on a block–triangular formulation, cf. [4, 7], it
uses an overlapping additive Schwarz method for each of the block solvers. Nu-
merical results indicate that all of our methods are scalable. For brevity, for a list
of references to other domain decomposition approaches for saddle point problems,
we refer to Klawonn and Pavarino [6]. There are several other approaches to solve
saddle point problems iteratively, for a list of references we refer to [5], [4], and [8].

The results in this paper have been obtained in joint work with Luca F. Pavarino
from the University of Pavia, Italy.

The outline of this paper is as follows. In Section 2, we introduce the saddle
point problem and a suitable finite element discretization. In Section 3, we present
our preconditioner for saddle point problems with a penalty term. In Section 4,
computational results are given.
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2. A mixed formulation of linear elasticity

Let Ω ⊂ Rd, d = 2, 3 be a polygonal (resp. polyhedral) domain. We consider
a linear elastic material and denote by λ and µ the Lamé constants. The linear
strain tensor ε is defined by εij := 1

2 ( ∂ui∂xj
+ ∂uj

∂xi
). The material is assumed to be

fixed along the part of the boundary Γ0 ⊂ ∂Ω, to be subject to a surface force f1

along Γ1 := ∂Ω\Γ0, and to an external force f0. Other parameters often used in the
literature are Young’s modulus E and the Poisson ratio ν. They are related to the
Lamé constants by ν = λ

2(λ+µ) and E = µ(3λ+2µ)
λ+µ . It is known that the displacement

method of linear elasticity in combination with low order conforming finite elements
is not suitable for almost incompressible materials. These are materials where the
Poisson ratio ν approaches 1/2, or, in terms of the Lamé constants, where λ >> µ.
This failure is called Poisson locking. One approach to avoid the locking effect
is based on a mixed formulation, cf. Brezzi and Fortin [2] for a more detailed
discussion. We consider

−2µ
∫

Ω

ε(u) : ε(v) dx +
∫

Ω

divv p dx =
∫

Ω

f0 v dx+
∫

Γ1

f1 v ds∫
Ω

divu q dx − 1
λ

∫
Ω

p q dx = 0
(1)

∀v ∈ V, ∀q ∈ M , where V := {v ∈
(
H1(Ω)

)d
: v = 0 on Γ0} and M := L2(Ω).

Here, u denotes the displacement vector and p the Lagrange multiplier or pressure.
Let us now consider a formal framework for saddle point problems with a

penalty term. Let V and M be two Hilbert spaces with inner products (·, ·)V , (·, ·)M
and denote by ‖·‖V ,‖·‖M the induced norms. Furthermore, let a(·, ·) : V ×V → R,
b(·, ·) : V ×M → R, and c(·, ·) : M ×M → be bilinear forms. Then, we consider
the abstract problem

Find (u, p) ∈ V ×M, s.t.

a(u, v) + b(v, p) = < F, v > ∀v ∈ V
b(u, q) − t2 c(p, q) = < G, q > ∀q ∈M, t ∈ [0, 1],(2)

where F ∈ V ′ and G ∈M ′
.

Problem (2) is well-posed under some assumptions on the bilinear forms. Let
a(·, ·) be a continuous, symmetric, and V−elliptic bilinear form, i.e. ∃α > 0, s.t.
a(v, v) ≥ α ‖v‖2V ∀v ∈ V, let b(·, ·) be a continuous bilinear form satisfying an
inf–sup condition, i.e. ∃β0 > 0, s.t. infq∈M supv∈V

b(v,q)
‖v‖V ‖q‖M ≥ β0, and let c(·, ·)

be a continuous, symmetric and positive semi–definite bilinear form. Under these
assumptions, the operator associated with Problem (2) is uniformly bounded with
respect to the penalty term t. Note that these are not the most general assumptions
for (2) to be uniquely solvable. For a proof and further discussions, see e.g. Braess
[1]. This result also holds for suitable mixed finite elements, cf. [1]. The mixed
formulation of linear elasticity clearly satisfies the assumptions made in the abstract
formulation. Thus, (1) is a well–posed problem.

We discretize the saddle point problem (1) by a variant of the Taylor–Hood
element, i.e. the P1(h) − P1(2h) element. This element uses continuous, piecewise
linear functions on a triangular mesh τh with the typical meshsize h for the dis-
placement u and continuous, linear functions on a triangular mesh τ2h with the
meshsize 2h for the pressure p. Thus, the finite element spaces V h ⊂ V and
Mh ⊂ M are given by V h := {vh ∈ (C(Ω))d ∩ V : vh ∈ P1 on T ∈ τh} and
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Mh := {qh ∈ C(Ω) ∩M : qh ∈ P1 on T ∈ τ2h}. This results in a stable finite
element method, cf. Brezzi and Fortin [2] . Discretizing (2) by P1(h) − P1(2h)
elements, we obtain a linear system of algebraic equations

Ax = F ,(3)

where

A :=
(
A Bt

B −t2 C

)
, F :=

(
F
G

)
.

3. Additive domain decomposition algorithms

We discuss three different additive domain decomposition methods. In order to
keep our presentation simple, we consider for the rest of the paper the discrete prob-
lem using matrices and vectors instead of operators and functions. For simplicity,
we also always have in mind the concrete problem of mixed linear elasticity.

Let τH be a coarse finite element triangulation of Ω into N subdomains Ωi with
the characteristic diameter H . By refinement of τH , we obtain a fine triangulation
τh with the typical mesh size h. We denote by H/h the size of a subdomain without
overlap. From the given overlapping domain decomposition {Ωi}Ni=1, we construct
an overlapping partition of Ω by extension of each Ωi to a larger subregion Ω

′

i

consisting of all elements of τh within a distance δ > 0 from Ωi.
An important ingredient for the construction of our preconditioners are restric-

tion matrices Ri, i = 1, . . . , N which, applied to a vector of the global space, return
the degrees of freedom associated with the interior of Ω

′

i. For the description of the
coarse part, we need an extra restriction matrix Rt0 constructed by interpolation
from the degrees of freedom of the coarse to the fine triangulation. With respect to
the partition of our saddle point problem into displacement and Lagrange multiplier
(or hydrostatic pressure) variables, we can always assume an associated partion of
our restriction matrices, i.e. Ri = (Ri,uRi,p), i = 0, . . . , N .

3.1. An exact overlapping additive Schwarz method. Our first method
can be formulated as an additive Schwarz method in the general Schwarz frame-
work now well–known for the construction of preconditioners for symmetric positive
definite problems, cf. Smith, Bjørstad, and Gropp [9]. It has the form

B−1 = Rt0A−1
0 R0 +

N∑
i=1

Rti A−1
i Ri,(4)

where the Ai are local problems associated with the subdomains and A0 is the
coarse problem stemming from the coarse triangulation, cf. also Klawonn and
Pavarino [6]. Schwarz methods can also be defined in terms of a space decom-
position of V h ×Mh into a sum of local subspaces and a coarse space

V h ×Mh = V h0 ×Mh
0 +

N∑
i=1

V hi ×Mh
i .

For the P1(h)−P1(2h) finite elements, we define local problems with zero Dirichlet
boundary conditions for both displacement and pressure variables on the internal
subdomain boundaries ∂Ω

′

i \ ∂Ω. Additionally, we impose zero mean value for the
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pressure on each Ω
′

i. Then, we obtain the subspaces

V hi := V h ∩
(
H1

0 (Ω
′

i)
)d

Mh
i := {qh ∈Mh ∩ L2

0(Ω
′

i) : qh = 0 on Ω \ Ω
′

i}.

Since we use different mesh sizes for the displacement and pressure triangulation,
we have a minimal overlap of one pressure node, i.e. δ = 2h. Using the restric-
tion matrices Ri, our local problems Ai are defined by Ai := RiARti. The coarse
problem A0 := AH is associated with V h0 := V H ,Mh

0 := MH and Rt0 is the usual
piecewise bilinear interpolation matrix between coarse and fine degrees of freedom.

Note that B−1 is an indefinite preconditioner, and that it is well–defined since
A0 and Ai are regular matrices by construction. We are currently working on a
theoretical analysis of this method.

3.2. A block–diagonal preconditioner. Our second method is given by

B−1
D := Rt0D−1

0 R0 +
N∑
i=1

Rti D−1
i Ri,(5)

where

D :=
(
A O
O Mp

)
,

and Mp denotes the pressure mass matrix associated with the fine triangulation τh.
Here, we define our restriction matrices Ri, i = 1, . . . , N , s.t. the local problems are
defined with zero Dirichlet boundary conditions for both displacement and pressure
variables. In this case, we do not need the local mean value of the pressure to be
zero since we do not have to solve local saddle point problems in this preconditioner.
Analogous to the first preconditioner, we define the local problems as Di := RiDRti
and the coarse problem D0 := DH . This approach can be interpreted as an inex-
act additive Schwarz method, where the exact subdomain solves are replaced by
appropriate matrices. It can also be written as a block–diagonal preconditioner

B−1
D =

(
Â−1 O

O M̂−1
p

)
,

with Â−1 := Rt0,uA
−1
0 R0,u +

∑N
i=1R

t
i,u A

−1
i Ri,u and M̂−1

p := Rt0,pM
−1
0,p R0,p +∑N

i=1 R
t
i,pM

−1
i,p Ri,p. Analogous to the first preconditioner, we define the coarse

and local problems as A0 := AH ,M0,p := Mp,H and Ai := Ri,u AR
t
i,u,Mi,p :=

Ri,pMpR
t
i,p. The spaces V hi , i = 1, . . . , N , V h0 , and Mh

0 are as in the previous
subsection. Only the local spaces for the pressure are now of the form Mh

i := {qh ∈
Mh : qh = 0 on Ω\Ω′i}. Note that this preconditioner is symmetric positive definite
and can be used with the preconditioned conjugate residual method (PCR). It can
be analyzed in the framework of block–diagonal preconditioners for saddle point
problems with a penalty term, cf. Klawonn [5].

3.3. A block–triangular preconditioner. Our third preconditioner is of
block–triangular form where the block solvers are constructed by using an overlap-
ping additive Schwarz method. This method cannot be directly formulated in the
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Schwarz terminology. The preconditioner has the form

B−1
T :=

(
Â O

B −M̂p

)−1

,(6)

where Â and M̂p are defined as in Section 3.2. This preconditioner is indefinite
and can be analyzed as a block–triangular preconditioner for saddle point problems
with a penalty term, cf. Klawonn [4] or Klawonn and Starke [7].

4. Numerical experiments

We apply our preconditioners to the problem of planar, linear elasticity, cf.
Section 2. Without loss of generality, we use E = 1 as the value of Young’s modulus.
As domain, we consider the unit square, i.e. Ω = (0, 1)2 and we use homogeneous
Dirichlet boundary conditions for the displacements on the whole boundary. In this
case, our problem reduces to

−2µ
∫

Ω

∇u∇v dx +
∫

Ω

divv p dx =
∫

Ω

f0 v dx ∀v ∈
(
H1

0 (Ω)
)2∫

Ω

divu q dx − 1
λ+µ

∫
Ω

p q dx = 0 ∀q ∈ L2,0(Ω),
(7)

cf. Brezzi and Fortin [2], Section VI.1.
We discretize this problem with the P1(h) − P1(2h) elements from Section 2.

The domain decomposition of Ω is constructed by dividing the unit square into
smaller squares with the side length H . All computations were carried out using
MATLAB. As Krylov space methods, we consider GMRES in combination with the
preconditioners B−1 and B−1

T , and we use the preconditioned conjugate residual
method (PCR) with the preconditioner B−1

D . The initial guess is always zero and
as a stopping criterion, we use ‖rk‖2/‖r0‖2 ≤ 10−6, where rk is the k− th residual
of the respective iterative method. In all of our experiments, f is a uniformly
distributed random vector and we use the minimal overlap δ = 2h.

To see if our domain decomposition methods are scalable, we carried out some
experiments with constant subdomain sizeH/h = 8, appropriately refined mesh size
h, and increased number of subdomains N = 1/H2. Our experiments indicate that
all three domain decomposition methods give a scaled speedup, cf. Figures 1, 2, i.e.
the number of iterations seems to be bounded independently of h and N . In Figure
3, we show a comparison of the iteration numbers of the different preconditioners
for the incompressible limit case. Since we are using two different Krylov space
methods, in order to have a unified stopping criterion, we ran the experiments
presented in Figure 3 using the reduction of the relative error ‖ek‖2/‖e0‖2 ≤ 10−6

as a stopping criterion. Here, ek is computed by comparing the k−th iterate with
the solution obtained by Gaussian elimination. To have a comparison between our
domain decomposition methods and the best possible block–diagonal and block–
triangular preconditioners (based on inexact solvers for A and Mp), we also include
a set of experiments with these preconditioners using exact block–solvers for A
and Mp, cf. Figure 3. From these results, we see that our exact additive Schwarz
preconditioner has a convergence rate which is comparable to the one of the exact
block–triangular preconditioner.
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Figure 1. Elasticity problem with P1(h)−P1(2h) finite elements:
iteration counts for GMRES with overlapping additive Schwarz
preconditioner B−1
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Figure 2. Elasticity problem with P1(h)−P1(2h) finite elements:
iteration counts for PCR with block-diagonal (DIAG-OAS-PCR)
and GMRES with block-triangular (TRI-OAS-GMRES) precondi-
tioners using the overlapping additive Schwarz preconditioner as
block solver.

5. Conclusions

From our numerical results we see that the overlapping additive Schwarz ap-
proach is also a powerful way to construct preconditioners for saddle point problems.
There is strong indication that scalability which is known to hold for symmetric
positive definite problems also carries over to saddle point problems. Moreover, the
exact overlapping additive Schwarz method gives results that are comparable to
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Figure 3. Elasticity problem with P1(h) − P1(2h) finite el-
ements: iteration counts for different preconditioners; OAS-
EX-GMRES=GMRES with overlapping additive Schwarz and
exact subdomain solvers, DIAG-OAS-PCR=PCR with block-
diagonal preconditioner and overlapping additive Schwarz as
block solvers, TRI-OAS-GMRES=GMRES with block-triangular
preconditioner and overlapping additive Schwarz as subdomain
solvers, DIAG-EX-PCR=PCR with block-diagonal preconditioner
and exact block solvers, and TRI-EX-GMRES=GMRES with
block-triangular preconditioner and exact block solvers.

those obtained under best of circumstances by the block–triangular preconditioner.
The convergence rates of the exact additive Schwarz method are significantly faster
than those obtained by the domain decomposition methods based on the block–
diagonal and block–triangular approaches. We are currently working with Luca F.
Pavarino on a more detailed comparison, taking into account also the complexity
of the different preconditioners.
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