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1. Introduction

The Schwarz Alternating Method is a method devised by H. A. Schwarz more
than one hundred years ago to solve linear boundary value problems. It has garnered
interest recently because of its potential as a very efficient algorithm for parallel
computers. See the fundamental work of Lions in [7] and [8]. The literature on this
method for the boundary value problem is huge, see the recent reviews of Chan and
Mathew [5] and Le Tallec [14], and the book of Smith, Bjorstad and Gropp [11].
The literature for nonlinear problems is rather sparse. Besides Lions’ works, see
also Cai and Dryja [3], Tai [12], Xu [15], Dryja and Hackbusch [6], Cai, Keyes and
Venkatakrishnan [4], Tai and Espedal [13], and references therein. Other papers
can be found in the proceedings of the annual domain decomposition conferences.
In this paper, we prove the convergence of the Schwarz sequence for some 2nd-order
nonlinear elliptic partial differential equations. We do not attempt to define the
largest possible class of problems or give the weakest condition under which the
Schwarz Alternating Method converges. The main aim is rather to illustrate that
this remarkable method works for a very wide variety of nonlinear elliptic PDEs.

Let Ω be a bounded domain in IRN with a smooth boundary. Suppose Ω =
Ω1 ∪ Ω2, where the subdomains Ωi have smooth boundaries and are overlapping.
We assume the nontrivial case where both subdomains are proper subsets of Ω.
Let (u, v) denote the usual L2(Ω) inner product and ‖u‖2 = (u, u). Denote the
energy inner product in the Sobolev space H1

0 (Ω) by [u, v] =
∫

Ω
∇u · ∇v and let

‖u‖1 = [u, u]1/2. Denote the norm on H−1(Ω) by ‖ · ‖−1 with

‖u‖−1 = sup
‖v‖1=1

|[u, v]|.

Let 4i be the Laplacian operator considered as an operator from H1
0 (Ωi) onto

H−1(Ωi), i = 1, 2. The smallest eigenvalue of −4 on Ω is denoted by λ1 while
the smallest eigenvalue of −4i is denoted by λ1(Ωi), i = 1, 2. The collection of
eigenvalues on Ω is denoted by {λj}∞j=1. For notational convenience, we define
λ0 = −∞. We take overlapping to mean that H1

0 (Ω) = H1
0 (Ω1) + H1

0 (Ω2). In
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this paper, a function in H1
0 (Ωi) is considered as a function defined on the whole

domain by extension by zero. Let Pi denote the orthogonal (with respect to the
energy inner product) projection onto H1

0 (Ωi), i = 1, 2. It is well known that

d ≡ max(‖(I − P2)(I − P1)‖1, ‖(I − P1)(I − P2)‖1) < 1.

See Lions [7] and Bramble et. al. [2]. Throughout this paper, C will be used to
denote a (not necessarily the same) positive constant.

We shall consider two classes of Schwarz methods. The first class, nonlinear
Schwarz method, denotes a method where a sequence of nonlinear problems is
solved one subdomain after another one. The second class, linear Schwarz method,
is devoted to the method where a linear problem is solved in each subdomain.

The first Schwarz method for nonlinear problems is due to Lions [7]. He consid-
ers a functional I ∈ C1(H1

0 (Ω), IR) which is coercive, weakly lower semicontinuous,
uniformly convex and bounded below. By making a correction alternately in each
subdomain which minimizes the functional, he shows that the sequence converges
to the unique minimizer of the functional.

2. Nonlinear Schwarz Method

In this section, we use the Schwarz method in conjunction with the methods
of Banach and Schauder fixed points and of Global Inversion. The first result is an
adaptation of the variational approach of Lions [7] for linear problems to nonlinear
problems. We assume the nonlinearity satisfies a certain Lipschitz condition with
a sufficiently small Lipschitz constant so that the method of proof for the linear
problem still applies. See Lui [9] for a proof.

Theorem 1. Consider the equation

−4u = f(x, u,∇u) + g on Ω(1)

with homogeneous Dirichlet boundary conditions. Assume for every u, v ∈ H1
0 (Ω),

‖f(x, u,∇u)− f(x, v,∇v)‖ ≤ c
√
λ1‖u− v‖1,

where c is a constant such that c < 1 and

d <
√

1− c2 − c.(2)

Assume g ∈ L2(Ω). For n = 0, 1, 2, · · · and some u(0) ∈ H1
0 (Ω), define the Schwarz

sequence as:

−4u(n+ 1
2 ) = f(x, u(n+ 1

2 ),∇u(n+ 1
2 )) + g on Ω1, u

(n+ 1
2 ) = u(n) on ∂Ω1,

−4u(n+1) = f(x, u(n+1),∇u(n+1)) + g on Ω2, u
(n+1) = u(n+ 1

2 ) on ∂Ω2.

Then, the Schwarz sequence converges geometrically to the solution of (1) in the
energy norm. Here, u(n+ 1

2 ) is considered as a function in H1
0 (Ω) by defining it to

be u(n) on Ω \ Ω1 and u(n+1) is defined as u(n+ 1
2 ) on Ω \ Ω2.

It is an open problem to determine whether the Schwarz sequence converges
geometrically with just the condition c < 1.

Next, we give a similar result for an equation whose solution is shown to exist
by the Schauder/Schaeffer fixed point theorem. See Nirenberg [10] for instance.
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Theorem 2. Consider the equation

−4u = f(x, u,∇u) + g on Ω(3)

with homogeneous Dirichlet boundary conditions. Assume that f ∈ C1(Ω×IR×IRN )
and for every x ∈ Ω, a ∈ IR, ξ ∈ IRN , ∂f(x, a, ξ)/∂u ≤ 0 and |f(x, a, ξ)| ≤
C(1+|ξ|γ), where C, γ are positive constants with γ < 1. Assume g ∈ H1(Ω), u(0) ∈
H1

0 (Ω) and sufficiently smooth (g ∈ H [N/2]+1(Ω) and u(0) ∈ H [N/2]+3(Ω)). For
n = 0, 1, 2, · · · , define the Schwarz sequence as:

−4u(n+ 1
2 ) = f(x, u(n+ 1

2 ),∇u(n+ 1
2 )) + g on Ω1, u

(n+ 1
2 ) = u(n) on ∂Ω1,

−4u(n+1) = f(x, u(n+1),∇u(n+1)) + g on Ω2, u
(n+1) = u(n+ 1

2 ) on ∂Ω2.

Then, the Schwarz sequence converges geometrically to the solution of (3) in the
L∞ norm.

The proof can be found in Lui [9]. It can be divided into four steps. The first
step is to show that the Schwarz sequence is well defined. Next, we show that the
sequence is bounded in the H1 norm so that there exists a weak limit. Then, we
show that the sequence actually converges strongly (in H1) to this limit. Finally, we
use the maximum principle to show that this limit is in fact the unique solution to
the differential equation. Note that geometric convergence results from the strong
maximum principle which is used to show that the ratio of successive errors in the
L∞ norm is bounded by some constant less than one.

It is natural to inquire whether the rather strong condition on the nonlinearity,
∂f/∂u ≤ 0, is really necessary. We believe that any restriction on f leading to a
unique solution would also do. However, without any conditions on f , the quasi-
linear equation may have multiple solutions and some numerical evidence suggests
that the Schwarz sequence does not converge. We tried several examples for which
there are at least two distinct solutions. We monitor ‖u(n+ 1

2 ) − u(n)‖ in Ω1 ∩ Ω2

and find that it oscillates.
Next, we show that the Schwarz method can be applied to a certain class of

semilinear elliptic problem whose solution can be shown to be unique using the
Global Inversion Theorem. See Ambrosetti and Prodi [1].

Theorem 3. Consider the semilinear elliptic equation

−4u = λu + f(x, u) + g on Ω(4)

with homogeneous Dirichlet boundary conditions. Here λ ∈ IR is given with λ 6= λj
for all j and such that there exist positive integers j, l so that for every t ∈ IR,

λj−1(Ω1) < λ+ fu(x, t) ≤ λ < λj(Ω1), ∀x ∈ Ω1,

and

λl−1(Ω2) < λ+ fu(x, t) ≤ λ < λl(Ω2), ∀x ∈ Ω2.

Assume f ∈ C1(Ω, IR) and satisfies the conditions

‖f(x, vn)‖−1

‖vn‖1
→ 0 whenever ‖vn‖1 →∞(5)

and

λk−1 < λ+ fu(x, t) < λk
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for every x ∈ Ω and t ∈ IR and for some k ∈ IN. The function g is assumed to be
in H−1(Ω). For n = 0, 1, 2, · · · and any u(0) ∈ H1

0 (Ω), define the Schwarz sequence
as:

−4u(n+ 1
2 ) = λu(n+ 1

2 ) + f(x, u(n+ 1
2 )) + g on Ω1, u

(n+ 1
2 ) = u(n) on ∂Ω1,

−4u(n+1) = λu(n+1) + f(x, u(n+1)) + g on Ω2, u
(n+1) = u(n+ 1

2 ) on ∂Ω2.

Then the Schwarz sequence converges geometrically to the unique solution of the
semilinear elliptic equation (4) in the L∞ norm.

We note that (5) is satisfied when, for instance, f is a bounded function.
For the above semilinear equation, we made use of the property fu ≤ 0 in the

final step of the proof to show that the limit of the Schwarz sequence is the unique
solution to the original problem. It is unknown whether this assumption is really
necessary.

Next we consider the resonance problem for the above semilinear equation.

Theorem 4. Consider the semilinear equation

−4u = λ1u+ f(x, u) + g on Ω(6)

with homogeneous Dirichlet boundary conditions. Here f ∈ C1(Ω, IR) and satisfies
the following conditions:

1. ∃M such that |f(x, s)| ≤M, ∀x ∈ Ω, s ∈ IR.
2. lims→±∞ f(x, s) = f±, ∀x ∈ Ω.
3. f− ·

∫
Ω φ1 < −

∫
Ω gφ1 < f+ ·

∫
Ω φ1, where φ1 is the positive eigenfunction of

−4 corresponding to the principal eigenvalue λ1.
4. fu(x, s) ≤ 0, ∀x ∈ Ω, s ∈ IR.

The function g is assumed to be in H−1(Ω). For n = 0, 1, 2, · · · and any u(0) ∈
H1

0 (Ω), define the Schwarz sequence as:

−4u(n+1
2 ) = λ1u

(n+ 1
2 ) + f(x, u(n+ 1

2 )) + g on Ω1, u
(n+ 1

2 ) = u(n) on ∂Ω1,

−4u(n+1) = λ1u
(n+1) + f(x, u(n+1)) + g on Ω2, u

(n+1) = u(n+ 1
2 ) on ∂Ω2.

Then the Schwarz sequence converges geometrically to the unique solution of the
semilinear elliptic equation (6) in the L∞ norm.

3. Linear Schwarz Method

In the last section, each subdomain problem is still a nonlinear problem. We
now consider iterations where linear problems are solved in each subdomain. This
is of great importance because in practice, we always like to avoid solving nonlinear
problems. One way is in the framework of Newton’s method. Write a model semi-
linear problem as G(u) = u−4−1f(x, u) for u ∈ H1

0 (Ω). Suppose it has a solution
u and suppose that ‖4−1fu(x, u)‖ < 1, then for initial guess u(0) sufficiently close
to u, the Newton iterates u(n) defined by

u(n+1) = u(n) −Gu(u(n))−1G(u(n))(7)

converge to u. Note that the assumption means thatGu = I−4−1fu has a bounded
inverse in a neighborhood of u. Now each linear problem (7) can be solved using
the classical Schwarz Alternating Method. We take a different approach.
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Theorem 5. Consider the equation

−4u = f(x, u,∇u) + g on Ω(8)

with homogeneous Dirichlet boundary conditions. Assume for every u, v ∈ H1
0 (Ω),

‖f(x, u,∇u)− f(x, v,∇v)‖ ≤ c
√
λ1‖u− v‖1,

where c is a constant such that c < 1 and

d <
√

1− c2 − c.
Assume g ∈ L2(Ω). For n = 0, 1, 2, · · · and any u(0) ∈ H1

0 (Ω), define the Schwarz
sequence by,

−4u(n+ 1
2 ) = f(x, u(n),∇u(n)) + g on Ω1, u

(n+ 1
2 ) = u(n) on ∂Ω1,

−4u(n+1) = f(x, u(n+ 1
2 ),∇u(n+ 1

2 )) + g on Ω2, u
(n+1) = u(n+ 1

2 ) on ∂Ω2.

Then, the Schwarz sequence converges to the solution of (8) in the energy norm.

Note that each subdomain problem is a linear one.

4. Work in Progress and Conclusion

We now report some recent progress on Schwarz Alternating Methods for the
two-dimensional, steady, incompressible, viscous Navier Stokes equations. In the
stream function formulation, these equations reduce to the 4th-order nonlinear
elliptic PDE

42ψ = RK(4ψ, ψ) + f,

where ψ is the stream function, R is the Reynolds number, K is a skew-symmetric
bilinear form defined by K(u, v) = vyux − vxuy, and f is a forcing term. We
have constructed three different Schwarz sequences, nonlinear, linear and parallel
sequences and have been able to show global convergence of the sequences in the
H2 norm to the true solution provided the Reynolds number is sufficiently small.
Here, nonlinear and linear sequences refer to whether nonlinear or linear problems
are solved in each subdomain, and parallel sequence refers to the independence of
the problems in each subdomain. We give some further details for the nonlinear
Schwarz sequence below.

In the general case, the boundary conditions are inhomogeneous. We make a
simple change of variable so that the boundary conditions become homogeneous.
The problem now becomes42φ = RG(φ) where φ ∈ H2

0 (Ω) and G is an appropriate
nonlinear term. Let φ(0) ∈ H2

0 (Ω). For n = 0, 1, 2, · · · , define the nonlinear Schwarz
sequence as

42φ(n+ 1
2 ) = RG(φ(n+ 1

2 )) on Ω1(
φ(n+ 1

2 ),
∂φ(n+ 1

2 )

∂n

)
=

(
φ(n),

∂φ(n)

∂n

)
on ∂Ω1

and

42φ(n+1) = RG(φ(n+1)) on Ω2(
φ(n+1),

∂φ(n+1)

∂n

)
=

(
φ(n+ 1

2 ),
∂φ(n+ 1

2 )

∂n

)
on ∂Ω2.
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The result is that this sequence converges in H2 to the exact solution provided
R < C/(M + 1), where C is a constant depending on the geometry and is less than
one, and M = ‖φ(0) − φ‖H2 . We are now attempting to show a local convergence
result for Reynolds numbers larger than one.

In this paper, we showed how Schwarz Alternating Methods can be imbedded
within the framework of Banach and Schauder fixed point theories and Global
Inversion theory to construct solutions of 2nd-order nonlinear elliptic PDEs. Future
work include Schwarz methods for multiple subdomains, nonlinear parabolic and
hyperbolic PDEs and the consideration of Schwarz methods on nonoverlapping
subdomains.
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