1 A Simpler Proof of Theorem C.19

Remark 1 Note that if $u \in L^p(\Omega)$, $1 \le p \le \infty$, or u is nonnegative or nonpositive, then (C.6) is defined for all $\boldsymbol{x} \in \mathbb{R}^N$.

The first main result of this subsection is the following theorem.

Theorem 2 Let $\Omega \subset \mathbb{R}^N$ be an open set, let $\varphi \in L^1(\mathbb{R}^N)$ be a nonnegative bounded function satisfying (C.5), and let $u \in L^1_{loc}(\Omega)$.

- (i) If $u \in C(\Omega)$, then $u_{\varepsilon} \to u$ as $\varepsilon \to 0^+$ uniformly on compact subsets of Ω .
- (ii) For every Lebesgue point $\boldsymbol{x} \in \Omega$ (and so for \mathcal{L}^N a.e. $\boldsymbol{x} \in \Omega$), $u_{\varepsilon}(\boldsymbol{x}) \to u(\boldsymbol{x})$ as $\varepsilon \to 0^+$. Moreover, if $u \in L^p(\Omega)$, $1 \leq p \leq \infty$, then $u_{\varepsilon}(\boldsymbol{x}) \to 0$ for every $\boldsymbol{x} \in \mathbb{R}^N \setminus \overline{\Omega}$.
- (iii) If $u \in L^{p}(\Omega)$, $1 \leq p \leq \infty$, then

$$\|u_{\varepsilon}\|_{L^{p}(\mathbb{R}^{N})} \leq \|u\|_{L^{p}(\Omega)} \tag{1}$$

for every $\varepsilon > 0$ and

$$\|u_{\varepsilon}\|_{L^{p}(\mathbb{R}^{N})} \to \|u\|_{L^{p}(\Omega)} \quad as \; \varepsilon \to 0^{+}.$$
⁽²⁾

(iv) If $u \in L^p(\Omega)$, $1 \le p < \infty$, then

$$\lim_{\varepsilon \to 0^+} \left(\int_{\Omega} |u_{\varepsilon} - u|^p \, d\boldsymbol{x} \right)^{\frac{1}{p}} = 0.$$

Proof. (i) Let $K \subset \Omega$ be a compact set. For any fixed

$$0 < \eta < \text{dist}(K, \partial \Omega)$$

let

$$K_{\eta} := \left\{ \boldsymbol{x} \in \mathbb{R}^{N} : \operatorname{dist}\left(\boldsymbol{x}, K\right) \leq \eta \right\}$$

so that $K_{\eta} \subset \Omega$. Note that for $\varepsilon > 0$ sufficiently small we have that $K_{\eta} \subset \Omega_{\varepsilon}$. Since K_{η} is compact and u is uniformly continuous on K_{η} , for every $\rho > 0$ there exists $\delta = \delta(\eta, K, \rho) > 0$ such that

$$\left|u\left(\boldsymbol{x}\right) - u\left(\boldsymbol{y}\right)\right| \le \rho \tag{3}$$

for all $\boldsymbol{x}, \boldsymbol{y} \in K_{\eta}$, with $|\boldsymbol{x} - \boldsymbol{y}| \leq \delta$. Let $0 < \varepsilon < \min{\{\delta, \eta\}}$. Then for all $\boldsymbol{x} \in K$,

$$\begin{aligned} |u_{\varepsilon}(\boldsymbol{x}) - u(\boldsymbol{x})| &= \left| \int_{\Omega} \varphi_{\varepsilon} \left(\boldsymbol{x} - \boldsymbol{y} \right) u(\boldsymbol{y}) \, d\boldsymbol{y} - u(\boldsymbol{x}) \right| \\ &= \frac{1}{\varepsilon^{N}} \left| \int_{B(\boldsymbol{x},\varepsilon)} \varphi\left(\frac{\boldsymbol{x} - \boldsymbol{y}}{\varepsilon} \right) \left[u(\boldsymbol{y}) - u(\boldsymbol{x}) \right] \, d\boldsymbol{y} \right| \\ &\leq \|\varphi\|_{\infty} \frac{1}{\varepsilon^{N}} \int_{B(\boldsymbol{x},\varepsilon)} |u(\boldsymbol{y}) - u(\boldsymbol{x})| \, d\boldsymbol{y}, \end{aligned}$$
(4)

where we have used (C.5) and the fact that supp $\varphi_{\varepsilon}(\cdot - \boldsymbol{y}) \subseteq \overline{B(\boldsymbol{x},\varepsilon)}$. It follows by (3) that

$$\left|u_{\varepsilon}\left(\boldsymbol{x}\right)-u\left(\boldsymbol{x}\right)\right|\leq
holpha_{N}\left\|arphi
ight\|_{\infty}$$

for all $\boldsymbol{x} \in K$, and so $\|u_{\varepsilon} - u\|_{C(K)} \leq \rho \alpha_N \|\varphi\|_{\infty}$. (ii) Let $\boldsymbol{x} \in \Omega$ be a Lebesgue point of u, that is

$$\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon^N} \int_{B(\boldsymbol{x},\varepsilon)} |u(\boldsymbol{y}) - u(\boldsymbol{x})| \, d\boldsymbol{y} = 0,$$

then from (4) it follows that $u_{\varepsilon}(\boldsymbol{x}) \to u(\boldsymbol{x})$ as $\varepsilon \to 0^+$. (iii) To prove (1) it is enough to assume that $u \in L^p(\Omega)$. If $1 \leq p < \infty$, then by Hölder's inequality and (C.5) for all $\boldsymbol{x} \in \mathbb{R}^N$,

$$|u_{\varepsilon}(\boldsymbol{x})| = \left| \int_{\Omega} (\varphi_{\varepsilon} (\boldsymbol{x} - \boldsymbol{y}))^{\frac{1}{p'}} (\varphi_{\varepsilon} (\boldsymbol{x} - \boldsymbol{y}))^{\frac{1}{p}} u(\boldsymbol{y}) d\boldsymbol{y} \right|$$

$$\leq \left(\int_{\Omega} \varphi_{\varepsilon} (\boldsymbol{x} - \boldsymbol{y}) d\boldsymbol{y} \right)^{\frac{1}{p'}} \left(\int_{\Omega} \varphi_{\varepsilon} (\boldsymbol{x} - \boldsymbol{y}) |u(\boldsymbol{y})|^{p} d\boldsymbol{y} \right)^{\frac{1}{p}} \qquad (5)$$

$$\leq \left(\int_{\Omega} \varphi_{\varepsilon} (\boldsymbol{x} - \boldsymbol{y}) |u(\boldsymbol{y})|^{p} d\boldsymbol{y} \right)^{\frac{1}{p}}$$

and so by Fubini's theorem and (C.5) once more

$$egin{aligned} &\int_{\mathbb{R}^N} \left| u_arepsilon \left(oldsymbol{x}
ight)
ight|^p \, doldsymbol{x} &\leq \int_{\mathbb{R}^N} \int_\Omega arphi_arepsilon \left(oldsymbol{x} - oldsymbol{y}
ight) \left| u \left(oldsymbol{y}
ight)
ight|^p \, doldsymbol{y} \,doldsymbol{x} \ &= \int_\Omega \left| u \left(oldsymbol{y}
ight)
ight|^p \, doldsymbol{y} \,doldsymbol{x} \ &= \int_\Omega \left| u \left(oldsymbol{y}
ight)
ight|^p \, doldsymbol{y} \,. \end{aligned}$$

On the other hand, if $p = \infty$, then for every $\boldsymbol{x} \in \mathbb{R}^N$,

$$egin{aligned} &|u_arepsilon\left(oldsymbol{x}
ight)|&\leq \int_\Omega arphi_arepsilon\left(oldsymbol{x}-oldsymbol{y}
ight)|u\left(oldsymbol{y}
ight)|\,doldsymbol{y}\ &\leq \|u\|_{L^\infty(\Omega)}\int_\Omega arphi_arepsilon\left(oldsymbol{x}-oldsymbol{y}
ight)\,doldsymbol{y} \leq \|u\|_{L^\infty(\Omega)} \end{aligned}$$

again by (C.5), and so (1) holds for all $1 \le p \le \infty$.

In particular,

$$\limsup_{\varepsilon \to 0^+} \|u_\varepsilon\|_{L^p(\mathbb{R}^N)} \le \|u\|_{L^p(\Omega)}.$$

To prove the opposite inequality, assume first that $1 \leq p < \infty$. By part (ii), $u_{\varepsilon}(\boldsymbol{x}) \to u(\boldsymbol{x})$ as $\varepsilon \to 0^+$ for \mathcal{L}^N a.e. $\boldsymbol{x} \in \Omega$, and so by Fatou's lemma

$$\int_{\Omega}\left|u\left(oldsymbol{x}
ight)
ight|^{p}\,doldsymbol{x}=\int_{\Omega}\lim_{arepsilon
ightarrow0^{+}}\left|u_{arepsilon}\left(oldsymbol{x}
ight)
ight|^{p}\,doldsymbol{x}\leq\liminf_{arepsilon
ightarrow0^{+}}\int_{\mathbb{R}^{N}}\left|u_{arepsilon}\left(oldsymbol{x}
ight)
ight|^{p}\,doldsymbol{x}.$$

If $p = \infty$, then again by part (ii) $u_{\varepsilon}(\boldsymbol{x}) \to u(\boldsymbol{x})$ as $\varepsilon \to 0^+$ for \mathcal{L}^N a.e. $\boldsymbol{x} \in \Omega$. Hence

$$|u\left(\boldsymbol{x}\right)| = \lim_{\varepsilon \to 0^{+}} |u_{\varepsilon}\left(\boldsymbol{x}\right)| \leq \liminf_{\varepsilon \to 0^{+}} ||u_{\varepsilon}||_{L^{\infty}(\mathbb{R}^{N})}$$

for \mathcal{L}^N a.e. $\boldsymbol{x} \in \Omega$. It follows that

$$\|u\|_{L^{\infty}(\Omega)} \leq \liminf_{\varepsilon \to 0^+} \|u_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^N)}.$$

Hence, (2) holds also in this case.

(iv) Fix $\rho > 0$ and find a function $v \in C_c(\Omega)$ such that

$$\|u - v\|_{L^p(\Omega)} \le \rho.$$

Since $K := \operatorname{supp} v$ is compact, it follows from part (i) that for every $0 < \eta < \operatorname{dist}(K, \partial \Omega)$, the mollification v_{ε} of v converges to v uniformly in the compact set

$$K_{\eta} := \left\{ \boldsymbol{x} \in \mathbb{R}^{N} : \operatorname{dist}\left(\boldsymbol{x}, K\right) \leq \eta \right\}.$$

Since $v_{\varepsilon} = v = 0$ in $\Omega \setminus K_{\eta}$ for $0 < \varepsilon < \eta$, we have that

$$\int_{\Omega} |v_{\varepsilon} - v|^{p} d\boldsymbol{x} = \int_{K_{\eta}} |v_{\varepsilon} - v|^{p} d\boldsymbol{x} \le \left(\|v_{\varepsilon} - v\|_{C(K_{\eta})} \right)^{p} |K_{\eta}| \le \rho,$$

provided $\varepsilon > 0$ is sufficiently small. By Minkowski's inequality

$$\begin{aligned} \|u_{\varepsilon} - u\|_{L^{p}(\Omega)} &\leq \|u_{\varepsilon} - v_{\varepsilon}\|_{L^{p}(\Omega)} + \|v_{\varepsilon} - v\|_{L^{p}(\Omega)} + \|v - u\|_{L^{p}(\Omega)} \\ &\leq 2 \|u - v\|_{L^{p}(\Omega)} + \|v_{\varepsilon} - v\|_{L^{p}(\Omega)} \leq 3\rho, \end{aligned}$$

where we have used (1) for the function u - v.