
1 A Simpler Proof of Theorem C.19

Remark 1 Note that if u ∈ Lp (Ω), 1 ≤ p ≤ ∞, or u is nonnegative or non-
positive, then (C.6) is defined for all x ∈ RN .

The first main result of this subsection is the following theorem.

Theorem 2 Let Ω ⊂ RN be an open set, let ϕ ∈ L1
(
RN
)
be a nonnegative

bounded function satisfying (C.5), and let u ∈ L1
loc (Ω).

(i) If u ∈ C (Ω), then uε → u as ε→ 0+ uniformly on compact subsets of Ω.

(ii) For every Lebesgue point x ∈ Ω (and so for LN a.e. x ∈ Ω), uε (x) →
u (x) as ε → 0+. Moreover, if u ∈ Lp (Ω), 1 ≤ p ≤ ∞, then uε (x) → 0
for every x ∈ RN \ Ω.

(iii) If u ∈ Lp (Ω), 1 ≤ p ≤ ∞, then

‖uε‖Lp(RN ) ≤ ‖u‖Lp(Ω) (1)

for every ε > 0 and

‖uε‖Lp(RN ) → ‖u‖Lp(Ω) as ε→ 0+. (2)

(iv) If u ∈ Lp (Ω), 1 ≤ p <∞, then

lim
ε→0+

(∫
Ω

|uε − u|p dx
) 1
p

= 0.

Proof. (i) Let K ⊂ Ω be a compact set. For any fixed

0 < η < dist (K, ∂Ω)

let
Kη :=

{
x ∈ RN : dist (x,K) ≤ η

}
.

so that Kη ⊂ Ω. Note that for ε > 0 suffi ciently small we have that Kη ⊂ Ωε.
Since Kη is compact and u is uniformly continuous on Kη, for every ρ > 0 there
exists δ = δ (η,K, ρ) > 0 such that

|u (x)− u (y)| ≤ ρ (3)

for all x,y ∈ Kη, with |x− y| ≤ δ. Let 0 < ε < min {δ, η}. Then for all x ∈ K,

|uε (x)− u (x)| =
∣∣∣∣∫

Ω

ϕε (x− y)u (y) dy − u (x)

∣∣∣∣ (4)

=
1

εN

∣∣∣∣∣
∫
B(x,ε)

ϕ

(
x− y
ε

)
[u (y)− u (x)] dy

∣∣∣∣∣
≤ ‖ϕ‖∞

1

εN

∫
B(x,ε)

|u (y)− u (x)| dy,
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where we have used (C.5) and the fact that suppϕε(·−y) ⊆ B (x, ε). It follows
by (3) that

|uε (x)− u (x)| ≤ ραN ‖ϕ‖∞
for all x ∈ K, and so ‖uε − u‖C(K) ≤ ραN ‖ϕ‖∞.
(ii) Let x ∈ Ω be a Lebesgue point of u, that is

lim
ε→0+

1

εN

∫
B(x,ε)

|u (y)− u (x)| dy = 0,

then from (4) it follows that uε (x)→ u (x) as ε→ 0+.
(iii) To prove (1) it is enough to assume that u ∈ Lp (Ω). If 1 ≤ p < ∞, then
by Hölder’s inequality and (C.5) for all x ∈ RN ,

|uε (x)| =
∣∣∣∣∫

Ω

(ϕε (x− y))
1
p′ (ϕε (x− y))

1
p u (y) dy

∣∣∣∣
≤
(∫

Ω

ϕε (x− y) dy

) 1
p′
(∫

Ω

ϕε (x− y) |u (y)|p dy
) 1
p

(5)

≤
(∫

Ω

ϕε (x− y) |u (y)|p dy
) 1
p

and so by Fubini’s theorem and (C.5) once more∫
RN
|uε (x)|p dx ≤

∫
RN

∫
Ω

ϕε (x− y) |u (y)|p dydx

=

∫
Ω

|u (y)|p
(∫

RN
ϕε (x− y) dx

)
dy

=

∫
Ω

|u (y)|p dy.

On the other hand, if p =∞, then for every x ∈ RN ,

|uε (x)| ≤
∫

Ω

ϕε (x− y) |u (y)| dy

≤ ‖u‖L∞(Ω)

∫
Ω

ϕε (x− y) dy ≤ ‖u‖L∞(Ω)

again by (C.5), and so (1) holds for all 1 ≤ p ≤ ∞.
In particular,

lim sup
ε→0+

‖uε‖Lp(RN ) ≤ ‖u‖Lp(Ω) .

To prove the opposite inequality, assume first that 1 ≤ p < ∞. By part (ii),
uε (x)→ u (x) as ε→ 0+ for LN a.e. x ∈ Ω, and so by Fatou’s lemma∫

Ω

|u (x)|p dx =

∫
Ω

lim
ε→0+

|uε (x)|p dx ≤ lim inf
ε→0+

∫
RN
|uε (x)|p dx.
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If p =∞, then again by part (ii) uε (x)→ u (x) as ε→ 0+ for LN a.e. x ∈ Ω.
Hence

|u (x)| = lim
ε→0+

|uε (x)| ≤ lim inf
ε→0+

‖uε‖L∞(RN )

for LN a.e. x ∈ Ω. It follows that

‖u‖L∞(Ω) ≤ lim inf
ε→0+

‖uε‖L∞(RN ) .

Hence, (2) holds also in this case.
(iv) Fix ρ > 0 and find a function v ∈ Cc (Ω) such that

‖u− v‖Lp(Ω) ≤ ρ.

Since K := supp v is compact, it follows from part (i) that for every 0 < η <
dist (K, ∂Ω), the mollification vε of v converges to v uniformly in the compact
set

Kη :=
{
x ∈ RN : dist (x,K) ≤ η

}
.

Since vε = v = 0 in Ω \Kη for 0 < ε < η, we have that∫
Ω

|vε − v|p dx =

∫
Kη

|vε − v|p dx ≤
(
‖vε − v‖C(Kη)

)p
|Kη| ≤ ρ,

provided ε > 0 is suffi ciently small. By Minkowski’s inequality

‖uε − u‖Lp(Ω) ≤ ‖uε − vε‖Lp(Ω) + ‖vε − v‖Lp(Ω) + ‖v − u‖Lp(Ω)

≤ 2 ‖u− v‖Lp(Ω) + ‖vε − v‖Lp(Ω) ≤ 3ρ,

where we have used (1) for the function u− v.
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