1 A Simpler Proof of Theorem C.19

Remark 1 Note that if u € LP (), 1 < p < 00, or u is nonnegative or non-
positive, then (C.6) is defined for all z € RY.

The first main result of this subsection is the following theorem.

Theorem 2 Let Q C RY be an open set, let ¢ € L' (RN) be a nonnegative
bounded function satisfying (C.5), and let u € L _(Q).

(i) If ue C(Q), then ue — u as € — 07 uniformly on compact subsets of Q.

(ii) For every Lebesgue point x € Q (and so for LN a.e. z € Q), u. (z) —
u(x) as ¢ — 0T. Moreover, if u € LP(Q), 1 < p < oo, then u. (x) — 0
for every € RN \ Q.

(iii) If ue LP (), 1 < p < oo, then
”uE“LP(]RN) < ”u“LP(Q) (1)
for every e >0 and

”uE”LP(]RN) - HUHLp(m ase— 0. (2)

() Ifu e LP (), 1 <p< oo, then

1
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Proof. (i) Let K C £ be a compact set. For any fixed
0 < n < dist (K,09Q)

let
K, = {zeR": dist(z,K) < n}.

so that K, C Q. Note that for ¢ > 0 sufficiently small we have that K, C (..
Since K, is compact and w is uniformly continuous on kK, for every p > 0 there
exists 0 = 4 (, K, p) > 0 such that

lu(z) —u(y) <p 3)
for all z,y € K,), with | — y| <. Let 0 < ¢ < min {J,n}. Then for all z € K,

(4)

u€<w>—u<w>|=\/ﬂwm—y)u(y) dy — u(z)
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where we have used (C.5) and the fact that supp p.(- —y) C B (=, ¢). It follows
by (3) that
|ue (2) —u(z)] < pan el
for all z € K, and so [ue — ull¢(g) < pon ||| -
(ii) Let x €  be a Lebesgue point of u, that is

1

Jim o [ ) - e dy =0,

then from (4) it follows that u. (z) — u (z) as e — 07.
(iii) To prove (1) it is enough to assume that v € LP (). If 1 < p < oo, then
by Holder’s inequality and (C.5) for all z € RV,

[ =) e e- )t uw dy)

< (/Qws(w—y) dy)p/ (/Qws(w—y) u (y)I” dy>; (5)
<([e@-whwr dy);

and so by Fubini’s theorem and (C.5) once more

/RN [ue ()" da < /RN/Q% (z —y)|u(y)|” dydz

:/Q|u(y)|p </RN 0. (- y) dw) dy

- [ )t dy.

On the other hand, if p = oo, then for every = € RV,

|ue (z)] =

e ()] g/ﬂ%(m_w lu ()] dy
<l [ o o= 9) dy < full~ o

again by (C.5), and so (1) holds for all 1 < p < oc.
In particular,

limshlp ”uE”LP(]RN) < ||UHLP(Q)'

e—0

To prove the opposite inequality, assume first that 1 < p < oo. By part (ii),
ue () — u(x) as e — 07 for LN a.e. z € Q, and so by Fatou’s lemma

/\u(m)\p dw:/ lim |ue ()" dwgliminf/ lue (z)|P dz.
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If p = oo, then again by part (ii) u. (£) — u(z) as ¢ — 07 for LV a.e. ¢ € Q.
Hence
lu(z)| = Elilr([)l+ lue (z)] < lieg(i)gf ||UEHLO°(]RN)

for LN ae. z € Q. It follows that
lull poe () < Timinf [[ue | poc ) -

Hence, (2) holds also in this case.
(iv) Fix p > 0 and find a function v € C. () such that

llu— U”LP(Q) <p

Since K := suppwv is compact, it follows from part (i) that for every 0 < n <
dist (K, 09), the mollification v, of v converges to v uniformly in the compact
set

K, = {zeR": dist(z,K) <n}.

Since v. =v =01in Q\ K, for 0 < e <7, we have that

P
/ lve — v|f dz :/ lv. — v|? de < (||'U6 - U”C(Kn)) | K| < p,
Q K,

provided € > 0 is sufficiently small. By Minkowski’s inequality

e — ull Lo gy < lltie = vell oy + 1ve = Vil o) + lv = ull Lo (q)

<2 ||u — ’UHLP(Q) + ||’U6 - U”L”(Q) < 3p’

where we have used (1) for the function v —v. =



