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Penrose tilings (Fig. 1) are beautiful. They also
suggest significant new mathematics, so it is
about time someone wrote a book about them
which is readable (in fact, eminently readable) by
mathematicians.

The book, Quasicrystals and geometry, by
Marjorie Senechal, has an even broader goal: to
present certain developments in crystallogra-
phy from the past decade. The developments
were generated in the wake of two profound
discoveries. The first was the mathematics dis-
covery [1] in 1966 of aperiodic tilings, the ori-
gin of Penrose's 1977 examples. The more recent
one was the physics discovery [8] in 1984 of
quasicrystals. These two discoveries have led to
a large volume of interdisciplinary research—
among the fields of crystallography, physics,
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and mathematics, and also between subfields of
mathematics, especially discrete geometry and
ergodic theory. The interaction of the viewpoints
of the different fields has been enormously ben-
eficial to the mathematics which is emerging. We
begin with an overview of the terrain, strongly
emphasizing those aspects of relevance to math-
ematics.

Quasicrystals are solids with unexpected prop-
erties. The characteristics referred to in this re-
view are all related to properties of the “dif-
fraction patterns” obtained by illuminating
quasicrystals by parallel beams of electrons or
X-rays. There is no need for us to delve into the
details of diffraction, but it will be useful to note
the following. When producing diffraction pat-
terns from solid matter assumed fixed in space,
three obvious variables of the experiment (Fig.
2) are: the direction S0 of the incoming beam,
the wavelength λ of those waves, and the di-
rection S in which one senses the diffraction. (S0
and S are unit vectors in R3.) It turns out that
these variables are not independent as far as the
results are concerned: the diffraction intensity
I that one measures is only a “function” of the
composite quantity s = (S − S0)/λ. The intensity
I(s) is traditionally treated as a function of
s ∈ R3 in the crystallography and physics liter-
ature, although it is usual to assume, on occa-
sion, singular behavior of I(s) which, like the 
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well-known “delta functions”, are
more naturally modeled by distrib-
utions or measures. In particular,
we will sometimes need to refer to
examples for which I(s) is sup-
ported on some countable set of
points in R3; using the notation of
real analysis, we will then say that
I(s) is “purely discrete”. In signal
analysis I(s) would be called the
(power) spectrum of the configura-
tion, and we will use that term for
later convenience.

The interest in quasicrystals all
stems from two facts about the spec-
tra I(s) of the first quasicrystals that
were identified: I(s) was purely dis-
crete; and there were axes through
s = 0 about which I(s) was invariant
under 10-fold rotation, which is not
possible for any “crystal”. For us the
chief characteristic of a crystal is
the fact that the atomic nuclei in it
are arranged “periodically”; that is,
their configuration consists of unit
cells which are repeated, as in Fig.
3. It is this feature which is incom-
patible with a 10-fold symmetry of
I(s). In fact, it was this incompati-
bility which showed that these ma-
terials were not crystals. We have yet
to determine what the atomic-level
configurations are for these mate-
rials; we just know, from the in-
compatibility, that they are not pe-
riodic in the manner of crystals.

The discovery of quasicrystals
produced two surprises. On the one
hand it had been widely thought that there are
very general physical reasons why all (equilib-
rium) solids had to be crystals, so these non-
crystalline substances should not have existed.
Independently, it had been widely thought that
only the periodic atomic configurations of crys-
tals could have purely discrete spectra, so even
if there were solids which were not crystalline,
their spectra would have been expected to be
nondiscrete.

Crystallography is devoted to the “inverse
problem” of determining the structure of an
atomic configuration from its spectrum. This
process is greatly simplified by qualitative as-
sumptions on the nature of the internal struc-
ture of the solid: in particular, assuming it is pe-
riodic is very useful and very widely used. The
discovery of quasicrystals caused a profound stir
in crystallography, since it affected some of its
basic assumptions. This naturally led to a belated
desire to understand what kind of atomic con-
figurations could possibly produce the purely

discrete spectra with which they are often con-
fronted. In particular, crystallographers wanted
to know what symmetries such atomic configu-
rations could have, since symmetries of config-
urations become symmetries of their spectra
and are heavily involved in the methods of crys-
tallography. The book under review is chiefly mo-
tivated by this problem. (Crystallographers have
been so affected by the discovery of quasicrys-
tals that they have literally altered their defini-
tion of “crystal”!)

In condensed-matter physics (the subfield of
physics devoted to understanding solids and
fluids) the impact of the discovery of qua-
sicrystals was large but not as profound as it was
in crystallography, since quasicrystals do not
seem to have particularly useful properties. The
widespread attention paid to their discovery
was simply due to unexpectedness. (Although it
was a shock for physicists to realize they did not
really understand the fundamental nature of so

Figure 1. A Penrose “kite and dart” tiling.
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basic an object as a solid, history has taught
them repeatedly that their knowledge is provi-
sional.)

We now come to the other basic discovery rel-
evant to Senechal's book— “aperiodic tilings”.
First we need some notation. A collection of
polygons is a tiling of the plane if the polygons
cover the plane without gaps and do not over-
lap. (Much of what we say about tilings of the
plane by polygons goes over to tilings of space
by polyhedra.) There is an intuitive connection
between tilings and configurations of points.
The connection can be made more concrete by
associating with a tiling the configuration of its
vertices or by the Voronoi construction which
associates a tiling to a configuration. However,
such specific connections are not important
here; it is enough to think of tilings and con-
figurations as similar structures.

The discovery of aperiodic tilings was pre-
cipitated by a question of the philosopher Hao
Wang in the early 1960s [9]: Is it possible to
have a finite number of polygons such that con-
gruent copies of them can tile the plane but
only nonperiodically? (A tiling is “periodic” if it
consists of repetitions of a unit cell, as in Fig. 4.
We have generalized Wang's question slightly,
using hindsight.)

The unexpected answer of yes by
Wang's student Robert Berger [1] led,
over the last thirty years, to the new
subject of aperiodic tiling. Treating non-
periodicity as a form of “unexpected
complication”, the subject evolved to
analyze what other forms of complica-
tion could be forced by a finite set of
polygons; that is, what other aspects,
not true of periodic tilings, could be true
of all tilings built by copies of a given fi-
nite set of polygons. (The generalization
to tilings of space by polyhedra is clear.)

Wang was a philosopher, and his mo-
tivation in asking the question was con-
nected with the algorithmic nature of
tilings. The first step in such an analy-
sis is to enumerate the polygons in
tilings and thus think of tilings as func-
tions on the integers. One of the first
generalizations of Wang's idea was the
example by Dale Myers [5] of a finite set
of polygons, congruent copies of which
could tile the plane but only “nonre-
cursively”. A tiling is recursive if it can
be the output or result of an algorithm.
Now, although it was the motivation for
the birth of aperiodic tiling, this line of
analysis, concerned with the complexity
of the tilings forced by a finite set of
polygons, has not yet proved very fertile.
Most work has been concerned with two

other forms of complication: tilings, forced by
a finite set of polygons, which are not ordered
as are periodic ones, and tilings which have sym-
metries not possible of periodic ones.

We discuss next these aspects of order and
symmetry in tilings, beginning with order. The
most mathematically developed measure of or-
derliness comes from probability theory (from
which it was imported by ergodic theory and
physics). We begin with an intuitive introduction,
in the context of tilings.

Imagine we can see near us the finite portion
of some tiling, and assume that although we
know everything about the tiling, we do not
know where we are in absolute terms within the
tiling. We measure the degree of order of the
tiling by the extent to which we can infer, from
the features near us, features of the tiling far
away from us. We use a probabilistic approach
to justify such inferences, as follows.

There are two extremes of order. The usual
model of extreme disorder is a sequence of in-
dependent coin flips. One can easily use this to
give various definitions of a “random tiling”,
any of which would have the property that know-
ing some finite portion of the tiling would be of
no value in predicting the details of the tiling fur-
ther away. A reasonable model for extreme order

Figure 2. Diffraction experiment.

Figure 3. 12 unit cells of a periodic configuration.
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would be any periodic tiling (consisting of rep-
etitions of a unit cell), in that once one knows
the location of a unit cell, one has complete
knowledge of the rest of the tiling.

Between these two extremes we need a way
to analyze the order of tilings. With the two ex-
tremes in mind, we think of the fact that some
particular polygons occupy particular positions
in a certain tiling of interest as an “event”. For
such an event R we use for its “frequency”
Freq(R): 

Freq(R) ≡ lim
N→∞

the number of occurrences
of R in a box of volume N

N

(not worrying here about existence of limits,
etc.) Now assume we know some finite number
of polygons near us (event P) and we want to
know if some other finite set of polygons is at
a location with relative position given by the
vector t (event Qt). We say our tiling is disordered
if, for any P and Q , 

Freq(P&Qt )− Freq(P )Freq(Q) −→
t→∞

0.

In ergodic theory this is closely associated with
the concept of mixing, and various refinements
are known. In fact, ergodic theory as a subject
was created to analyze such frequencies. The
basic theorem of the subject is the pointwise er-
godic theorem of G. D. Birkhoff, which in this set-
ting is simply a way to compute such frequen-
cies by averaging over tilings instead of over
the occurrences of patterns in a tiling.

Examples have been found of finite
sets S of polygons which force tilings
with various degrees of order. For in-
stance, an S is known for which in all
tilings and for all P and Q : 

1
T2

∫
|t|≤T

|Freq(P&Qt )−

Freq(P )Freq(Q)|dt −→
T→∞

0,

which comes close to the above defini-
tion of disorder. But it is still an impor-
tant unsolved problem to produce a set
S which only allows disordered tilings.

Crystallographers like to use a dif-
ferent criterion of order, associated with
diffraction. They are particularly inter-
ested in configurations for which the
spectrum is purely discrete. To under-
stand why this is an order property, it is
again useful to turn to ergodic theory. In
the ergodic theory of configurations or
tilings (in which the “dynamical” group
is that of translations in Rd) there is also
a notion of spectrum. Since we have
made a point of using the same term

spectrum for both diffraction and ergodic the-
ory, it should come as no surprise that the two
notions are the same (though the details only ap-
peared in the literature recently [2]). We will, of
course, use the same symbol for it, I(s). It turns
out that in ergodic theory the spectrum is one
of the main tools used to analyze order, and in
particular it is easy to show that discrete spec-
trum implies order in the sense discussed above.
Crystallographers are interested in the interre-
lations between this order property and sym-
metry, which we address next.

Most of the effort in aperiodic tilings is con-
nected in some way or other with symmetry and
has a curious history. After Berger published
his example, which used over 20,000 different
(noncongruent) polygons, a number of people be-
came interested in simplifying the result, in par-
ticular by reducing the number of different poly-
gons. In the original examples it was natural
(for their algorithmic interpretation) to use only
polygons which would appear in the tilings in a
single orientation, never rotated. But driven by
the criterion of reducing the number of differ-
ent polygons allowed, researchers (for instance,
Raphael Robinson [7]) found it advantageous to
have polygons appear in several orientations in
the tilings. These were followed by the “kite and
dart” tilings (Fig. 1) of Roger Penrose [3]. The Pen-
rose tilings consist of copies of only two poly-
gons (Fig. 5), which appear in ten different ori-
entations. They have an interesting feature which

Figure 4. Periodic tiling, with unit cell in dark lines.
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attracted attention: essentially, each tiling con-
sists of arbitrarily large overlapping regions for
each of which there is a point about which the
region is invariant under rotation by 2π/5. The
kite and dart tilings are said to exhibit “ap-
proximate 5-fold symmetry”. It was well known
that this is impossible for any periodic tiling, and
this has spawned much research trying to un-
derstand what approximate n-fold symmetries
could hold for all the tilings made of copies
from some finite set of different polygons. Such
tilings are of interest in part to help understand
what the atomic configurations might be for
real quasicrystals. This is the main open prob-
lem underlying the presentation of the book
under review.

There is an intuitive similarity between the
(statistical mechanics) model of the way parti-
cles gather together in solids and the jigsaw-like
manner that governs how polygons gather to-
gether in tilings. This has led physicists to see
in aperiodic tiling a simple model to understand
how noncrystalline materials might be created,
in particular materials with atomic configura-
tions with spectra of unusual symmetry.

Crystallographers, as a whole, are less inter-
ested than physicists in the fundamental issue
of how quasicrystals could possibly arise from
interparticle forces. So they have extended their
use of tilings as models of matter by dropping
the condition of aperiodicity. In its place they in-
sert as an assumption a strong form of order;
they consider tilings with discrete spectra and
try to determine which approximate n-fold sym-
metries are possible. This path is thoroughly
examined by Senechal. Most of the examples
found with interesting approximate n-fold sym-
metries have been produced by a method which
obtains the tilings by projection from a higher-
dimensional periodic tiling. This technique, and
the examples, are well described in the book.

There is another wrinkle in the symmetry
game. When a particle configuration produces a
diffraction pattern, what is sensed about the

configuration is not the complete in-
formation about the positions of all
the particles, but only certain statisti-
cal facts about the configuration. In
particular, in order for the spectrum of
a configuration (discrete or not) to ex-
hibit n-fold rotational symmetry about
some axis it is sufficient but not nec-
essary for the configuration to have
the associated approximate n-fold sym-
metry. What is both necessary and suf-
ficient is that the configuration have the
associated “statistical n-fold symme-
try”, in the sense that every finite sub-
configuration appear in the full con-
figuration, in a given orientation, with

the same frequency as it would if the configu-
ration were rotated by 2π/n about the axis [6].
(The frequency of appearance of a finite sub-
configuration is defined in the same way as was
the frequency of a finite collection of polygons
in a tiling: by counting how many times it occurs
in a big box, dividing by the volume of the box,
and taking the limit of the fraction as the box
gets arbitrarily large.) This has led to a study of
tilings with statistical rotational symmetries,
with some unexpected developments. For in-
stance, it turns out to be possible for a tiling,
using congruent copies of finitely many differ-
ent polygons, to be statistically symmetric under
rotation by all angles. This idea can also be
mixed with aperiodicity to produce a finite set
of polygons such that all the tilings using such
polygons have some n-fold statistical rotational
symmetry—even that of “infinite n” which was
just mentioned. Statistical symmetry has also led,
through the search for new effects in three-di-
mensional tilings, to new results on subgroups
of SO(3).

As might be guessed from the appearance of
frequencies in its definition, statistical symme-
try is closely connected to ergodic theory. Thus
we see that ergodic theory is useful in analyz-
ing both the order and symmetry properties of
structures like configurations or tilings. It seems
to be the natural mathematical framework for
the various aspects of aperiodic tiling. Though
it is a subjective judgement, we go further and
claim that those results from aperiodic tilings
which are already of significance in other parts
of mathematics have used ergodic theory at
least as inspiration. As a prime example we note
results of Shahar Mozes [4] which have used
tilings to discover a very surprising connection
between two traditional parts of symbolic dy-
namics, “subshifts of finite type” and “substi-
tution subshifts”.

We have given an overview of a very broad
area of research and mentioned at a few points
how the material is treated in the book under re-

Figure 5. Kite (left) and dart (right).
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view. But it is now appropriate to concentrate on
the book to get a feel for it as a whole.

The book divides naturally into two parts.
The first half discusses configurations of points,
and the second half discusses tilings. The first
half contains the presentation of the main theme,
the order and symmetry properties of these
structures. The second half is a wonderful cat-
alog of examples of interesting tilings.

In the first half the study of configurations
of points is expressly motivated as part of a
model for diffraction from an atomic configu-
ration. There is a strong emphasis on configu-
rations which can be obtained from a projection
technique from some higher-dimensional lat-
tice, Zn. The reason for this preference is that
such configurations can easily produce config-
urations with unusual approximate n-fold rota-
tional symmetries, of interest in crystallogra-
phy. There is a good treatment of some of the
algebraic aspects of symmetry groups, to the ex-
tent needed to see what types of examples can
be produced by the projection technique.

The notion of order as a property of config-
urations is not explored in depth. Instead, it is
simply declared that it is an indication of order
when a configuration has purely discrete spec-
trum and that this feature is a desirable one to
assume in configurations which will be analyzed.
This is in keeping with the practical interests of
crystallography, where it is important to know
what configurations of particles can produce
purely discrete spectrum.

The spectrum itself is introduced as it would
be in a physics or crystallography text. The spec-
trum of an infinite configuration
C = {xj : 1 ≤ j <∞} is approximated by that
of a finite part CN of C. The approximate spec-
trum IN (s) is: 

IN (s) =
1
N
|
N∑
j=1

eis·xj |2 =
1
N

N∑
j=1

N∑
k=1

eis·(xj−xk).

The desired spectrum I(s) of the full configu-
ration C is then the limit of IN (s). The limit is a
delicate matter; recall that I(s) must be treated
as a measure or distribution. Algebraic manip-
ulation of sums such as IN (s) can be revealing,
and scientists are adept at this. But it is precisely
to understand the subtleties that can arise in
their limits that often motivates mathematics, in
particular the spectral analysis developed in
functional analysis and ergodic theory.

This is the point at which the author had to
make a significant choice. To make the book ac-
cessible to a wide audience of scientists, crys-
tallographers, and mathematicians, the author
decided to minimize the mathematical back-

ground assumed of the readers. This meant
omitting any serious discussion of spectral analy-
sis or ergodic theory, which would have shown
how the material fits into mathematics.

The second half of the book is concerned pri-
marily with aperiodic tilings. There is an inter-
esting chapter on some aspects of the Penrose
tilings, in particular how to obtain them from
projection from the five-dimensional lattice, Z5.

To me, Chapters 7 and 8 are worth the price
of the book. The former contains an extensive
discussion of the known aperiodic tilings and an-
alyzes tilings made by projection. The latter con-
tains computer programs and their graphic out-
put for numerical simulation of the spectra of
various tilings. (The spectrum of a tiling is here
defined as the spectrum of the configuration of
its vertices.)

In summary, Quasicrystals and geometry is
concerned with a variety of phenomena which
are expressed equivalently in terms of configu-
rations or tilings. The main characteristics of
these structures which are studied are order
properties and symmetry properties, both sep-
arately and as they affect one another. The book
is aimed at a very broad scientific audience, and
the level of mathematics is kept low accord-
ingly. There is, however, significant mathemat-
ics coming out of this area. Those wanting to pur-
sue this would need to hunt a bit in more
specialized literature. However, there is a large
number of appealing examples— well described,
illustrated, and referenced— which should fire
the imagination and entice new blood into related
research.

References
[1] R. Berger, The undecidability of the domino prob-

lem, Mem. Amer. Math. Soc., no. 66 (1966).
[2] S. Dworkin, Spectral theory and x-ray diffraction,

J. Math. Phys. 34 (1993), 2965–2967.
[3] M. Gardner, Extraordinary nonperiodic tiling that

enriches the theory of tiles, Sci. Amer. (USA) 236
(1977), 110–119.

[4] S. Mozes, Tilings, substitution systems and dynam-
ical systems generated by them, J. Analyse Math. 53
(1989), 139–186.

[5] D. Myers, Nonrecursive tilings of the plane, II, J. Sym-
bolic Logic 39 (1974), 286–294.

[6] C. Radin, Symmetry and tilings, Notices Amer.
Math. Soc. 42 (1995) 26–31.

[7] R. M. Robinson, Undecidability and nonperiodicity
for tilings of the plane, Invent. Math. 12 (1971),
177–209.

[8] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn,
Phys. Rev. Lett. 53 (1984), 1951–1953.

[9] H. Wang, Proving theorems by pattern recognition
II, Bell Systems Tech. J. 40 (1961), 1–41.


