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WHAT IS. . .

an Ergodic Transformation?
Cesar E. Silva

The theory of ergodic transformations developed from
considerations in statistical mechanics involving the dis-
tribution of orbits in phase space. Now ergodic systems
arise in many areas of mathematics, and ergodic methods
have contributed to the solution of problems in several
fields.

We start with a concrete example, paraphrasing a
question of Gelfand. Are there infinitely many powers of
6 that start with a 9? In the first 18 powers of 6 (see
Table 1) there is no initial 9. Indeed, in the first 175
powers of 6 (see Table 2) there is no initial 9. The first
one does not appear until

6176=9007827638524620264510291882047521730962201521
28337050337806145052753525696627890315888225722441
11398877227429324097608129063079175520256.

61 6 610 60466176
62 36 611 362797056
63 216 612 2176782336
64 1296 613 13060694016
65 7776 614 78364164096
66 46656 615 470184984576
67 279936 616 2821109907456
68 1679616 617 16926659444736
69 10077696 618 101559956668416

Table 1.6𝑛6𝑛6𝑛 for𝑛 = 1,… ,18𝑛 = 1,… ,18𝑛 = 1,… ,18.

We know that 6𝑛 starts with a 9 if and only if
9 × 10𝑘 ≤ 6𝑛 < 10× 10𝑘, for some 𝑘.

Taking logs of both sides yields the condition
log9 ≤ 𝑛 log6 − 𝑘 < log10, for some 𝑘,
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where the logarithm is base 10. This means that 𝑛 log6
is in some translation of the interval [log9, log10), or
equivalently

𝑛 log6 mod 1 ∈ [log9, log10).
Let 𝑇 denote translation by log6 modulo 1

𝑇(𝑥) = 𝑥+ log6 (mod 1),
and let𝑇𝑛 denote the composition of𝑇with itself 𝑛 times.
So 6𝑛 starts with a 9 if and only if

𝑇𝑛(0) ∈ [log9, 1).
Thus the frequency of powers of 6 that start with a 9, if
it exists, is given by

lim
𝑛→∞

1
𝑛

𝑛−1

∑
𝑖=0

𝕀[log9,1) ∘ 𝑇𝑖(0),(1)

where 𝕀𝐴 is the indicator function of a set 𝐴. Figure 1
shows the first 100 points in the orbit of 0, and we see
that they miss [log9, 1).

Digit 𝑛 ≤ 175 𝑛 ≤ 175 ⋅ 103 Benford
1 38.67 30.10 30.10
2 19.33 17.60 17.61
3 16.00 12.50 12.49
4 10.00 9.69 9.69
5 6.67 7.92 7.92
6 12.67 6.69 6.69
7 2.67 5.80 5.80
8 10.00 5.11 5.12
9 0.00 4.58 4.58

Table 2. Frequencies of the first digit of6𝑛6𝑛6𝑛 for𝑛 ≤ 175𝑛 ≤ 175𝑛 ≤ 175,
𝑛 ≤ 175 ⋅ 103𝑛 ≤ 175 ⋅ 103𝑛 ≤ 175 ⋅ 103, and Benford’s law.

We have just defined a dynamical system consisting of
a set of states 𝑋 = [0, 1) (the phase space of the system),
and a transformation 𝑇 defined on 𝑋 that one can easily
verify preserves Lebesgue measure 𝜇: 𝜇(𝑇−1(𝐴)) = 𝜇(𝐴)
for all measurable sets 𝐴. If we had a set 𝐴 such that
𝑥 ∈ 𝐴 if and only if 𝑇(𝑥) ∈ 𝐴 (i.e., an invariant set), then
we could restrict the dynamics of 𝑇 to 𝐴. For example, if
0 were in 𝐴 and [log9, 1) in 𝐴𝑐, then the limit in (1) would
be 0.

A transformation 𝑇 is ergodic if every measurable
invariant set or its complement has measure 0. When a
transformation 𝑇 is ergodic, by the ergodic theorem, for
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Figure 1. The orbit𝑇𝑖(0)𝑇𝑖(0)𝑇𝑖(0), for 𝑖 ∈ {0,… ,100}𝑖 ∈ {0,… ,100}𝑖 ∈ {0,… ,100}, missing [log9, 1) ≈ [0.95, 1)[log9, 1) ≈ [0.95, 1)[log9, 1) ≈ [0.95, 1).

all integrable functions 𝑓 and for all 𝑥 outside a set of
measure zero,

lim
𝑛→∞

1
𝑛

𝑛−1

∑
𝑖=0

𝑓 ∘ 𝑇𝑖(𝑥) = ∫𝑓 𝑑𝜇.(2)

By taking 𝑓 to be 𝕀[log9,1), we get the desired density for
initial 9s if we know that (2) holds for 𝑥 = 0, which it does
for this transformation. The proof begins by showing that,
since log6 is irrational, for all 𝑥 the orbit {𝑇𝑛(𝑥) ∶ 𝑛 ∈ ℕ}
is dense (Kronecker’s theorem).

Thus 9s appear as first digits in powers of 6 with
frequency 𝜇([log9, 1)) = log(10/9) ≈ 4.58%. It also fol-
lows, for example, that 1 appears as first digit in powers
of 6 with frequency log(2) ≈ 30.10%. These are the fre-
quencies predicted by Benford’s law for appearances of 9
and 1 as first digit in many mathematical and real-world
contexts.

When 𝑋 is a compact space and 𝑇 is continuous on 𝑋,
the system (𝑋,𝑇) is uniquely ergodic if there is only one
probability measure 𝜇 for which 𝑇 is measure-preserving.
Uniquely ergodic is stronger than ergodic, because if a
transformation is not ergodic, using a nontrivial invariant
set and its complement, it is easy to come up with other
measures for which 𝑇 is still measure-preserving. When
𝑇 is uniquely ergodic, then (2) holds for all continuous
functions 𝑓 for all points 𝑥. We say that every orbit of 𝑥
is equidistributed in [0, 1).

There are ergodic transformations that arenotuniquely
ergodic. The flips of a coin where the probability of heads
is 𝑝 (0 < 𝑝 < 1) and tails is 1 − 𝑝 can be modeled by
a set Σ consisting of all infinite sequences of 0s and 1s
(where we write 0 for heads and 1 for tails). The passage
of time is represented by the transformation 𝜎, which
shifts each sequence 𝑥 in Σ to its left. There is a natural
product measure 𝜇𝑝 on Σ that comes from assigning the
probabilities (𝑝, 1 − 𝑝) to {0, 1}. The shift is measure-
preserving and ergodic for each measure 𝜇𝑝. Similarly,
one defines a shift that models the tosses of a possibly
biased 𝑛-sided die. Ornstein in 1970 (see [1]) classified
completely these Bernoulli shifts by their entropy, a rate
at which nearby points typically move away from each
other.

There is another interesting and remarkable con-
struction of a measure-preserving system arising from
considering a number-theoretic question. Szemerédi in
1975 answered a conjecture of Erdős and Turán by
showing that a set of integers of positive upper den-
sity (for example, the even numbers have density 1/2)
contains arithmetic progressions of arbitrary length. In
1977, Furstenberg showed how to associate to each set
of positive upper density a measure-preserving system
so that the set contains an arithmetic progression of
length 𝑘 precisely when the measure-preserving system

is 𝑘-multiply recurrent. He then proved all finite measure-
preserving systems are 𝑘-multiply recurrent for all 𝑘 (see
[1]).

There are other celebrated results where an equidis-
tribution property has been shown. A transformation 𝑇
on 𝑋 gives an action of the group ℤ on 𝑋, where the
action of 𝑛 ∈ ℤ on 𝑥 ∈ 𝑋 is 𝑛 ⋅ 𝑥 = 𝑇𝑛𝑥. In the 1990s
Ratner proved that, for the action of unipotent matrices
on finite-volume quotients of Lie groups, the orbit of
every point is equidistributed in its closure, which is a
nice manifold.

We conclude with a topic that appears in A. Eskin’s
invited address (see page 17). Recently Eskin, Mirzakhani,
and Mohammadi proved a series of remarkable theorems
that can be thought of as analogues of Ratner’s results
in the case of actions of the group of 2 × 2 real matrices
with determinant 1 on the moduli space of translation
surfaces (see [2]). Translation surfaces were introduced to
study billiard flows. Among the many recent applications
of their breakthrough results, one by Lelièvre, Monteil,
andWeiss states that for billiards on polygons with angles
that are rational multiples of 𝜋, from every point 𝑥 there
are billiard trajectories to all but finitely many other
points.
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