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Marta Lewicka and
Mohammad Reza Pakzad

Prestrained Elasticity: From Shape Formation
to Monge-Ampeére Anomalies

Imagine an airplane wing
manufactured in a hyper-
bolic universe and im-
ported into our Euclidean
space. The incompatibil-
ity of the two geometries
would be an obstacle for
the relative ideal hyper-
bolic distances in the
wing to be realized in the
ambient Euclidean space.
As a consequence, the
wing would take on a de-
formed shape and be sub-
£ ject to internal stresses,
making it not suitable
{ for flying. This scenario,
% though imaginary, de-
/| scribes an everyday phe-
nomenon known as pre-
strain in nonlinear elastic-
¢ . ity. Here, prestrain refers to
vaor - 4 Y S/ an incompatible ideal met-

Mohammad Reza Pakzad Yi¢; and, contrary to the

above situation, it can play
a positive role in nature and in applications.

Figure 1 shows the optimal “relaxations” of a planar film
allowed to freely seek a strain-minimizing deformation
in space. Although the prescribed strain is radially sym-
metric, the resulting configurations are not; they exhibit
large-scale buckling and multiscale wrinkling, and in fact
they still retain residual strain albeit smaller than the
original one.

How “good” are these relaxations in general? This prob-
lem can be studied through a variational model pertaining
to the non-Euclidean version of nonlinear elasticity, which
postulates formation of a target Riemannian metric re-
sulting in the morphogenesis of the tissue that attains
a configuration closest to being the metric’s isometric
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Figure 1. The minimizing shapes of thin films with

radially symmetric strains (target metrics). Reprinted
from Klein et al. [5] with permission from AAAS.

immersion. It now turns out that the answer to the above
question depends on the scaling of the energy minimizers
in terms of the film’s thickness and a posteriori by the
emerging isometry constraints on deformations with low
regularity.

The study of mappings with weak regularity and the
behavior of rough solutions to PDEs arising in geometry
or physics has been an important part of analysis for
decades. Many physical phenomena modeled by PDEs
cannot be described by merely smooth solutions. On the
other hand, lack of regularity can lead to nonphysical
solutions or even to situations where generically every
function is close to a solution. This kind of mathematical
behavior goes back to early work by Nash and Kuiper
on isometric embeddings, where a Riemannian surface
can be C! isometrically embedded in R3, while higher
smoothness requires higher dimensions.

In practical applications, thin films can be residually
strained by a variety of means, such as inhomogeneous
growth, plastic deformation, swelling or shrinkage driven
by solvent absorption, or opto-thermal stimuli in glass
sheets. An interesting application, suggested by Kim et
al. [4], creates curvy films by using light technology for
the temperature-responsive flat gel sheets that transform
into a prescribed curved surface when the in-built metric
is activated (see Figure 2).

We hope that the study of thin films will lead to a
better understanding of three-dimensional solids and
such fundamentals as energy scaling laws, the role of
curvature or symmetry breaking. Current disagreements
between theory and experiment need also to be resolved.

Incompatible Elasticity and Residual Stresses

Let O C R" be a simply connected domain, and let G be
a smooth Riemannian metric on Q. It is well known that
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Figure 2. Halftone gel litography from Kim et al. [4]:
shapes obtained by photopatterning polymer films.
Reprinted with permission from AAAS.

when the Riemann curvature tensor Riem(G) vanishes in
Q, there exists amapping u (in other words, a deformation)
of O into R" which is an isometric immersion of G:

(1) vux)'vu(x) = G(x) Vx € Q.

When the mentioned condition fails (as it fails for a generic
choice of G), one proceeds by seeking an orientation-
preserving deformation u which minimizes the difference
between the tensor fields in the right and left hand sides of
(1). This difference is measured by the energy functional,
called the prestrained (or incompatible) elasticity:

(2) E(u) = JQ dist?(Vu(x)G(x)"2,50(n)) dx,

defined over the set of admissible deformations u &
Wh2(Q,R") with square integrable derivatives of first
order. The distance in matrix space R™" is measured in
terms of the Hilbert-Schmidt norm ||A||? = trace(ATA).
Note that E(u) = 0if and onlyif u is orientation preserving
and satisfies (1). In this case, a change of variable reduces
(2) to a standard nonlinear elasticity functional of the
type |, W(Vu) dx, which has been largely studied in the
literature.

In the incompatible case when Riem(G)aéO, existence
of an energy gap phenomenon was shown in [8]. Namely,
the equilibrium state of the body Q must have a positive
energy content, inf E > 0, which we refer to as the residual
energy. So far, only partial quantified estimates of this
infimum in terms of Riem(G) have been obtained. To
better understand this problem, as well as to explore
the relationship between the components of the target
metric and the Riemann curvature as the driving force
behind respectively the mechanical response and the
residual stress, one is led to study models with reduced
complexity, e.g., through dimension reduction.

A thin film can be modeled by the Cartesian product
Q" = w X (=4, 1), with the mid-plate w C R? and small
thickness h <« 1. In what follows, we are concerned
with analyzing the infimum energy and the structure of
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minimizers of the energy functional below, now also in
relation to the vanishing thickness h — 0:

(3) EMuM) J dist? ((Vu") (G")~12,50(3)) dx

vul € wh2(Qh R3).

I'-Convergence

Amajor difficulty in studying the functionals (3) is that the
frame invariance of the energy density spoils convexity.
Thus, in general, direct methods of calculus of variations
cannot be applied, and the minimizing sequences to (3)
must be studied through asymptotic analysis, exploiting
the small thickness of the domain. Namely, one first hopes
to establish compactness properties for approximate
minimizers of E" as h - 0. These, naturally, vary among
different ranges of the scaling exponent § in inf E" ~ h¥,
which is in its turn induced by the prestrain G". Having
found the admissible set of the limiting deformations, one
then looks for suitable “dimensionally reduced” energies
that would carry the structure of E". The method of
I'-convergence is one of the strategies available for this
purpose in the variational toolbox.

In the present set-up for thin films, proving TI-
convergence of h#E" consists of deriving two
inequalities. The first inequality establishes a lower
bound: 74(u) < liminf,_.o h PE"(u") for any sequence u"
converging to a mapping u. The second inequality shows
that the previous bound is optimal in the sense that for any
given admissible u, we have 74 (u) = limsup,_, h PE"(u")
for a particular recovery sequence u" converging to u.

The main feature of this definition, which in fact justi-
fies its applicability, is that the limits of any converging
sequence of minimizers of E" coincide with the mini-
mizers of 7. Again, the results vary and depend on the
chosen scaling f; in general, larger energies admit larger
deformations, while smaller energies (induced by G" with
small Riemann curvatures in terms of h) admit only more
restrictive deformations that need to preserve certain
stringent curvature constraints.

Curvature-Driven Energy-Scaling Quantization
We start by a short excursion in the context of compatible
prestrains satisfying Riem(G) = 0. In this case, a change
of variable brings the energy (3) to the standard nonlinear
elasticity functional defined on deformations u" of a
tubular neighborhood S" of a surface § C R?, with trivial
prestrain G = Ids;. When S = w C R?, the quantitative
geometric rigidity estimate established in [3] leads to the
rigorous study of the dimensionally reduced thin models
in low-energy scalings. For more general geometries, a
conjecture has been put forward [9] concerning an infinite
hierarchy of limiting thin shell models, each valid in its
respective energy-scaling regime induced by the scaling
of the applied body forces. In each case, the I'-limit of
h~BE" consisted of a computable combination of bending
and stretching.

NOTICES OF THE AMS 9
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In certain situations, the geometry of S allows for
the matching of lower-order infinitesimal isometries to
higher-order ones, whereas the corresponding theories
collapse to one and the same theory, valid under the lower-
order infinitesimal isometry constraint. The conjecture
and this “collapse phenomenon” is so far consistent with
all the rigorously established analytical results.

The picture in the prestrained elasticity scenario, where
Riem(G)#0, is richer in as much as it does not generate
one sequential hierarchy but rather a network of limiting
models, differentiated by the scaling of the components
of the curvatures of G" when h - 0.

When G" = G is independent of thickness parameter,
an energy gap phenomenon can be observed [1]. Namely,
the only possible scaling after the nonzero energy drops
below h? is that of order h*. In the first case, the I'-limit
of h™?E" consists of a curvature functional defined over
the W?? isometric immersions of the two-dimensional
manifold (w, Gox2) into R3. In the second case, the three
Riemann curvatures Ri»i»,Ri213, and Rizp3 of G vanish
identically. The I-limit of h *E" is then given in terms
of stretching, i.e. the change of metric, and bending that
is the induced change of the second fundamental form
with respect to the unique isometric immersion that gives
the zero energy in the prior I'-limit, plus a new term that
quantifies exactly the remaining three possibly nonzero
Riemann curvatures.

The Monge-Ampeére Constrained Energy
The Monge-Ampeére equation:

@) det V2y = f

can be seen as a “small slope” variant of the isometric
immersion equations, and it naturally arises in the thin
limit residual theories of the model (3). Indeed, for
the incompatibility tensor of the form G" = Id; + 2h’S
where 0 < y < 2, the T-limit 7 of h- "2 E" is effectively
defined [7], [6] on the deformations of regularity W2
for which the pull-back of the Euclidean metric coincides
with the prestrain G" at the first order of expansion
of their Gauss curvatures. This condition is precisely
equivalent to (4) with f = —curl”curl S»x», whereas we
have 7(v) = [, |V?v|%.

For future purposes, let us note that the above
discussion motivates the following weak form of the
two-dimensional Monge-Ampeére equation (4):

in w C R?

(5) ’Detvzv = —tcurl"curl(Vv ® Vv)‘ =f.

The Monge-Ampeére constrained variational problem 7
is the source of a wide range of questions: from the
technical obstacles in deriving the model as a I'-limit to
the study of regularity and multiplicity of minimizers or
critical points, of which many remain open. Along these
lines, we recently demonstrated the surprising existence
of a class of anomalous solutions to (5). The rest of this
article is dedicated to this line of inquiry.
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Convex Integration for the Monge-Ampeére
Equation

When f is nonnegative, any v € W>?(w) satisfying (4)
must actually be C! and convex. Once the convexity is
established, the path opens up for applying the standard
results in the theory of nonlinear PDEs to obtain better
interior regularity of v depending on the given regularity
of f. For the “flat case” f = 0, any such v must be
developable: it is C', and for every point x € w there
exists either a neighborhood of x or a segment passing
through it and joining dw at both its ends, on which Vv
is constant.

The same assertions of convexity/developability are
true [10] for solutions v € CY*(w) of (5) with % <<l
Letus point out that a crucial step in proving results for the
weak Holder regular solutions is a commutator estimate
that yields a degree formula for the Holder continuous
mapping Vv. Such commutator estimates were used for
the Euler equations by Constantin, E, and Titi and for
the isometric immersion problem by Conti, Delellis, and
Szekelyhidi. This relationship is not surprising in view of
the presence of a quadratic term in the equations in all
three cases.

The parallels with the isometric immersions and Eu-
ler’'s equations do not stop here. In both cases, the
known rigidity statements are contrasted with existence
of anomalous flexible solutions in lower regular regimes. It
is perhaps surprising that similar statements on existence
of anomalous solutions to the Monge-Ampeére equation
(4) have been missing in the literature. Indeed, the refor-
mulation (5) leads to the following counterintuitive result
[10]. Fixing an exponent « < i and the right-hand side
f € L7%(w), the set of C**() solutions to (5) is dense
in C%(w).

The critical value of Holder’s exponent at the threshold
of rigidity and flexibility is not yet clear; it has been
conjectured to be 1,1 or £, relying on various intuitions.
Here and also in the case of isometries, the Nash-Kuiper
iteration method cannot yield anomalous solutions with
regularity better than C*'/3, but on the other hand, there
seems to be little indication of how to prove the rigidity
for the regimes 1 < & < £. This situation is, again, parallel
with the recent results in the context of fluid dynamics (see
Delellis and Szekelyhidi [2] and the references therein),
where the famous Onsager’s conjecture puts the Holder
regularity threshold for the energy conservation of the
weak solutions to the Euler equations at exactly C%'/3,

Conclusion

In this article, we motivated how the prestrain metric
problem can be formulated for three-dimensional elastic
bodies and showed how it leads to problems in geometry
and analysis. In particular, rigidity properties of the
weak solutions to geometric PDEs come to the frontline,
including the discovery of the anomalous solutions to
the Monge-Ampeére equation. The investigation of the
dimensionally reduced models can also shed light on the
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precise role which is played by the curvature tensor in
the stress distribution within a three-dimensional body
and can eventually lead to a better understanding of the
shape formation phenomena through growth, plasticity,
etc. Coming back to the energy (3), a direct consequence
of the existence of the anomalous C"* solutions in the
regime « < 1/7, is that for all given G" = Id; + 2h”S
one has: inf F" < h'2. This could be improved to:
inf E" < h, if the anomalous regime was extended to
« < 1/3. Finally, scaling regimes between h> and h'/?, and
the corresponding behaviour of thin prestrained films,
are not yet well understood. Other largely unexplored
related topics include homogenization, symmetry and
symmetry breaking, inverse prestrain analysis (useful, e.g.,
in tumor detection) and randomly generated prestrain.
These avenues of research connect between theory of
elasticity, differential geometry, analysis, and PDEs. We
also hope that a thorough theoretical understanding
of the phenomena discussed in this article could help
in engineering sheets or bodies with finely controlled
shapes, dynamics, structural resistance to loads, and
elastic properties such as rigidity and flexibility.
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Daniel Alan Spielman

Graphs, Vectors, and Matrices

Algebraic Graph Theory
v —

Graphs are the quintes-
sential objects of study
in discrete mathemat-
ics. They are wusually
described as a set of
vertices, V, that are con-
nected by a set of edges,
E, each of which is a
pair of vertices. Graphs
encode connections and
are one of the most commonly used representations
of data. While we first learn to prove theorems about
graphs through local arguments and combinatorial ma-
nipulations, much of what I want to know about a graph
is revealed through the more continuous approach of
algebraic graph theory.

We define the Laplacian quadratic form of a weighted,
undirected graph with positive edge weights w,; to be
the function from x € IR to real numbers given by

Daniel Alan Spielman

b)Y S wapx(a) - x(b))2.
(

a,b)EE

So, the coefficient of x(a)x(b) in ¢ (x) is —w,y if (a,b) is
an edge and zero otherwise. The coefficient of x(a)? is the
weighted degree of vertex a: ., er Wap. The Laplacian
matrix of G, denoted Lg, is the symmetric matrix such
that

Pe(x) = xTLex.

To build intuition for why the eigenvalues and eigen-
vectors of L should reveal combinatorial properties of G,
in my talk I'll present Hall’s spectral graph drawing algo-
rithm [Hal70]. When we introduce graphs to students, we
often do so through pictures. We draw the vertices as little
circles and the edges as lines or curves connecting the
circles representing their endpoints. While we obtain the
same graph wherever we put the circles, some drawings
reveal the structure of the graph much better than others.
For example, consider the two drawings in Figure 1. They
both represent the same graph, but the second reveals its
structure much better than the first. As suggested by Hall,
it was drawn by using two eigenvectors of the Laplacian
matrix of the graph to determine the coordinates of the
vertices.

Daniel Alan Spielman is the Henry Ford II Professor of computer
science, applied mathematics, and mathematics at Yale University.
His email address is spielman@cs.yale.edu.

DOL: http://dx.doi.org/10.1090/noti1306
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Figure 1. An arbitrary drawing of a graph and a
spectral drawing of that graph.

Sparsification

Sparsification is the approximation of a graph by a
graph with fewer edges. We say that a graph G is an
e-approximation of a graph H with the same vertex set if
for all x € IRV,

(1) 1+ pe(x) = pu(x) = (1+€) P (x).

We may express this condition in a linear algebraic
manner by introducing the notation A »> B to indicate
that x” Ax > x”Bx for all vectors x. For symmetric matrices
A and B, this is equivalent to saying that A — B has no
negative eigenvalues. With this notation, (1) becomes

(A+€)le Ly (1+€e) L.

For small € this is a very strong condition. Among other
things, it implies that L; and Ly have approximately the
same eigenvalues.

Every graph may be approximated by a sparse graph,
where the number of edges in the sparse graph depends
on the quality of the approximation. The strongest result
of this form that we presently know comes from the
following theorem of [BSS12].

Theorem 1. For every graph G on n vertices and every
€ > 0, there is a graph H having at most [n/e?| edges so
that

(1+€)°Le > Ly > (1 — €)’Le.
The proof of this theorem is purely linear-algebraic and
relies on the association of vectors with the edges of a

graph. We define the vector associated with edge (a,b) to

be the vector
def
Ugp = €45 — €p,

where e is the elementary unit vector in direction a. That
is, u,p has a 1 in position a, a —1 in position b, and is
zero everywhere else. For a vector x € IRY,

x(a) — x(b) = u} X,
and thus
(x(a) = x(b))* = (u},x)* = X" (Uapuig))X.
So, we can write L as

T
Z WabpUab ua,h'
(a,b)EE

In [BSS12] we derive Theorem 1 as a consequence of the
following theorem about collections of vectors.

12 NOTICES OF THE AMS

Theorem 2. Letuy,...,u,, be vectors in IR", and let € > 0.
Then, there exists a subset S < {1,...,m} of size at most
[n/e?] and real numbers s; > 0 so that for
m
A=>uul and B=) suu,
i=1

ies
(14+€)?A =B > (1—€)A.

Even the problem of sparsifying the complete graph is
interesting. Recall that the complete graph on n vertices
is the graph with every possible edge. Sparse approx-
imations of the complete graph are expander graphs
(see [HLWO06]), and they have proved incredibly useful
in computer science and combinatorics. The best sparse
approximations of the complete graphs are the Ramanu-
jan graphs constructed by Margulis (1988) and Lubotzky,
Phillips, and Sarnak (1988).

Weaver’s Conjecture and the Kadison-Singer
Problem
The Kadison-Singer problem [KS59], which comes from
the study of C* algebras and quantum physics, has been
shown to be related to problems in many branches of
mathematics (see [CFTWO06]). We [MSS15] solve this prob-
lem by proving a conjecture in discrepancy theory that
Weaver (2004), using results of Akemann and Anderson
(1991), proved would give a positive solution to the
Kadison-Singer problem.

Weaver’s conjecture concerns a collection of complex
vectors, Uy, ..., Uy, such that

(2) Zu,—ul* =1.

For most purposes, it suffices to consider the outer
products of real vectors with their transposes. Collections
of vectors that satisfy (2) are said to be in “isotropic
position” and are also called a “Parseval frame”. The sum
in this expression is also known as a “decomposition of
the identity”. For example, the vectors in an orthonormal
basis are in isotropic position, as are the set of vectors
associated with the edges of a complete graph. The vectors
in Figure 2 are in isotropic position.

Figure 2. The vectors on the left are in isotropic
position and are drawn along with their moment
ellipse—the unit circle. The right image depicts a

subset of those vectors with their moment
ellipse—the image of the unit circle under
multiplication by X ;cc u;uf. The dotted line is the
circle of radius 1/2.
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We would like to know conditions under which a set of
vectors in isotropic position is guaranteed to contain a
subset whose sum of outer products approximates half
the identity. The most obvious obstacle to this happening
is if one of the vectors, u;, has large norm. For example, if
u; has norm 1, then the sum will have an eigenvalue of 1
if i € S and an eigenvalue of 0 if i &S. Weaver conjectured
that vectors of large norm are the only obstacle.

Conjecture 1. There are positive constants « and € so
that for every collection of vectors uy, ..., u,, in isotropic
position such that ||u;||> < « for all i, there exists a subset
S < {1,...,m} so that

(1—eI> > wuf > el.
ies

This conjecture has a provocative resemblance to The-
orem 2. Using some ideas from the proof of that theorem,
along with the theory of real stable polynomials and
an elementary but new proof technique that we call the
method of interlacing families of polynomials, we [MSS15]
prove a strong version of this conjecture.

Theorem 3. For every constant x > 0 and every collection
of vectors ui, ..., Un in isotropic position such that ||u;||> <
« for all i, there exists a subset S < {1, ..., m} so that

(1/24 B > > wuf > (1/2 =PI,

ies

for B = V20 + «.

Editor’s Note: Daniel Spielman’s use of the discrete Lapla-
cian is complemented by Steve Zelditch’s use of the
continuous Laplacian; see page 15.
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Karen E. Smith

Noether’s Legacy: Rings in Geometry
I am deeply honored to lecture in
the name of my mathematical idol,
Emmy Noether.

Emmy Noether is responsible

o

_g,, for the modern definition of
£ commutative rings and their ho-
g . momorphisms. Her 1921 paper
£5 “Idealtheorie in Ringbereichen”
f Ef laid out the foundations of modern
221 algebra and continues to impact

mathematics well beyond algebra
nearly a century later.

Rings of functions provide natural examples of abstract
rings, an example as relevant today as it was in Noether’s
time. Even in high school, we add
and multiply real-valued functions
of the real line, quickly absorb-
ing the basic properties (such
as distributivity of multiplication
over addition) that make up the
axioms of Noether’s definition.

Then as now, rings of functions
help us understand the geometry
of spaces on which those func-
tions are defined. Remarkably, deep
geometric discoveries often arise
from purely algebraic investiga-
tions of rings.

This is especially true in alge-
braic geometry, where geometric
objects called varieties turn out
to be more or less equivalent
to the rings of polynomial func-
tions on them. Some relatively
concrete questions about a vari-
ety V include the following: Is V
smooth? How can we tell if it is
smooth?

Even if V is not smooth, how
damaging are its singularities?
Can we perhaps ignore them for
some computations or purposes? Can we measure the sin-
gularities precisely? All these questions can be answered

Karen E. Smith

Emmy Noether, who
has been described
by some as the most
important woman in
the history of
mathematics.

Karen E. Smith is Keeler Professor of Mathematics at the
University of Michigan. Her email address is kesmith@umich.
edu.

She did not realize that one could have a career as a mathemati-
cian until college, when her freshman calculus teacher, Charles
Fefferman, suggested it. After teaching high school for a year,
she discovered that schools will pay for you to get a PhD. In 2001
she won the Ruth Lyttle Satter Prize for her work in commuta-
tive algebra. She is especially proud of her record of mentoring,
already with sixteen completed PhD students.
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Figure 1. Desingularizing the cone.

by studying the algebraic features of rings of functions
onV.

Precisely, an affine algebraic variety V is the common
zero set, in C", of a (possibly infinite) collection of
polynomials. Its coordinate ring, denoted C[V], is the
C-algebra of complex valued functions on V generated
by the (restrictions to V of the) coordinate functionals
Z1,,Zn. Noether’s famous First Isomorphism Theorem
gives a concrete presentation of the coordinate ring.
Indeed, the natural restriction mapping

Clzi,...,za] 5 C[V]

sending each polynomial to its restriction to V is easily
seen to be a surjective ring homomorphism. So the First
Isomorphism Theorem implies that

«:[Zli IZYI]

tvi= kernelp ’

where the kernel of the restriction map, of course, consists
of the polynomials vanishing at every point of V. So, for
example, the coordinate ring of the cone in C* defined by
x? +y? = z%is the ring C[x, vy, z]/ (x> + y? — z°).

The points of an affine algebraic variety V are in
one-one correspondence with the maximal ideals of its
coordinate ring C[V]; this is the content of Hilbert’s
Nullenstellensatz, or zero set theorem. Indeed, all the
algebro-geometric features of the variety—for example,
its dimension, its subvarieties, its singular set— have
algebraic characterizations in the coordinate ring. This
ideawas greatly expanded by Grothendieck, who taughtus
to view every commutative ring, no matter how abstract,
as the ring of functions on some corresponding space.

In my Noether lecture, I will explain one surprisingly
effective method for understanding varieties with ring
theory: reduction to prime characteristic. In the case of
the cone, the idea is to go beyond the coordinate ring
Clx,v,z]/ (x> + y*> — z%) and study instead the family of
“reductions modulo p”,

Fplx, v, 2]/ (x* + y? — 2%),
as [, ranges through all the fields of p elements, p prime.
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Why would one do so? Why would one throw away the
tools of analysis, such as integration and differentiation,
and instead look at algebras over finite fields? What do
we gain?

The point is that the ring F,[x,y,z]/(x*> + y* — z?)
has characteristic p. A commutative ring R of prime
characteristic p has the property that the pth power map

R - R sending f ~ f*

is a ring homomorphism. This homomorphism, called the
Frobenius map, turns out to be a tremendous tool. In
particular, it sheds light on the singularities of algebraic
varieties in many ways.

Already half a century ago, Ernst Kunz character-
ized smoothness of complex varieties using Frobenius:
smoothness turns out to be equivalent to a simple
algebraic property called flatness of Frobenius in the
corresponding family of modulo p reductions. More
recent theorems characterize the so-called rational sin-
gularities of complex varieties, again, as a property of
the modulo p reductions defined using Frobenius. This
technique has found many applications throughout math-
ematics, including, for example, to cluster algebras in
combinatorics.

In another direction, numerical invariants for measuring
the “badness” of complex singularities have been defined
with Frobenius. Starting with a complex variety defined
by a single polynomial f with integer coefficients, for
example, the so-called F-pure threshold of f is a different
rational number for each choice of p; interestingly, as
p grows to infinity, these F-pure thresholds converge
to (the reciprocal of) a well-known invariant of complex
singularities called the analytic index of singularities,
defined by integration.

My hope is that my audience will glimpse the beauty
of this blooming field of “Frobenius techniques” in com-
mutative algebra and grasp a small part of our collective
mathematical indebtedness to Emmy Noether’s profound
contribution to algebra.

Images by Herwig Hauser, Algebraic Surfaces

Gallery. homepage.univie.ac.at/

Yx2+y?—2z2=1)

Figure 2. The real points of four different varieties in
C3, each defined by one polynomial.
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Steve Zelditch

Geodesics and Global Harmonic Analysis

' Harmonic analysis origi-
nates with the exponential
functions ex (x) = e?™kX) of
Fourier analysis on R" (with
k € R") or on the torus
= R"/Z" (with k € 7). The
idea is to express any func-
tion (or distribution) as a
linear combination of the
exponentials,

Steve Zelditch

(1) f(x) ~ > age’™k,

kezn

and to relate properties of f to the dual properties of the

Fourier coefficients ax. As eigenfunctions of the Laplacian

A=, % on R", the exponentials e¢*™*¥ form a
J

(generalized) orthonormal basis of eigenfunctions of L2.

In the case of the flat torus, the exponentials (i) have
uniformly bounded L®-norms, |e?™ | < 1, (i) have the
‘WKB form’ of a(x)e**®*©) where the amplitude a = 1
and S(x) = (x, %).

These properties reflect the flatness of the Euclidean
metric and are rarely found on other Riemannian man-
ifolds (M, g) where g = {g;;} is the metric tensor. The
main theme of this article is that eigenfunctions of the
Laplacian A, of the metric in general reflect the geometry
of geodesics. Henceforth we drop g from the notation for
a Riemannian manifold M, but it should be kept in mind
that eigenfunctions and geodesics depend on the metric
g.
A round 2-sphere provides an opposite extreme where
certain eigenfunctions are ‘as large as possible’. The
zonal (rotationally invariant) spherical harmonics Yf of
eigenvalues £ (£ + 1) have the possible largest L* norm
of size /€. There is a universal estimate

@) lallis < C,A" 7, (Ildalle =1, n = dim(M)),

where C, depend only on g and not on the eigenvalue A%
[Sogb]

An illustration of “global harmonic analysis” is the
following recent result of the author with C. D. Sogge
(building on prior results of Y. Safarov, the authors, and
J. Toth).

Steve Zelditch is the Wayne and Elizabeth Jones Professor of
Mathematics at Northwestern University. His email address is
zelditch@math.northwestern.edu.

This research partially supported by NSF grant DMS-1206527.
DOI http://dx.doi.org/10.1090/noti1 308

JANUARY 2016

NOTICES OF THE AMS

www.cs.dartmouth.edu/wjarosz/

publications/dissertation/

©W. Jarosz, used with permission.
appendixB.pdf

Figure 1. An intensity plot of the zonal spherical
harmonic, i.e., the graph of |YJ|?. It has huge peaks at
two poles. Theorem 1 says that any eigenfunction
with comparable sup norm must have at least one
pole. Are there always two?

Theorem 1. Let M be a real-analytic Riemannian surface.
If M possesses a sequence of Ag-eigenfunctions ¢, ; achiev-
ing the bound (2) for some C; > 0, then M = §* (topolog-
ically) and must possess a “pole”, i.e., a point such that
every geodesic leaving p is a closed geodesic of period 27t.

Examples of surfaces with poles are surfaces of revo-
lution, the poles being the obvious poles (fixed points of
the S! action). Every point of the round S? is a pole. On
the other hand, every geodesic leaving one of the four
umbilic points p of a tri-axial ellipsoid is a “self-focal”
point, but none are poles (every geodesic y(t) leaving p
returns to p at time 2, but y'(0)#y’(27) in general).
Theorem 1 is a corollary of a general result valid in all
dimensions, but as yet the existence of a “pole” is proved
only in dimension 2.

We intend Theorem 1 as an illustration of a result
of global harmonic analysis. The existence of closed
geodesics through p cannot be proved using small time
behavior of waves and geodesics or by nonwave methods.
Analogous problems may be posed for L” norms with p <
oo, For instance, it is known that certain eigenfunctions
on the round S? known as the highest weight spherical
harmonics Y/ are Gaussian beams which “blow up” on the
equatorial geodesic but have Gaussian decay in the normal
directions. They achieve the maximum possible L” norms
on S? for p < 6; the analogue of (2) for other L? norms is
due to C. D. Sogge (see [Sogb]). It is natural to conjecture
that a surface can have a sequence of eigenfunctions
achieving the maximal L” bound with p < 6 only if it
has a stable elliptic closed geodesic, somewhat like the
equator, and if the eigenfunctions are something like
Gaussian beams concentrating on that closed geodesic.
This is a very good open problem in the field.

On any complete Riemannian manifold, geodesics de-
pend on curvature and so do eigenfunctions of the
Laplacian, but the key link is through the wave equa-
tion and dynamics of the long-time global geodesic flow.
The title of this article, “Global harmonic analysis”, is
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meant to indicate how global properties of the geodesic
flow are related to the asymptotics of eigenfunctions.
Experts will recognize that the relations are between
classical and quantum mechanics in the semiclassical or
high-frequency limit. The author has not seen a proof
of (2) using the standard elliptic estimates of geometric
analysis; it is a good illustration of the power of wave
equation methods.

Let us compare how local and global harmonic ana-
lysts approach a problem on eigenfunctions. The local
harmonic analyst works with the partial differential
equation

3) Ap(x) = —A?Pp(x), XxEBCM,

locally in a ball B. When A = 0, the equation says that ¢
is harmonic. Even when A > 0, a local harmonic analyst
sees this as constraining just how far the eigenfunction
is from being a harmonic function. Dilating a “small ball”
B(p, %) by the factor A; stretches out the eigenfunction

to anearly harmonic one and allows one to use the tools of
local harmonic analysis (such as mean value inequalities).
By comparison, the global harmonic analyst works with
the “wave equation”

eitﬁd) — eir)\d)

which is only valid if (3) holds globally on M. The “prop-
agator” e!™V/=4 or solution operator of the wave equation
propagates singularities along geodesics. The global har-
monic analyst doesn’t want to suppress oscillations in ¢
by stretching them out, but rather exploits the ever more
rapid oscillations as A — co. Ultimately, this leads to re-
lations between asymptotics of eigenfunctions as A - o
and the long-time behavior of geodesics, e.g., whether
they are periodic (as on round spheres) or wind around
uniformly in the unit cosphere bundle (as for negatively
curved manifolds).

Another rich area for global harmonic analysis is the
asymptotic behavior of nodal sets of eigenfunctions. To
contrast again local versus global properties of eigen-
functions, it is a classical local result that there exists a
zero of ¢, in every ball B(p, %) C M; i.e., the nodal set
Ny, = {x . Pa(x) =0} is %-dense. The proof uses only
that Ay = —A%¢, in a ball B(p,r) and not globally on
(M, g), and in this sense is a model of local harmonic anal-
ysis of eigenfunctions. Putting together local arguments,
Donnelly-Fefferman (1987) proved that for real-analytic
(M, g), the hypersurface measure }[”‘I(N(m) of the
nodal sets satisfies the bounds

(4) cod < HU(Ny,) < CyA,

for some ¢y, C; > 0. The inequality was earlier conjectured
by S. T. Yau for general C* metrics, but that remains a
very open problem.

A further well-known nodal problem is to count the
number of nodal domains. A nodal domain is a connected
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Figure 2. Nodal domains of a high-frequency
Neumann eigenfunction of the Laplacian on a billiard
table with chaotic billiards. The number of nodal
domains is roughly the eigenvalue. Theorem 2 sees
only the nodal domains touching the boundary, which
cannot number more than the square root of the
eigenvalue. And it does not even prove there are that
many!

component of M\Ny,. The nodal domains partition M
into disjoint open sets:

u(ep)
M\Ny, = | Q.
j=1

When 0 is a regular value of ¢,, the level sets are
smooth curves. When 0 is a singular value, the nodal
set is a singular (self-intersecting) curve. The question
is: how many connected components does the nodal set
have? The classical Courant bound is that the number
N(¢;) of the jth eigenfunction in an orthonormal basis
is bounded by j; in general, N(¢,) is bounded by N(A)
(the number of eigenvalues < A). It is known that there
is no nontrivial lower bound for N(¢,) that holds for
every sequence of eigenfunctions on every (M,g): for
example, it was shown by H. Lewy that there exist (M, g)
and sequences of ¢, A; - oo with only two or three nodal
domains. An obvious question is whether any (M,g)
possesses at least one sequence of eigenfunctions for
which N(¢j ) — o as k - oo. It was pointed out by
T. Hoffman-Ostenhof that this is (apparently) an open
problem. At first, it seems obviously true: on S2, for
instance, such a sequence exists for the standard metric
(e.g., the zonal harmonics). Connect any metric g on S?
by an analytic path g, of metrics with t € [0,1] and
“analytically continue” the eigenfunctions ¢;(t) along
the path (this is possible). Then show that that number
of nodal domains does not change for a “generic” path.
Unfortunately, this outline overlooks the fact that for
a generic path of metrics and the associated paths of
eigenfunctions ¢ ;(t), two nodal domains will collide (i.e.,

VOLUME 63, NUMBER 1
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intersect) at some times t; at a singular point of ¢ (&),
and two nodal domains can merge into one. By the time
t = 1, the A; nodal domains may have merged into just
a fixed number of domains independent of A;. Although
such a conspiratorial situation seems unlikely, there is
no proof that it does not occur for any path g, between
the standard metric and another given metric. In fact, it
is a challenge to prove the existence of any reasonably
large class of metrics which possess a sequence ¢,
of eigenfunctions for which N(¢ ) - oo. The following
result with Junehyuk Jung gives a reasonably large class.

Theorem 2. Let (X, g) be a surface with curvature k < 0
and with concave boundary. Then for any orthonormal
eigenbasis {¢ ;} of Dirichlet (or Neumann) eigenfunctions,
one can find a density 1 subset A of N such that

lim N(¢;) = 0.

Jéa

A density one subset A C N is one for which 4#{j €
A,j <N} - 1, N - . An example of a nonpositively
curved surface with concave boundary is a Sinai-Lorentz
billiard in which one removes a small disc C from X.

The proof is based on proving that there are “many”
zeros and critical points of eigenfunctions of Neumann
eigenfunctions (or of normal derivatives of Dirichlet
eigenfunctions) along the boundary oM. That is, the proof
very much depends on the existence (and concavity)
of a boundary. The results were inspired by one of
Ghosh-Reznikov-Sarnak for Hecke eigenfunctions.

Let us outline the proof in the Neumann case. The geo-
desic billiard flow of M is ergodic under the assumption
that the curvature is < 0 and the boundary is concave.
Hence the eigenfunctions are “quantum ergodic”. Without
going into the details, ergodicity of eigenfunctions means
that they oscillate alot and in all directions as A; — c0.! We
then restrict the eigenfunctions to the boundary oM. The
main point is to prove that the Neumann eigenfunctions
¢; have a growing number of zeros on oM as A; — . In
fact, this is true for any curve on M, not just the boundary.

The last step is a topological argument (based on the Eu-
ler inequality for embedded graphs in surfaces). Suppose
that a Neumann eigenfunction vanishes at N points and
that the genus of M is h. Each nodal line emanating from
the boundary must return to the boundary at some other
point. In general, the curve together with the boundary
might not bound a domain. But an Euler inequality for
graphs in M shows that there must exist at least ;N — Cj,
nodal domains formed this way, where C,, = h + hy; where
hy is the number of components of oM.

In conclusion, the global results use long-time dynami-
cal properties of the geodesic flow, such as its ergodicity
(or, at the opposite extreme, its integrability or periodic-
ity) to prove results about eigenfunctions and waves that
are often invisible to the more traditional local harmonic
analysis in small balls.

YErgodicity of eigenfunctions originates in work of A. I Shnirel-
man and has a long history of results, for which we refer to
[Ze08], [Ze13], [Zw].
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Alex Eskin

The SL(2,R) Action on Moduli Space

Alex Eskin, Compton Distinguished Ser-
vice Professor at the University of
Chicago, will talk about ergodic the-
ory with applications to billiards (just
the math; won’t help you win, but ap-
plies on any polygonal table, convex
or not). *His recent breakthrough work
with Mirzakhani and Mohammadi on
SL(2,R) actions on moduli space has
as an application this new result by
Alex Eskin Lelievre, Monteil, and Weiss: If the an-
gles are rational multiples of 1r, from every point on the
table you can shoot the cue ball to all but finitely many
other points.

=1
=}
k=l
a1
k=]
=}
=1
(=}
=

*See Alex Wright's elementary introduction to the study
of dynamics on certain moduli spaces and, in particular,

the recent results of Eskin, Mirzakhani, and Mohammadi
in the January issue of the Bulletin of the American Math-
ematical Society: \www.ams.org/journals/bull/2016-|
|53-01/50273-0979-2015-01513-2/|

Editor’s Note: See the related “WHAT IS ...an Ergodic
Transformation?” on page 26.

Alex Eskin is Compton Distinguished Service Professor at the Uni-
versity of Chicago. His email addressiseskin@math.uchicago.edu.
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Kristin Estella Lauter

Homomorphic Encryption for Private
Genomic Computation
The capacity to sequence the
human genome has opened up
a treasure chest of possibilities
for understanding human disease,
searching for cures, and providing
personalized medicine. But it also
raises both important privacy chal-
lenges and questions about how
to securely store and handle ge-
nomic data for computation. Just
as data on individual preferences
and behavior is a valuable economic
commodity in the present, human
Kristin Estella genomic data has been called the
Lauter «cyrrency of the future.” Protecting
access to it is crucial.

Mathematics provides important infrastructure and
tools for solving a host of problems in genomic com-
putation. Mathematical modeling and machine learning
algorithms help scientists learn from data to do predic-
tive analysis, and pattern matching is used for sequence
alignment. The mathematics of cryptography has recently
provided an important new tool for protecting privacy in
genomic computation: homomorphic encryption.

Homomorphic encryption keeps genetic data private but
still allows another party to do computations on it. Con-
sider a patient or a consumer who has his or her genome
sequenced and stores the result locally on a personal
computer or device. To obtain a private prediction—such
as the likelihood of having a disease associated with a
known genotype—from a Cloud service, the client first
encrypts the genomic data homomorphically, then sends
the encrypted data to the Cloud for processing without
sending the decryption key. The Cloud computes on the
encrypted data and returns an encrypted result to the
client. The client then decrypts the result locally.

Here’s an analogous classroom-related example: A pro-
fessor stores her students’ encrypted grades in the Cloud
and keeps the decryption key, which may be shared with
the university administration, for example. The Cloud
service can compute an encrypted version of the mean
and standard deviation of the final exam or other statis-
tical functions of students’ grades without knowing the
grades. The encrypted results can be decrypted by anyone
who has the decryption key.

Construction of a homomorphic encryption scheme
that allows computation of any circuit was an open
problem for several decades until Craig Gentry provided

Kristin Estella Lauter is a Principal Researcher and Research Man-
ager of the Cryptography Group at Microsoft Research. Her email
address is klauter@microsoft.com.
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In March 2015, the Secure Genome Analysis
Competition was hosted by the National Center for
Biomedical Computing at UCSD with teams competing
from around the world. The tasks consisted of
statistical analyses and sequence comparison on
SNPs from databases of human genomic data. Teams
from Microsoft Research, IBM Research, and
Stanford/MIT were the winners of the three tasks in
the Homomorphic Encryption Challenge.

VOLUME 63, NUMBER 1
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Private medical predictions: A demo of our
cryptographic system to predict the likelihood of
having a heart attack was demoed live to reporters in
the AAAS Newsroom. I input age, weight, height, and
other private data on my laptop, where it was
encrypted. Then it was sent to a Cloud computing
service, where the risk was computed on the
encrypted data. The encrypted result was then sent
back to my laptop and decrypted. The computation
on the encrypted data took about 0.2 seconds.

the blueprint for a solution in 2009. Solutions evolved
quickly over the subsequent five years, and current
systems are based on the hardness of a problem called
“Learning With Errors” (LWE) and its ring variants (RLWE).
The LWE problem is to find a secret vector s given only
samples consisting of a random vector, a, of the same

JANUARY 2016
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length, along with the inner product of the two vectors
obscured by some Gaussian noise, e (error). (Sample:
(a,as + e).) These problems are believed to be hard due
to security reductions, proved by Regev and coauthors
Lubashevsky and Peikert, to other known problems on
lattices, such as certain approximate versions of the
Shortest Vector Problem (SVP), which has been studied
for decades.

The vectors in the above description are thought of
as elements of a lattice, but they can also be viewed as
coefficients of a polynomial in a polynomial ring, and
this is the point of view in the Ring Learning With Errors
setting. For cryptosystems based on RLWE, the polynomial
ring which we use in practice is the ring of integers in a
cyclotomic number field, presented as

Z[Cp] = Z[X]/ P (X).

In fact, the question of the hardness of the RLWE problem
in general number rings raises many interesting new
questions in number theory which we are only beginning
to investigate.

Cryptographic systems based on number theoretic con-
structions provide a surprising potential solution for
ensuring privacy in outsourced genomic computation.
This is a beautiful example of several apparently unre-
lated branches of science intersecting to provide coherent
solutions to human problems.

References and links to articles in the popular press can

be found on mywebpage:research.microsoft.com/en+
us/people/klauter/default.aspx

Tanya A. Moore

Why Mathematicians and Statisticians Are
Needed to Create Lasting Social Impact
Tanya Moore, Presidio Graduate
School, is cofounder of the Infinite
Possibilities Conference, a national
biennial conference designed to
support, promote, and empower
underrepresented minority women
in mathematics and statistics. She
has been featured in Black Enter-
prise and O, The Oprah Magazine.
Her talk will highlight the obvious
and not-so-obvious ways math-
ematicians and statisticians are
today’s change agents.

Tanya A. Moore, Building Diversity in Science. Her email address
is Tanya.Moore@presidio.edu.
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Panagiota Daskalopoulos

Ancient Solutions to Parabolic Equations

Some of the most im-
portant problems in
geometric partial dif-
ferential equations are
related to the under-
standing of singularities.
Focusing in on a singular-
ity, a certain “blow-up”
procedure yields special
solutions defined for all
time —oo < t < T, for
some T < +o0. We refer to such solutions as eternal if
T = +o00 and ancient if T < +oc0. The classification of
such solutions, when possible, often sheds new insight
into singularity analysis.

Common examples of singularities are solitons, which
maintain their shape as time advances. Shrinking solitons
are often examples of ancient solutions, while steady
solitons are examples of eternal solutions. One often sees
other ancient or eternal solutions which come from the
gluing of solitons. The main question is whether these
special solutions and the solitons are the only nontrivial
ancient or eternal solutions of the flow.

We will focus on an area of active research: ancient
solutions to geometric flows, such as the Ricci flow, the
Mean Curvature flow, or the Yamabe flow.

Under the Ricci flow, the metric of an n-dimensional
Riemannian manifold M shrinks by its Ricci curvature, a
natural intrinsic curvature of the manifold. The Ricci flow
was introduced by R. Hamilton in his seminal 1981 paper
and developed by him in a series of subsequent break-
through works leading to G. Perelman’s 2002 seminal
works on the resolution of the Poincaré Conjecture.

In 2012, in joint work with R. Hamilton and N. Sesum, we
proved that there are just two types of ancient solutions
on a compact surface (n = 2). The simplest type is a
round sphere contracting to a point. The second type, due
to J. R. King and P. Rosenau, is two cigars glued together,
as in Figure 1, the so-called sausage model of quantum
field theory.

The proof relies on both analytical and geomet-
ric tools, such as a priori estimates, monotonicity of
nonstandard Lyapunov functionals, geometric blow-up
arguments, geometric estimates on isoperimetric ratios,
and the application of the maximum principle on a rather
complex quantity which vanishes on the King-Rosenau
solutions.

A similar conjecture holds for 3-dimensional compact
manifolds under a noncollapsing condition: that the only
ancient non-collapsed solutions to the Ricci flow are

Panagiota Daskalopoulos

Panagiota Daskalopoulos is a professor of mathematics at
Columbia University. Her email address is pdaskalo@math.
columbia.edu.
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Cylinder

= U

Figure 1. The King-Rosenau ancient solution to the
Ricci flow consists of two cigars glued together.

T>-

Cigar

Figure 2. A new ancient solution to the Yamabe flow
on S? consists of moving towers of spheres with
evolving necks.

contracting spheres and analogues of the King-Rosenau
solutions due to G. Perelman. The noncollapsing condition
is necessary due to the existence of other collapsed
examples discovered by V. A. Fateev and related to
quantum field theory.

One of the remarkable features of the 2-dimensional
Ricci flow is its conformal invariance, because in 2D it
coincides with the Yamabe flow, in which the metric
shrinks in a given conformal class by a rate proportional
to its scalar curvature. The Yamabe flow was introduced
by Hamilton in 1989 as a parabolic approach to the
resolution of the so-called Yamabe problem, solved by S.
Brendle in 2005-2007.

It turns out that for the Yamabe flow there are more
types of ancient solutions. In a recent work with M. del
Pino and Sesum, we constructed ancient solutions of the
Yamabe flow on, for example, the 3-dimensional sphere
as moving towers of 2-spheres joined by thin necks, as in
Figure 2.

The appearance of the towers of bubbles shows that the
classification of ancient solutions to the compact Yamabe
flow on S™ poses a rather difficult task. On the other hand,
it gives a new way for constructing special solutions. It
shows how one may glue two or more ancient solutions of
a parabolic equation to construct a new ancient solution
of the same equation. More recently, in joint work with
del Pino, J. King, and Sesum, we have constructed a
four-parameter of ancient solutions which converge, as
t - —oo, to two self-similar solutions moving in opposite
directions. The picture that one has is very similar to
that in Figure 1, where the cigar solution is replaced by a
one-parameter family of self-similar solutions (solitons)
which may be viewed as traveling waves in cylindrical
coordinates. Our solutions are not given in closed form,
except for one (the analogue of the sausage model in the
Ricci flow), which was previously discovered by King.

One of the best-known extrinsic geometric flows is the
Mean Curvature flow, in which a hypersurface in R""!
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moves in the normal direction at a rate proportional
to the mean curvature. Since this flow is known for its
many exotic examples of singularities, one expects to have
many ancient solutions. The simplest ancient solution is a
contracting sphere. One hopes to provide a classification
of ancient solutions by imposing natural geometric con-
ditions, such as convexity or noncollapsedness. The latter
condition is necessary due to “pancake”-type solutions,
which collapse as t - —oo.

For the case n = 1 of the curve-shortening flow in the
plane, S. Angenent found interesting compact noncol-
lapsing solutions: two “Grim Reapers” that approach each
other from opposite ends of the plane, so named because
of the way they sweep away all other possibilities as they
come together. In joint work with Hamilton and Sesum, we
proved that there are no other convex ancient solutions.

It is unknown how much of this generalizes to higher
dimensions. B. White has found noncollapsing convex
and compact ancient solutions. In joint work with An-
genent and Sesum we have made some partial progress
toward proving that these are the only ones by providing
the detailed asymptotic analysis of rotational symmetric
solutions as t - —oo.

The results above are only a small step forward towards
understanding ancient solutions to parabolic equations.
All the existing classification results are based on knowing
all the candidates as either being solitons or given in
closed form. The next big step forward would be to
classify other ancient solutions, including the examples
mentioned above. In that respect the classification of all
ancient noncollapsed and compact solutions to the mean
curvature flow would be the first result in this direction.

For more information come to our talk and see our

recent papers at|arXiv.orgland references therein.
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Tatiana Toro

Analysis on Nonsmooth Domains
Tatiana Toro, Robert R.

P and Elaine F. Phelps

Professor in Mathemat-
. ics at the University of
L () Washington in Seattle,

will deliver the NAM
Claytor-Woodard Lec-
ture this year. Toro is
a mathematician work-
ing at the interface of
geometric measure the-
ory, harmonic analysis, and partial differential equations.
The cross-pollination between these three areas has been
one of the pillars of her research. Her work focuses on
understanding mathematical questions that arise in envi-
ronments where the known data is very rough. The main
premise of her work is that objects that at first glance
appear to be very irregular do in fact exhibit quantifiable
regular characteristics when viewed through the right
lens.

In her lecture Toro will focus on the deep interplay
between the geometry of a domain and the boundary
regularity of solutions to elliptic partial differential equa-
tions. This will allow her to illustrate the way in which
ideas and tools from geometric measure theory, harmonic
analysis, and partial differential equations come together
to produce interesting and surprising results. It will also
provide a concrete example of an instance in which the
right magnifying glass reveals a precise structure that
would have otherwise remained invisible.

o L

Tatiana Toro

Tatiana Toro is the Robert R. and Elaine F. Phelps Professor in
Mathematics at the University of Washington. Her email address
is toro@math.washington.edu.

DOL: http://dx.doi.org/10.1090/noti1313

21


http://arXiv.org

