
AD HONOREM LOUIS NIRENBERG

On May 19, 2015, Louis Nirenberg and John F.
Nash Jr. received the6millionNOK (aboutUSD
750,000) Abel Prize inmathematics, Norway’s
response to Sweden’s Nobel Prize in Physics.
Initially proposed by Norwegian mathemati-

cian Sophus Lie for the hundredth anniversary in 1902 of
the birth of Norwegian mathematician Niels Henrik Abel,
it was established on the two hundreth anniversary in
2002. In a brilliant citation, John Rognes, chair of the Abel
Committee, beganwithNewton anddifferential equations.
Paradoxically it’s easier to prove solutions exist if you
allow them to be possibly nondifferentiable “weak” solu-
tions, such as the generalized functions or distributions
of de Rham, defined by their integrals against smooth
functions. Then you can hope to prove the solution is
regular (differentiable) after finding it. Rognes said:

“At first, a weak solution only exists in a virtual sense,
through its interaction with other quantities. To become
useful for applications, and to be accessible through nu-
merical calculations with a computer, it is necessary to
know that theweak solution is real, and that is generalized
rates of change are actual rates of change.

“The regularity results of Nirenberg and Nash provide
this kind of knowledge, with mathematical certainty.”

The awarding of the prize by His Majesty King Harald V
was followed by acceptance speeches from the laureates.

Nirenberg charmed the assembly, starting by admitting
that he was nervous, and then relaxing into jokes and
stories. He celebrated his joy in collaboration and his love
of inequalities.

During the Abel Lectures the next day, Nirenberg gen-
erously talked not only about his own work but also about
the milestone progress on the Twin Primes Conjecture by
Yitang Zhang. In his lecture on Nirenberg’s work, Tristan
Riviére said that, “Louis Nirenberg’s scientific endeavor
is an exemplary reminder to all of us that research is
first and foremost a collective venture, in which debating,
discussing, and exchanging ideas play a decisive role.” In
the Science Lecture on “Soap Bubbles and Mathematics,”
Frank Morgan observed that it was Nirenberg, with collab-
orators David Kinderlehrer and Joel Spruck, who proved
that the singular curves in soap bubble clusters are real
analytic.

The full text of Rognes’s citation may be found at
www.abelprize.no/binfil/download.php?tid=63672.
Morgan’s Science Lecture may be found in the September
2015 issueof theNewsletter of the EuropeanMathematical
Society.
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Exploring the Unknown: The
Work of Louis Nirenberg on
Partial Differential Equations

This is a condensed write-up of Tristan Rivière’s Abel Symposium lecture, May 20, 2015.
For details and references see the original text at arxiv.org/abs/1505.04930.

Tristan Rivière

Partial differential equations are central objects
in the mathematical modeling of the natural and
social sciences: in sound propagation, heat diffu-
sion, thermodynamics, electromagnetism, elastic-
ity, fluid dynamics, quantum mechanics, popula-

tion growth, and finance, for example. The theory entered
its golden age in the second half of the twentieth century.

Since the early 1950s the mathematical work of Louis
Nirenberg has made large contributions to this funda-
mental area of human knowledge. The name Nirenberg is
associated with many of the milestones in the study of
PDEs. The awarding of the Abel Prize to Nirenberg marks
a special occasion for us to revisit the development of the
field of PDEs and the work of one of the main actors in
its exploration.

Sidebar 1. Notices articles on Nirenberg
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In 1874 Sofia Kowalevski
proved a general nonlinear
version of the Cauchy-
Kowalevski theorem on
the existence and unique-
ness of solutions to real-
analytic partial differential
equations.

Louis Nirenberg has
liked to describe the
field of partial differen-
tial equations as being
“messy” and often ac-
knowledges his special
taste for this messiness.
We’ll start by present-
ing the original attempts
made mostly in the nine-
teenth century to see
PDEs as a whole and the
limits and inadequacies
of this approach.

A General Existence
Result: The Cauchy-
Kowalevski Theorem
Perhaps the first gen-
eral systematic study of
partial differential equa-
tions goes back to the
work of Augustin-Louis
Cauchy and his existence and uniqueness theorem for
quasilinear first-order PDEs with real analytic data. In
1874, Sofia Kowalevski, apparently unaware of Cauchy’s
work, proved in her thesis a general nonlinear version of
the result.

Some Inadequacies of the Cauchy-Kowalevski Theory
The Cauchy-Kowalevski theorem requires an analytic
framework. The historical proof consists of an argument
based on the convergence of power series. The question
of whether there could be other nonanalytic versions
has stimulated much research, and although there are
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uniqueness theorems for some classes of linear PDEs,
there are also counterexamples touniqueness. Thegeneral
question remains to be settled.

If one seeks global solutions, which are expected to
exist in physical problems, there is a need to relax the
analytic framework, since singularities can appear in finite
time.

Local Solvability
The Notion of Local Solvability and Lewy’s Counter-
example
The first attempt to go beyond the Cauchy-Kowalevski
theory sacrifices uniqueness requirements and looks
at “germs” of PDEs at a point. We consider the linear
framework and ask whether one can enlarge the class of
possible solutions from the analytic class to the 𝐶∞ class
or even to the much larger space of generalized functions
called distributions. Outside the analytic framework, is a
linear PDE always locally solvable?

Around 1955, Leon Ehrenpreis and Bernard Malgrange
proved independently the local solvability of any lin-
ear PDE with constant coefficients. Using the Laurent
Schwartz theory of tempered distributions, such a PDE
can be converted into a convolution equation, and the
problem is reduced to a division problem in function al-
gebra. Encouraged by this result, the conjecture asserting
that any linear operator with more general coefficients
should be locally solvable became notorious in the PDE
community. In 1957, Hans Lewy came up with a spectac-
ular counterexample, namely, a 𝐶∞ linear PDE in three
variables with no 𝐶1 solution in a neighborhood of the
origin. This counterexample triggered intense research
that involved many prominent analysts of that time, such
as Lars Hörmander, Nirenberg, François Treves, and Yuri
Vladimirovich Egorov. They were seeking necessary and
sufficient conditions for local solvability.

The Nirenberg-Treves Local Solvability Condition
In three fundamental papers, Louis Nirenberg and
François Treves proposed a necessary and sufficient
condition for local solvability, the so-called (P) condition,
established for a growing number of cases in successive
works by Nirenberg and Treves themselves, by Beals
and Fefferman, and by Hörmander, until in 2006 Nils
Dencker proved the sufficiency of a generalized so-called
Nirenberg-Treves (ΨΨΨ) condition for the very general class
of pseudo-differential operators. Pseudo-differential
operators were introduced by Nirenberg in collaboration
with Joseph J. Kohn in 1965 and by Lars Hörmander.

Cauchy Problems and Global Solvability for
Linear PDEs
The Notion of a Cauchy Problem
Understanding the local solvability of a PDE is certainly
one important question, but onemight argue that it should
not come into play in physical applications where one
expects global solutions. The question of global solvability
is traditionally coupled with that of uniqueness, and
together they form what is called a Cauchy problem. A

Cauchy problem, or well-posed problem, consists of a
linear PDE, a function space 𝐸 in which the data (the
input) makes sense, and a function space 𝐹 to which the
expected solution (the output, also called the unknown)
should belong, along with the requirements that:

i) there exists exactly one solution in 𝐹 for any given
data in the function space 𝐸;

ii) the dependence of the solution on the data is
continuous from 𝐸 into 𝐹 .

Finding the appropriate spaces 𝐸 and 𝐹 for linear PDEs
has generated a tremendous amount of mathematical
activity in the last century. It also gives the “asymptotics”,
or “constraints at thehorizon”, for solvingmanynonlinear
problems. One can illustrate the notion of a Cauchy
problem by looking at examples of ill-posed problems.
One of them seeks a holomorphic extension in the disc
𝔻2 of prescribed 𝐶1 boundary data. This is an ill-posed
problem, because not every boundary data admits a 𝐶1

holomorphic extension in 𝔻2 (for instance 1/𝑧). The ill-
posedness can, however, be thwarted by replacing all
𝐶1 functions on the boundary with the subspace of 𝐶1

functions that are 𝐿2-orthogonal to 1/𝑧𝑘 for all positive
integers 𝑘.

The Fragmentation of the Analysis of PDEs
The search for Cauchy problems has imposed a frag-
mentation of the field of PDEs into multiple areas of
analysis which have often developed independently of
each other. The analysis of PDEs cannot be encapsulated
into a single theory. It is in fact a field that might seem
disorderly from the outside. But this messiness, which
sometimes discourages would-be analysts, is in the very
nature of PDEs, and it is the source of an infinite di-
versity of phenomena, arguments, and results. One may
nevertheless attempt to put some order in this diversity
by singling out three main families of operators: elliptic,
such as Laplace’s equation; parabolic, such as the heat
equation; and hyperbolic, such as the wave equation. This
(overly) simplified classification leaves out many equa-
tions, including physical ones, such as the Schrödinger
equation or the Korteweg-deVries water-wave equation.
Nonetheless, understanding how the three basic families
differ from one another constitutes a first step in the
study of hybrid and more complicated PDEs. Parabolic
equations can be understood as elliptic equations with
time propagation, and thus these two families enjoymany
similar properties, such as smoothing and infinite speed
of propagation. Hyperbolic equations, on the other hand,
are very different, and they involve, for example, finite
speed propagation and the transport of singularities. The
work of Nirenberg has a barycenter closer to the first two
families, so we shall focus on elliptic and parabolic PDEs.

The Agmon-Douglis-Nirenberg Elliptic Cauchy Prob-
lems in the Banach 𝐿𝑝 spaces
In two fundamental papers published in 1959 and in 1964,
Schmuel Agmon, Avron Douglis, and Nirenberg solved the
elliptic Cauchy problems and the invertibility of elliptic
operators of arbitrary orders. They worked in the context
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of Banach 𝐿𝑝 spaces. They obtained a series of optimal
results that opened the way to explore not only linear but
also nonlinear PDEs, which were previously completely
out of reach.

Inequalities and A Priori Estimates
Gagliardo-Nirenberg Interpolation Inequalities
Thefield of PDEs is structured by inequalities. They are the
workhorses of the field. In themid-1950s, functional anal-
ysis was already rich in inequalities: Hölder, Minkowski,
Poincaré, Poincaré-Wirtinger, Young, Hausdorff-Young,
Hardy, Hardy-Littlewood, etc., not to mention the more
recent Sobolev inequalities. Deep scaling considerations (a
common trait in Nirenberg’s work) led Nirenberg around
1959—and independently Emilio Gagliardo—to discover
a large family of inequalities for Sobolev norms partway
between two others. For example, for a function 𝑢 of
compact support on ℝ𝑛, as 𝑡 varies from 0 to 1, one gets
a family of inequalities between the extreme cases:

‖𝑢‖𝐿𝑞 ≤ 𝐶‖𝑢‖𝑡
𝐿𝑝 (∫(|𝑢|𝑛 +|𝐷𝑢|𝑛))

(1−𝑡)/𝑛
(1 ≤ 𝑝 ≤ 𝑞 < +∞),

where 𝑡 = 𝑝/𝑞.

The Use of Gagliardo-Nirenberg Inequalities for Proving
A Priori Estimates
The notion of a priori estimates is central in PDEs.
Roughly speaking, it deals with bounding the norm of
an assumed solution in some Banach space 𝐸 before we
know that such a solution exists. In concrete situations,
looking at a given nonlinear PDE problem, one establishes
such an a priori bound in order to perform one of the
numerous available analytical methods to finally prove
the existence of a solution satisfying that bound: a fixed
point argument in a perturbation approach, the continuity
method, topological techniques such as Leray-Schauder
theory, functional analysis approaches such as monotone
operator theory, successive approximation, penalization
approaches such as elliptization or the viscosity method,
and variational approaches (such as minimization, min-
max methods, or Morse theory). Gagliardo-Nirenberg
inequalities are mostly used to control nonlinear terms
and establish a priori estimates. There are countless
applications for these inequalities.

The John-Nirenberg BMO Space: When Elasticity
Meets Harmonic Analysis
The analysis of PDEs has evolved and keeps evolving
in close partnership with the development of functional
analysis and function space theory. Many linear and non-
linear problems in PDEs have stimulated the introduction
of new function spaces, such as Sobolev spaces for solving
the Dirichlet problem. The converse is also true: knowl-
edge and properties of certain function spaces can trigger
a new understanding of PDEs.

In 1961, the mathematician Fritz John was studying
a rigidity problem from elasticity. The strain exerted on
a perfect elastic solid can be measured by the distance

of the gradient of the resulting deformation from the
orthogonal group. He asked the following question:

If the gradient of a transformation from Euclidean
space into itself is “close to” the group of rotations at every
point, is it globally close to one single rotation?

Johngave a counterexample butwas able to give control
on the rate of failure. In a subsequent collaboration,
which has since become a milestone in analysis, John
and Nirenberg systematically studied the subspace of
locally integrable functions whose elements satisfy such
estimates, the so-called space of functions of bounded
mean oscillation (BMO). They proved that it is strictly
larger than 𝐿∞ but smaller than 𝐿𝑝

loc for any 𝑝 < +∞.
The space BMO, which naturally arose in the context of
elasticity in 1960, was apparently unknown to functional
analysts. It was therefore a big surprise to discover, after
the remarkable work of Elias Stein and Charles Fefferman
in 1972, that BMO was the Banach dual of a famous space
introduced in complex function theory some forty years
earlier by Friedrich Riesz and named “Hardy space” 𝐻1

after a famous work by Godfrey Hardy from 1915.
The dual spaces 𝐻1 and BMO play a fundamental

role in PDEs. Empirically, one could say that they are
the “natural replacements” for 𝐿1 and 𝐿∞ which are not
compatible with Calderón-Zygmund theory; in fact, the
Agmon-Douglis-Nirenberg results do not hold either for
𝐿1 or 𝐿∞. In contrast, 𝐻1 and BMO are well behaved in
these theories.

The Maximum Principle
Nirenberg’s Strong Maximum Principle for Parabolic
Equations

It would be impossible to speak about the work of
Nirenberg without mentioning the maximum principle.
The contrast between the immense range of applications
of this principle and the simplicity of the heuristic idea
behind it is amazing.

In one dimension, the maximum principle states that a
continuously twice differentiable function on the segment
[0, 1] satisfying 𝑢 ≥ 0 on [0, 1] achieves its maximum value
on the boundary of the segment. In higher dimensions,
the maximum principle was known to Gauss since 1839
for solutions of Laplace’s equation, owing to the mean
value theorem for harmonic functions:

A solution to the Laplace equation on a bounded smooth
domain achieves its extremal values on the boundary of
the domain.

This formulation requires 𝕦 to solve a PDE, but it was
only at the beginning of the twentieth century that the
idea of a general principle for elliptic partial differential
inequalities emerged in a five-page paper of Eberhard
Hopf (1927). In the early 1950s, a weak version of this
principlewas known to hold for someparabolic operators.
In 1953, Louis Nirenberg proved a corresponding strong
version, the subject of the next section.
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The Notion of “Barriers”, the “Moving Plane” Method,
and the Gidas-Ni-Nirenberg Symmetry Principle
The heuristic idea behind the strong maximum principle,
at least in the simpler elliptic framework, has an interest-
ing geometric representation. We say that a linear elliptic
operator satisfies the strong maximum principle if the
following holds. Consider the graphs of a subsolution 𝕦
satisfying a related inequality and a supersolution 𝕧 sat-
isfying the opposite inequality over a bounded domain,
with one of them sitting above the other (i.e., 𝑢 ≥ 𝑣). The
strong maximum principle says that if they touch at some
interior point, then they are necessarily identical.

A subsolution satisfying 𝕃𝑢 ≥ 0 is then said to be
a “barrier” with respect to a supersolution satisfying
𝕃𝑣 ≤ 0 and vice versa. This geometric interpretation is
an incentive to manufacture barriers with respect to
solutions, subsolutions, and supersolutions in order to
prove pointwise inequalities via the maximum principle.
This fruitful technique has become a classic in analysis,
where it is known as a comparison argument. Devising
suitable barriers is nothing short of being an art in itself.
It requires deep intuition and thorough experience of the
problems considered.

The geometric interpretation of the maximum princi-
ple in both its strong andweak formulations was probably
first used in the 1955 work of Alexander Danilowitsch
Alexandrow. He used a comparison argument between
the solution itself and some reflections of it in order to
prove that embedded constant mean curvature closed
surfaces in ℝ3 are necessarily round spheres. Following
an important paper by James Serrin, Nirenberg, in col-
laboration with Basilis Gidas and Wei Ming Ni, converted
Alexandrow’s original idea for constant mean curvature
surfaces into a general method, as beautiful as it is ef-
ficient, nowadays known as the “moving plane method”.
With it, one can prove symmetry and uniqueness results
for positive solutions of semilinear scalar equations of
the form

−Δ𝑢 = 𝕗(𝕦).
These symmetry and uniqueness results are of utmost
importance, since they extend to a nonlinear framework
a fundamental principle in quantum mechanics and in
spectral theory, stating that the ground state of the
Laplace operator, which is necessarily positive, enjoys
special symmetries and has multiplicity one (i.e., it is
unique—the Krein-Rutman theorem).

This method and the ensuing symmetry results have
important applications to diverse areas of science: the
study of ground states of nonlinear Schrödinger models
in quantum mechanics (Figure 1), the vortex theory of
Onsager in thermodynamics, turbulence in statistical
physics, phase-transitions in Van der Walls fluids, the
Yamabe problem in differential geometry, etc.

The moving plane method consists of comparing an
arbitrary solution 𝕦 for the semilinear equation with
its successive reflections across a continuous family of
parallel hyperplanes. These reflections are used as barrier
functions for 𝕦. A key ingredient of the method is the
strong version of the maximum principle discovered by

Symmetry of Nonlinear Schrödinger Ground States

−Δu = f(u)

u

v = ut

u > 0 Ω

u = 0 on ∂Ω

Ht

Figure 6

Figure 1. The Gidas-Ni-Nirenberg moving plane
method proves, for example, the symmetry of the
Schrödinger ground state.

Hopf in the 1950s, now known as the Hopf boundary
lemma.

Later on,Nirenberg, in collaborationwithHenri Beresty-
cki, introduced a new “sliding method”, devised to prove
various pointwise estimates and asymptotic behaviors for
solutions in cylindrical domains to semilinear equations,
aswell as their parabolic counterparts. The slidingmethod
has numerous important applications to traveling-front
problems in the mathematical modeling of combustion
and flame propagation. Its novel idea consists of com-
paring the solution with its translations along the axis of
the cylinder rather than using the images by successive
symmetries of the solution as barriers.

The Dirichlet Problem for Nonlinear Second-Order
Elliptic Equations
We have stressed the importance of a priori estimates
for solving the Dirichlet problem of semilinear equations.
Proofs combine the Agmon-Douglis-Nirenberg 𝐿𝑝-theory
for boundary-value problems with Gagliardo-Nirenberg
estimates in various Banach spaces. For many scalar
equations of elliptic type which are more nonlinear and
moredegenerate than semilinear equations, themaximum
principle is an additional tool that can be added to the
mix to obtain the desired estimates.

In a series of five fundamental papers written in col-
laboration with Luis Caffarelli and Joel Spruck, Nirenberg
identified the maximum principle as a fundamental de-
vice to obtain a priori estimates and solve the Dirichlet
problem for so-called fully nonlinear PDEs. An example of
such an equation is the Monge-Ampère equation, which
appears in problems related to optimal transport as well
as in geometric problems of prescribed curvature.

These five papers by Caffarelli, Nirenberg, Spruck,
and Joseph Kohn (on one of them) have stimulated a
tremendous amount of research activity on fully non-
linear PDEs. These equations have an immense range of
applications in many fields of science, including material
sciences, finance, and computer vision. The original ideas
of Nirenberg et al. have influenced the development of a
whole branch of analysis, called viscosity theory for PDEs,
where the maximum principle plays a central and deci-
sive role. The viscosity theory for PDEs was introduced
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Figure 2. Can an abstract sphere with smooth
prescribed positive Gauss curvature be realized as a
convex surface in ℝ3ℝ3ℝ3?

by Lawrence Craig Evans (1980) and by Michael Crandall
and Pierre-Louis Lions (1983).

Solving Problems from Geometry
The analysis of PDEs and differential geometry are in-
timately intertwined. The central roles played by the
Laplace operator and by the 𝜕bar-operator in Riemann
surface theory constitute the simplest illustrations. The
second half of the twentieth century saw a dramatic
acceleration of the transfer of techniques from nonlinear
PDEs to the resolution of problems that seem a priori
confined to geometry. A spectacular example of the might
of the PDE approach in geometry is the recent proof of
the Poincaré conjecture by Grigori Perelman, which relies
heavily on the parabolic Ricci flow of Richard Hamilton.

Nirenberg’s Resolution of the Weyl Problem
The taste for geometry and the influence of geometric
questions are manifest in Nirenberg’s work. He is among
the pioneers who introduced elaborate analysis tools
for solving questions pertaining to embeddings, tensors,
curvature, and complex structures. His doctoral work
itself dealt with geometry. Following the invitation from
his advisors James Stoker and Kurt Friedrichs, he solved
a problem originally posed by Hermann Weyl:

Given a metric of positive Gauss curvature on the two-
dimensional sphere, can it be isometrically embedded as a
convex surface in ℝ3?

Nirenberg proved that it can if the given metric is
four times continuously differentiable (1953). In this first
work, the general philosophy is already present: one looks
for a priori estimates and combines them with suitable
continuity methods that leave the a priori estimates
unchanged along the deformation.

The Nirenberg Problem
The original “Nirenberg problem” can be stated as follows:

Which functions 𝐾 on the two-sphere can be realized as
the Gauss curvature of metrics conformal to the standard
metric?

This simply formulated question has brought forth
an enormous amount of work since the early 1970s, not
only because it is the simplest instance of a wide range

of similar questions (higher dimension, different curva-
ture tensor, scalar curvature, 𝑄-curvature, 𝜎𝜎𝜎𝑘-curvatures,
fractional curvatures) but also because it gives rise to
the major issues faced by conformal geometric analysts
in their study of “critical nonlinear PDEs”, such as con-
centration of compactness, Palais-Smale sequences, and
Morse theory. These issues appear as well in many cel-
ebrated problems: the Yamabe problem, harmonic map
theory, Yang-Mills equations, and constant mean curva-
ture surfaces, to name a few. The apparent simplicity of
the Nirenberg problem fosters the universal difficulties
arising in conformal geometric analysis.

Itwouldbemuchbeyondthescopeof thepresent report
to give a detailed account of the various arguments
and creativity which have flourished in the quest for
solving Nirenberg’s problem. We content ourselves with
mentioning that not every choice for 𝐾 gives rise to
a solution. This is seen, for example, using the Gauss-
Bonnet theorem and the now well-known Kazdan-Warner
necessary condition.

The Newlander-Nirenberg Complex Frobenius Theorem
Nirenberg has made important contributions to complex
geometry and complex analysis. Once again, PDE tech-
niques lie at the heart of the approach he favored to
tackle various geometric questions.

An important one deals with the integrability of almost
complex structures. Nirenberg and his student A. New-
lander succeeded in proving that a certain complex
Frobenius-type condition is sufficient for local solvability
in the 𝐶∞ framework.

Conclusion
At the end of these notes, one feels somewhat frustrated
to have only presented a small part of the prolific and
monumental work of Louis Nirenberg. Many important
contributions have been omitted, such as the analyticity of
solutions to analytic PDEs (in collaboration with Charles
Morrey), the regularity of free-boundary problems (in
collaboration with David Kinderlehrer and Joel Spruck),
and the partial regularity of solutions to the Navier-Stokes
equation (in collaboration with Luis Caffarelli and Robert
Kohn), which to this day remains the optimal step towards
solving the Millennium problem.

Nirenberg’s scientific endeavor is an exemplary re-
minder to all of us that research is first and foremost
a collective venture in which debating, discussing, and
exchanging ideas play a decisive role. It is the result
of no coincidence that Nirenberg made his professional
home at the Courant Institute at New York University, a
prestigious institution that has fostered, since its very
creation, a unique laboratory for the free exchange of
scientific ideas.

Although there are still many important theoretical
questions to answer, the analysis of partial differential
equations is nowadaysmostly aimedat better understand-
ing other fields of science, with applications in geometry,
physics, mechanics, chemistry, biology, social sciences,
technology. These developments, and the ones to come,
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anchor their roots in the immense efforts deployed in
the last century by human intelligence in this area of
mathematics. Mathematical knowledge is, however, not
only made of an accumulation of truths and results con-
fined to papers and books and transmitted in this form
to future generations. A large and immaterial share of
mathematical knowledge resides in the “living part” of
mathematics, in mathematicians themselves, with their
intuitions, their hesitations, their perseverance, and most
importantly, with their quest and search for beauty (as
surprising as it may sound to nonmathematicians!). Her-
mann Weyl once said, “My work always tried to unite the
truth with the beautiful, but when I had to choose one
or the other, I usually chose the beautiful.” We do not
know whether Nirenberg would agree with this quote, but
we would nonetheless like to thank him for the beautiful
mathematics he has produced and for generously sharing
it with us all for so many years.
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Tristan Rivière speaking at the
lively Abel Symposium in Nor-
way, May 2015.
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Twenty Years Ago in the Notices

February 1996

Shadows of the Mind: A Search for the Missing Science of Consciousness, by 
William Faris.

Faris reviews the controversial book by Roger Penrose, and along the way 
provides lucid explanations of quantum mechanics.  

www.ams.org/notices/199602/faris.pdf
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