
THE GRADUATE STUDENT SECTION

WHAT IS. . .

Gauss Curvature?
Editors

Gaussian curvature is a curvature intrinsic to a two-
dimensional surface, something you’d never expect a
surface to have. A bug living inside a curve cannot tell if
it is curved or not; all the bug can do is walk forward and
backward, measuring distance. But a very intelligent bug
living on a surface can, by walking around, never leaving
the surface, measure its Gaussian curvature.

The Definition. Assuming you know how to define the
curvature of a curve, how would you define the curvature
of a surface at a point 𝑝? Slice the surface by a plane
normal to the surface at 𝑝, as in Figure 1.
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Figure 1. To define the Gauss curvature, consider the
curvature of slice curves. The Gauss curvature is the
product of the largest (positive) and the smallest or
most negative such curvatures.
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Take the curvature of the slice-curve. Thus you get a
curvature in every direction. The largest (positive, upward)
and smallest (most negative) such curvatures are called
the principal curvatures, and they occur in orthogonal
directions. Their average is called the mean curvature,
and their product is called the Gauss curvature. For the
unit sphere, both principal curvatures are 1 and hence
the Gauss curvature is 1. For a unit cylinder, the principal
curvatures are 1 and 0 and hence the Gauss curvature
is 0. For a suitable hyperbolic paraboloid as in Figure 2,
the principal curvatures are 1 and −1, and the Gauss
curvature is −1.
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Figure 2. For this hyperbolic paraboloid, the Gauss
curvature is (+1)(−1) = −1(+1)(−1) = −1(+1)(−1) = −1.

Gauss’s Theorema Egregium says that this Gauss cur-
vature is intrinsic; in other words, it can be measured by
a bug within the surface. That means that if you bend the
surface without stretching it, the Gauss curvature cannot
change. If you roll the plane up into a cylinder, as in
Figure 3, the principal curvatures change from 0, 0 to 0, 1,
but the Gauss curvature remains 0.
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Figure 3. Rolling a piece of plane into a cylinder of
radius 𝑟 changes the principal curvatures from 0, 00, 00, 0 to
1/𝑟, 01/𝑟, 01/𝑟, 0 but the Gauss curvature–the product–remains 0.

One way a bug can measure the Gauss curvature of
a surface at a point 𝑝 is by looking at a tiny “geodesic”
circle of tiny radius 𝑟 about 𝑝:

{𝑥 ∶ dist(𝑝, 𝑥) = 𝑟}.
If the Gauss curvature is 0, the circumference is 2𝜋𝑟
to high order. If the Gauss curvature is positive as on
the sphere, the circumference is smaller. If the Gauss
curvature is negative as on the hyperbolic paraboloid, the
circumference is greater. In general, for Gauss curvature
𝐺, the circumference is given by

2𝜋𝑟−𝐺𝜋𝑟3

3 +….

For a closed surface, there is the amazing Gauss-
Bonnet formula relating the Gauss curvature 𝐺 and
the Euler characteristic 𝜒. The Euler characteristic is a
purely combinatorial quantity, easily computed from any
triangulation as the number of vertices minus the number
of edges plus the number of regions. The Gauss-Bonnet
Theorem says that

∫𝐺 = 2𝜋𝜒.

Since the Euler characteristic of the sphere is 2, this says
that the integral of the Gaussian curvature is 4𝜋. This is
easy to check for the round unit sphere: since the Gauss
curvature is 1, it just says that the area is 4𝜋. The amazing
thing is that it remains true for a deformed sphere of any
size and shape.

The Gauss-Bonnet Theorem is an amazing equality
of the geometric and the combinatorial. It immediately
implies that the Euler characteristic is independent of
triangulation, because the integral of the Gauss curvature
is. Similarly it implies that the integral of the Gauss
curvature remains constant under deformations, because
the Euler characteristic does.

As you can read in the article on Nirenberg (page
126), in 1970 Nirenberg1 asked which functions on the
sphere can be the Gauss curvature for some embedding
of the sphere in space. By the Gauss-Bonnet Theorem, the
integral must be 4𝜋. Are there any other conditions?

1Technically Nirenberg considered not only spheres embedded in
space but more abstract Riemannian surfaces given by a Rie-
mannian metric on the sphere. But since Nash (who’ll be featured
in the May Notices) proved that any such sphere can be embedded
in high-dimensional space, it really doesn’t matter.
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