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Suppose we are given a set of polynomial equations that
we wish to solve. A scheme is an object which records
the solutions to these polynomials as the domain of the
variables ranges over many rings. Allowing the domain to
vary helps solve equations even over a fixed ring. Schemes
were invented around 1960 by Alexander Grothendieck
as an early step in his reworking of algebraic geometry,
and they had a revolutionary impact on the subject. As
he put it in his Récoltes et Semailles, schemes “represent
a metamorphosis of the old notion of ‘algebraic variety’.”

In an Anabelian Scheme, the solutions are controlled
not by the usual algebraic manipulations but rather by
using the loops on the complex solutions together with a
Galois group. This difference opens up new possibilities
for understanding the solutions, which is one reason
to care about Anabelian Schemes. Before giving precise
definitions, let’s look at an example.

Let 𝑓(𝑥) be a polynomial with coefficients in ℚ, or to
be even more specific, let’s suppose 𝑓(𝑥) = ∏5

𝑛=0(𝑥 − 𝑛).
The solutions

𝑋(ℂ) = {(𝑥, 𝑦) ∈ ℂ2 ∶ 𝑦2 = 𝑓(𝑥)}
are drawn in Figure 1 (see p. 286). Note that these
solutions form a genus 2 surface with two punctures.
Replacing ℂ by any ℚ-algebra 𝑅 yields a corresponding
set of solutions, also called 𝑅-points,

𝑋(𝑅) = {(𝑥,𝑦) ∈ 𝑅2 ∶ 𝑦2 − 𝑓(𝑥) = 0}.
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technical and abstract mathematics, seems a perfect accompani-
ment to this issue’s tribute to Grothendieck.
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For example, while 𝑋(ℂ) is a surface, 𝑋(ℝ) consists of
three circles with two points removed from one of them,
and𝑋(ℚ) is only a finite set of points. All of these solution
sets together determine a scheme 𝑋.

Note that (0, 0), and (1, 0) are both in 𝑋(ℝ), and view
(0, 0) as a designated base point. If we travel along a path
𝛾 from (0, 0) to (1, 0) in 𝑋(ℂ) and then travel backwards
along the path 𝛾 given by taking the complex conjugates
of the coordinates of points of 𝛾, we get a loop 𝛾𝛾−1

from (0, 0) to itself. The point (1, 0) in 𝑋(ℝ) is controlled
by analogues of the loop 𝛾𝛾−1. Conjecturally, all points
of 𝑋(𝑘) are controlled by analogous loops formed from
paths from (0, 0) to (𝑥, 𝑦)when 𝑘 is a finite extension ofℚ.
This is the way in which the solutions to the polynomials
defining an Anabelian Scheme are controlled by the loops.

To be more precise, we need a generalization of
the loops on 𝑋(ℂ) which also incorporates field automor-
phisms, such as complex conjugation. This generalization
is called the étale fundamental group 𝜋ét

1 and its defi-
nition uses the classification of covering spaces by the
fundamental group to define a notion of fundamental
group given a notion of covering space. This process was
discovered by Grothendieck and 𝜋ét

1 records information
both about topological fundamental groups and Galois
groups. For example, suppose a scheme 𝑋 is such that all
of its defining polynomials have coefficients in 𝑘 and the
only 𝑋(𝑅) considered are those where 𝑅 is a 𝑘-algebra.
Such a scheme is said to be over 𝑘. Undermild hypotheses,
there is a short exact sequence

1 → 𝜋1(𝑋(ℂ))∧ → 𝜋ét
1 𝑋 → 𝐺 → 1,

where 𝜋1(𝑋(ℂ))∧ denotes the inverse limit of finite
quotients of𝜋1(𝑋(ℂ)), and 𝐺 denotes the absolute Galois
group of the number field 𝑘.

The procedure given two paragraphs above associating
the point (1, 0) to the loop 𝛾𝛾−1 on 𝑋(ℂ) generalizes to
give a map

(1) 𝑋(𝑘) → Mapout
𝐺 (𝐺,𝜋ét

1 𝑋),
where Mapout

𝐺 (𝐺,𝜋ét
1 𝑋) denotes the outer continuous

group homomorphisms from 𝐺 to 𝜋ét
1 𝑋 which respect
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Figure 1. The map 𝑓 ∶ 𝑋(ℂ) → ℂ defined by (𝑥, 𝑦) ↦ 𝑥
is a branched covering map; over every point 𝑥 of ℂ
such that 𝑓(𝑥) ≠ 0 there are two points of 𝑋(ℂ), and
over every point 𝑥 in ℂ such that 𝑓(𝑥) = 0 there is one
point in 𝑋(ℂ). We partition the zeros of 𝑓(𝑥) into pairs
and cut a slit running from each point of a pair to the
other. The inverse image under 𝑓 of the complex
plane ℂ minus the slits 𝑆 is two disjoint copies of
ℂ− 𝑆 because any loop in the base must wrap around
an even number of zeros of 𝑓, which causes a lift of
that loop to stay on the same sheet of the covering
space. These two copies of ℂ− 𝑆 are attached along
the inverse images of the slits. When a loop on the
base passes through a slit, the lift of the loop must
change sheets. Since the associated gluing would
result in self-intersections, it is easier to see the
shape of the solutions if we flip the bottom copy of
ℂ− 𝑆 over the real axis. We then glue or add small
cylinders and can see that the solutions form a genus
2 surface with two punctures.

the map 𝜋ét
1 𝑋 → 𝐺. More precisely, Mapout

𝐺 (𝐺,𝜋ét
1 𝑋) de-

notes the set of equivalence classes of continuous group
homomorphisms 𝐺 → 𝜋ét

1 𝑋 such that the diagram

𝐺

1
��>
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>>

>>
>

// 𝜋ét
1 𝑋

}}{{
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{{

𝐺
commutes and where two group homomorphisms 𝑓1, 𝑓2 ∶
𝐺 → 𝜋ét

1 𝑋 are considered equivalent if there is 𝛾 in
𝜋1(𝑋(ℂ))∧ such that 𝑓2(𝑔) = 𝛾𝑓1(𝑔)𝛾−1. The purpose of

considering outer homomorphisms instead of homomor-
phisms is to eliminate the dependency on the choice of
base point. More generally still, there is a map
(2) Map(𝑌,𝑋) → Mapout

𝐺 (𝜋ét
1 𝑌,𝜋ét

1 𝑋)
for any scheme 𝑌 over 𝑘.

Roughly speaking, Anabelian schemes are a conjectural
type of scheme for which maps similar to (2) and (1) are
bijections, which is to say that the solutions to the
polynomial equations underlying 𝑋 correspond to maps
of étale fundamental groups. Grothendieck gave specific
examples of schemes he predicted to be anabelian in this
way, and for definiteness, let’s use that as a definition.
Let 𝑘 be a finitely generated field, and we’ll also assume
characteristic 0 as a precaution.

Definition. A finite type scheme1 𝑋 over 𝑘 is said to be
anabelian if it can be constructed by successive smooth
fibrations of curves with negative Euler characteristic.

Armed with this definition, let’s give two theorems
saying that Anabelian Schemes behave as Grothendieck
predicted. The first is due to Neukirch and Uchida and
says that any isomorphism of absolute Galois groups of
number fields Gal(𝐿/𝐿) ≅ Gal(𝑘/𝑘) corresponds to an iso-
morphismof fields. For example, it follows that for any𝑎,𝑏
in ℚ∗, if Gal(ℚ/ℚ[√𝑎]) ≅ Gal(ℚ/ℚ[√𝑏]), we must have
that the fields ℚ[√𝑎] and ℚ[√𝑏] are themselves equal,
or equivalently, that 𝑎 = 𝑏 in ℚ∗/(ℚ∗)2, the rational
numbers modulo their squares. Using the identification
of Galois groups of fields with étale fundamental groups
of the corresponding schemes, the Neukirch–Uchida the-
orem can be restated to say that an analogue of (2) where
isomorphisms replace maps is a bijection.

To state our second theorem saying that Anabelian
Schemes behave as Grothendieck predicted, we need
the notion of a dominant map between schemes. A map
between schemeswhose image is dense is calleddominant.
One can refine the map (2) to a map
(3) Mapdom(𝑌,𝑋) → Mapout,open

𝐺 (𝜋ét
1 (𝑌),𝜋ét

1 (𝑋)),
from the set of dominant maps from 𝑌 to 𝑋 to the subset

Mapout,open
𝐺 (𝜋ét

1 (𝑌),𝜋ét
1 (𝑋))

⊂ Mapout
𝐺 (𝜋ét

1 (𝑌),𝜋ét
1 (𝑋))

consisting of triangles such that 𝜋ét
1 (𝑌) → 𝜋ét

1 (𝑋) has
open image. Grothendieck conjectured that for 𝑋 and
𝑌 anabelian, the map (3) is bijective. Shinichi Mochizuki
proved an impressive case of this conjecture.
Theorem. (Mochizuki 1999) For 𝑌 any smooth scheme
and 𝑋 a smooth curve with negative Euler characteristic,
(3) is bijective.

The prediction that (2) is a bijection when 𝑌 = Spec𝑘
is called the Section Conjecture and is a major open
problem in the field.

1Finite type is a mild technical assumption on a scheme, which
can be thought of as the requirement that the scheme be a finite
union of subschemes of affine space, and isn’t terribly important
here.
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