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Laura Felicia Matusevich

Binomial Ideals

I am very excited to have been asked to deliver an invited
address at the AMS Spring Central Sectional Meeting. I
will talk about binomial ideals.

Binomial ideals are ideals in polynomial rings, in one
or more commuting variables, with coefficients in a field.
A binomial is a polynomial with at most two terms, and a
binomial ideal is an ideal generated by binomials.

There is an exceptionally rich combinatorial theory
of binomial ideals, which will be the subject of my
address. The purpose of this piece, however, is to explain
something that I won’t have time to discuss in my talk:
why I became interested in binomial ideals, and how my
first results in this area came about.

When working with objects that can be described by
equations with two terms, there is usually a binomial
ideal lurking in the background, although sometimes it
may be hidden. I came to binomial ideals from the study
of hypergeometric functions, an area that can trace its
origins to Euler and Gauss. Hypergeometric functions are
represented by series
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whose coefficients satisfy first-order difference equations
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where p1,...,Pn, q1, ..., qn are polynomials. (Note that the
above difference equations have two terms!)

It is well known that a system of recurrences for
the coefficients of a series is equivalent to a system of
differential equations for the series itself. Here, the shift
operator d, .k, = Ak, -k;+1-k, at the level of coefficients
corresponds to multiplication by z; at the level of series,
while multiplication of a coefficient by its jth index
k; corresponds to the operator z;0/0z; on the series.
In this way, the system of first-order recurrences (1)
is transformed into a linear system of n differential
equations in n variables, which is highly structured but
which has many more than two terms.

In thelate 1980s, Gelfand, Graev, Kapranov, and Zelevin-
sky had an amazing idea. At the cost of introducing
additional variables, the first-order recurrences could be
translated into partial differential equations with constant
coefficients and two terms! In effect, the recurrences pro-
duced a binomial ideal in a polynomial ring. Of course, in
order to account for the additional variables, more than
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these differential equations were needed, and the new
kind of hypergeometric system consisted of a binomial
part with constant coefficients and a system of Euler-type
equations. The different types of equations cannot be
considered separately, as their interaction is at the root
of many interesting behaviors. The situation is clearest
when the binomial equations generate a prime ideal; this
was the case that had been considered by Gelfand, Graev,
Kapranov, and Zelevinsky.

On the other hand, the classical hypergeometric sys-
tems are given by n generators in n variables, and
the corresponding binomial ideals (known as lattice ba-
sis ideals) are rarely prime. A natural question is then
whether we can reduce from the lattice basis ideals we are
interested in to the more tractable prime binomial ideals.
It turns out that, under some genericity assumptions, the
answer is “almost”.

The key breakthrough
comes from the influen-

It was Clear that tial article “Binomial ideals”
we needed a Py Eisenbud and Sturmfels,

whose main result is that
new idea.

any binomial ideal (in a

polynomial ring over an al-
gebraically closed field) has a primary decomposition in
terms of binomial ideals that are “almost” prime. Over
C (the natural field to work with when studying hyperge-
ometric functions), Eisenbud and Sturmfels also gave a
description of the binomials in each primary component.
However, in order to use these results in the hypergeomet-
ric context, a combinatorial description of the monomials
in each primary component was also necessary, and such
descriptions were absent from the literature.

Which brings us to my kitchen table in 2005. Based
on earlier joint work with Timur Sadykov, computational
experiments, and a dose of inspiration, Alicia Dicken-
stein and I had come up with very satisfying conjectural
combinatorial expressions for the solutions of a hyperge-
ometric system that arise from the primary components
of a lattice basis ideal. Our problem was that in order to
prove that our solutions were the solutions, we needed to
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Figure 1. A combinatorial computation of binomial
primary decomposition. The lattice points represent
monomials a"b™, the segments represent binomi-

als a’b? — a"b®, and the magenta points are the
monomials in a primary component of a certain ideal.

know the monomials in those components. So we decided
to write down what the primary components needed to
be in order for our conjectures to be true and try to prove
that those were indeed the components. And there we got
stuck. It was clear that we needed a new idea.

A few months later I visited Ezra Miller in Minneapo-
lis, and we spent three days discussing hypergeometric
systems, lattice basis ideals, and their primary decom-
positions. By the end of my visit, Ezra had recognized
that the combinatorial gadgets Alicia and I were using
(see Figure 1 for a typical example) represented monoid
congruences. This turned out to be the crucial new idea
that was necessary to make everything work. In fact,
this tool not only yielded combinatorial expressions for
the primary components of lattice basis ideals but also
applied to any binomial ideal over an algebraically closed
field of characteristic zero. This enabled Alicia, Ezra, and
me to prove all the hypergeometric results we wanted in
much more generality than I had at
first hoped for.

Since then the combinatorics of
binomial primary decomposition has
taken on a life of its own, indepen-
dent of its hypergeometric origins.
More general results have been found
which do not depend on base field as-
sumptions, but many open questions
remain. For a survey on the recent
developments on binomial primary
decomposition, come to my talk!

Laura Felicia

Rodrigo Baniuelos

Lévy Processes, Nonlocal Operators, and
Spectral/Heat Asymptotics

In October 1910, the physicist Hendrik Antoon Lorentz
delivered the Paul Wolfskehl lectures at the University of
Gottingen on “Old and new problems in physics”. During
these lectures, with David Hilbert and Hermann Weyl
in the audience, he formulated a problem: Prove that
the number N(A) of eigenvalues of the Laplacian A on
a planar region Q (with zero boundary conditions), not
exceeding the positive number A, grows like the area
of Q times A, as A goes to infinity. The problem had
been raised a month earlier by Arnold Sommerfeld at a
lecture in Konigsberg. Apparently Hilbert predicted that
this would not be proved in his lifetime, yet the assertion
was proved the following year by Weyl. More precisely,
Weyl proved that N(A) = %A +0(A), as A > oo, where
|Q] denotes the area of Q. Weyl’s celebrated theorem,
commonly referred to as Weyl’s Law, has been extended
and refined in many directions, with connections to many
areas of pure and applied mathematics and generating
many interesting problems. Among these is Polya’s 1961
famous conjecture which asserts that the upper bound
N(A) < '4%‘/\ holds for all A and which he proved for
regions that tile the plane. The conjecture remains open
even for the disc.

In subsequent papers in 1912, Weyl extended his result
to regions in three space (the setting of the Sommerfeld-
Lorentz problem) and to other boundary value problems.
In 1913, he went one step further and conjectured
a second-order asymptotic law: N(A) = 2IA + %\/X +
0(x/A), A > oo, where |3Q] is the length of the boundary of
Q, the (—) corresponds to Dirichlet boundary conditions,
and the (+) to Neumann. Weyl’s conjecture (Weyl’s second
Law) remained open until 1980, when it was proved by
Ivrii (and shortly thereafter by Melrose) under certain
conditions on Q.

There has been intense activity in recent years in the
study of problems where local operators, such as the
Laplacian, are replaced by nonlocal operators, such as
the fractional Laplacian, (—A)*?, 0 < « < 2. Many of
the nonlocal operators of interest correspond to gen-
erators of Lévy processes, a rich class of stochastic
processes introduced by Paul Lévy in the 1930s sharing
some important properties with Brownian motion. They
have independent and stationary increments, but their
paths are only stochastically continuous, which allows
for jumps. The Poisson and compound Poisson processes
are classical examples of Lévy processes with jumps, as
are the rotationally symmetric stable processes of order
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«, 0 < @ < 2, whose gen-
erators are the fractional
Laplacians. Problems in
the area of nonlocal
operators often branch
in different directions
involving  probabilistic
and/or analytic tech-
niques and belonging
to different areas of
both pure and applied
mathematics.

There has been
intense activity
where local
operators, such
as the Laplacian,
are replaced by

The problems in this
nonlocal talk belong to the area
Operators_ of spectral theory for

nonlocal operators and
particularly for fractional
Laplacians and other closely related operators, such as
the relativistic Laplacian and Schrodinger fractional Lapla-
cians. They are motivated by Weyl’s first and second laws,
corresponding questions for traces of heat semigroups
and the heat content, and its connections to the expected
volume of the Wiener sausage. They are also motivated
by probabilistic ideas and techniques that have greatly
influenced the study of heat kernels, eigenfunctions, and
eigenvalues for the Laplacian and operators correspond-
ing to more general diffusions in different geometric
settings, including manifolds and fractals. From the point
of view of Lévy processes, the problems are quite natural,
as Brownian motion, with the Laplacian as its generator,
is “just” an example of such a process. On the other hand,
the introduction of jumps requires the development of
new techniques, both on the probability and on the analy-
sis side, and especially when dealing with boundary value
problems. In fact, even the formulation of the “proper”
boundary conditions requires careful consideration.

This talk first gives a review of the elegant connections
of spectral and heat asymptotics for the Laplacian to
Brownian motion explored by Mark Kac in the 1950s and
1960s and connections to his celebrated 1966 paper “Can
one hear the shape of a drum?” It then explains how,
using the entire complement of Q as its “boundary”, the
Dirichlet eigenvalues for many nonlocal operators form a
sequence {Ax} satisfying0 < A; < Ay < A3 <+ < A —» o0,
as in the case of the Laplacian. However, unlike the case of
the Laplacian, where the eigenvalues (and eigenfunctions)
can be explicitly given for various simple regions, the
eigenvalues for nonlocal operators, such as the fractional
Laplacian, are not explicitly known even in the simplest
case of an interval in one dimension. Nevertheless, one
can raise many questions on the dependence of the
eigenvalues (and eigenfunctions) on the geometry of the
region. In particular, are there analogues of Weyl’s first
and second laws, and versions of these (first- and second-
order small time asymptotics) for heat traces? If so, what
geometric quantities of the region are revealed by these
asymptotics? As we shall see, most questions, beyond
first-order asymptotics, remain quite open. But there is
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progress (by several researchers) to report on second-
order heat trace asymptotics for regions Q C R and on
heat trace and heat content asymptotics of any order for
fractional Schrodinger operators with smooth potentials
on R?. Curiously, the latter reveals quantities involving
the potential that are quite different from those arising
for the Laplacian.

If it is indeed the case, as has often being said, that
“the geometry of the Laplacian (Brownian motion) does
not reveal its secrets lightly,” this is even more so for the
geometry of nonlocal operators (Lévy processes)!
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Steph van Willigenburg

Quasisymmetric Schur Functions

Dating from an 1815 paper of Cauchy, Schur functions
have long been a central object of study due to their multi-
faceted nature. Starting from their definition, they can be
viewed as the determinant of a matrix, computed using
divided differences, expressed using raising operators, or
written as a sum of combinatorially computed monomials.
Additionally, they arise in a number of different guises in
mathematics, including as an orthonormal basis for the
algebra of symmetric functions, Sym, and as characters of
the irreducible polynomial representations of GL(n,C),
whence the name from Schur’s seminal work in 1901.
They also play a pivotal role in Hilbert’s 15th problem on
Schubert calculus and more recently in quantum physics.

Their pervasive nature has led to their generalization in
a variety of ways. Perhaps the best known generalization
is Macdonald polynomials, which encompass a plethora
of functions and have additional parameters g and t that
reduce to Schur functions when g =t = 0. Likewise, Sym
has been generalized in a number of ways.

One significant nonsymmetric generalization is the
algebra of quasisymmetric functions, QSym, which is
itself of interest, since quasisymmetric functions can be
seen as generating functions for P-partitions and flags
in graded posets in discrete geometry and enumerative
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combinatorics. In representation theory, quasisymmet-
ric functions arise in the study of Hecke algebras, Lie
representations, and crystal graphs for general linear
Lie superalgebras, while in probability they arise in the
investigation of random walks and riffle shuffles.

Since Sym is a subalgebra of Q Sym, anatural question
to ask is whether there exists a basis of QSym that
reflects the algebraic and combinatorial properties of
Schur functions. Recently Haglund, Luoto, Mason, and van
Willigenburg discovered such a basis of quasisymmetric
Schur functions, whose genesis lies in the combinatorics
of Macdonald polynomials. This basis is already having an
impact, being key to the resolution by Lauve and Mason
of a long-standing conjecture that QSym over Sym has
a stable basis and initiating a new avenue of research for
other Schur-like bases.
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