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With their regular shape andpronounced faceting, crystals
have fascinated humans for ages. About a century ago,
the understanding of the internal structure increased
considerably through the work of Max von Laue (Nobel
Prize in Physics, 1914) and William Henry Bragg and
William Lawrence Bragg (father and son, joint Nobel Prize
in Physics, 1915). They developed X-ray crystallography
and used it to show that a lattice-periodic array of atoms
lies at the heart of the matter. This became the accepted
model for solids with pure point diffraction, which was
later extended in various ways.

In 1982, the materials scientist Dan Shechtman dis-
covered a perfectly diffractive solid with a noncrystal-
lographic (icosahedral) symmetry; see Figure 1 for a
qualitatively similar experimental diffraction image. This
discovery, for which he received the 2011 Nobel Prize
in Chemistry, was initially met with disbelief and heavy
criticism, although such structures could have been ex-
pected on the basis of Harald Bohr’s work on almost
periodic functions. In fact, the situation is a classic case
of a “missed opportunity.” Let us try to illustrate this a
little further and thus explain some facets of what is now
known as the theory of aperiodic order.

Let us consider a uniformly discrete point set Λ
in Euclidean space, where the points are viewed as
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Figure 1. Dan Shechtman received the 2011 Nobel
Prize in Chemistry for his discovery of “impossible”
symmetries, such as the tenfold symmetry in this
electron diffraction image of an AlMnPd alloy
(intensity inverted).

idealizations of atomic positions.Much of the terminology
for such point sets was developed by Jeffrey C. Lagarias.
Placing unit point measures at each position in Λ leads to
the associated Dirac comb

𝛿Λ = ∑
𝑥∈Λ

𝛿𝑥.
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Figure 2. Schematic representation of an optical
diffraction experiment. The object (O) is illuminated
by a coherent light source, and the diffracted
intensity is collected on a screen (S), with sharp
intensity peaks arising from constructive
interference of scattered waves.

A diffraction experiment measures the correlation be-
tween atomic locations. Mathematically, this is expressed
through the diffraction measure, which is the Fourier
transform �̂�Λ of the autocorrelation

𝛾Λ = lim
𝑅→∞

𝛿Λ∩𝐵𝑅 ∗ 𝛿−Λ∩𝐵𝑅
vol(𝐵𝑅)

,

provided this limit exists in the vague topology, in which
a sequence of measures {𝜇𝑛} converges to 𝜇 if and only if
𝜇𝑛(𝑓) → 𝜇(𝑓) for all continuous functions 𝑓 with compact
support. This approach goes back to Hof (1995). Here,
�̂�Λ describes the outcome of a (kinematic) diffraction
experiment, such as that of Figure 2 with an optical
bench, which should be available in most physics labs for
experimentation.

For a lattice periodic point set, the diffraction measure
is supported on a discrete point set, namely, the dual
lattice. This implies that a tenfold symmetric diffraction
diagram, such as the one of Figure 1, cannot be produced
by a lattice periodic structure, as lattices in two or three
dimensions can only have two-, three-, four- or sixfold
rotational symmetry by the crystallographic restriction.
This raises the question of what types of point sets
can generate such new kinds of diffraction measures,
which are pure point but display noncrystallographic
symmetries.

Let us begin with an example. Already in 1974, Roger
Penrose constructed an aperiodic tiling of the entire plane,
equivalent to the one shown in Figure 3. Taking this finite
patch and considering the set of vertices as the point set
Λ, the diffraction measure is the one shown in Figure 4,
which resembles what Alan L. Mackay observed when
he performed an optical diffraction experiment with an
assembly of small disks centered at the vertex points
of a rhombic Penrose tiling shortly before the discovery
of quasicrystals. For an infinite tiling, the diffraction
measure is pure point and tenfold symmetric.

The Penrose tiling is a particularly prominent example
of a large class of point sets with pure point diffraction.
Such sets, which were first introduced by Yves Meyer and
are nowadays called model sets, are constructed from a

Figure 3. Fivefold symmetric patch of the rhombic
Penrose tiling, which is equivalent to many other
versions. The arrow markings represent local rules
that enforce aperiodicity.

cut and project scheme (CPS)

ℝ𝑑 𝜋←⎯⎯⎯⎯⎯⎯⎯⎯⎯ ℝ𝑑 ×𝐻 𝜋int⎯⎯⎯⎯⎯⎯⎯⎯→ 𝐻
∪ ∪ ∪ dense

𝜋(ℒ) 1−1←⎯⎯⎯⎯⎯⎯⎯⎯⎯ ℒ ⎯⎯⎯⎯⎯⎯⎯→ 𝜋int(ℒ)
‖ ‖
𝐿 ⋆⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ 𝐿⋆

where ℒ is a lattice in ℝ𝑑 × 𝐻 whose projection 𝜋int(ℒ)
to “internal space” 𝐻 is dense. The projection 𝜋 to
“physical space” ℝ𝑑 is required to be injective on ℒ
so that 𝜋 is a bijection between ℒ and 𝐿 = 𝜋(ℒ).
This provides a well-defined mapping ⋆ ∶ 𝐿 ⟶ 𝐻 with
𝑥 ↦ 𝑥⋆ = 𝜋int((𝜋|ℒ)−1(𝑥)). The internal space𝐻 is often a
Euclidean space, but the general theory works for locally
compact Abelian groups. A model set is obtained by
choosing a suitable “window” 𝑊 ⊂ 𝐻 and defining the
point set

Λ = {𝑥 ∈ 𝐿 ∣ 𝑥⋆ ∈ 𝑊} ⊂ ℝ𝑑.
The Penrose point set arises in this framework with a
two-dimensional Euclidean internal space and the root
lattice 𝐴4, while the generalisation to model sets with
icosahedral symmetrywas first discussed by Peter Kramer
in 1984. It was Robert V. Moody who recognized the
connections toMeyer’s abstract concepts and championed
their application in the theory of aperiodic order and their
further development.

For a nonempty, compact window that is the closure
of its interior and whose boundary has Haar measure 0,
the resulting model set has a diffraction measure that is
supported on the projection𝜋(ℒ∗) of the dual lattice and
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Figure 4. Central part of the (intensity inverted)
diffraction image of the patch of Figure 3, with point
measures placed on all vertex points of the rhombic
tiling.

hence is a pure point measure. The diffraction intensities
can be calculated explicitly in this setting.

While a pure point diffraction detects order, it is not
true that all ordered structures havepure point diffraction.
As an example, consider the bi-infinite sequence

…0110100110010110|0110100110010110…
and notice that it is invariant under the square of the
Thue–Morse substitution 0 ↦ 01, 1 ↦ 10. Now, take only
those 𝑥 ∈ ℤ that correspond to the positions of 1s
in this sequence. The diffraction measure of this one-
dimensional point set is not pure point, as it contains a
nontrivial singular continuous component.

There is a very useful connection between the diffrac-
tion measure and the spectral measures of an associated
dynamical system. Starting from a point set Λ ⊂ ℝ𝑑 of
finite local complexity (which means that, up to transla-
tions, there are only finitely many patches for any given
size), we define its hull

𝕏(Λ) = {𝑥 + Λ ∣ 𝑥 ∈ ℝ𝑑}
where the closure is taken in the local topology (closeness
forces coincidence on a large ball around the origin up
to a small translation). ℝ𝑑 acts on 𝕏(Λ) by translations.
Select an invariant probability measure 𝜇, which is always
possible. Then, one gets an action of ℝ𝑑 on 𝐿2(𝕏,𝜇)
via unitary operators. It is a fundamental result that
the diffraction measure is pure point if and only if all
spectral measures are pure point. More generally, the
spectral measures correspond to diffraction measures

associated with elements of certain topological factors of
the dynamical system (𝕏,ℝ𝑑, 𝜇).

For example, the diffraction measure of the Thue–
Morse point set consists of the pure point part 𝛿ℤ and a
nontrivial singular continuous component. The nontrivial
point part of the dynamical spectrum, which is ℤ[ 1

2], is
therefore not fully detected by the diffraction measure
of the Thue–Morse point set and shows up only in the
diffraction measure of a global 2-to-1 factor, which is a
model set with 𝐻 = ℤ2, the 2-adic numbers.

It is a somewhat surprising insight that the diffraction
measure, which is designed to reveal as much as possible
about the distributions of points and is thus clearly not
invariant under topological conjugacy, and the dynamical
spectrum, which is an important invariant under metric
conjugation of dynamical systems and thus blind to de-
tails of the representative chosen, have such an important

Im
ag

es
co

ur
te
sy

of
M
ar
k
Em

br
ee

.

Figure 5. Numerical approximation of the spectrum of
the 1D Fibonacci Hamiltonian (top) and of the
Cartesian product of two of them (bottom). The 𝑥-axis
corresponds to the energy 𝐸, and the 𝑦-axis to 𝜆. The
plots illustrate the instant opening of a dense set of
gaps for the 1D model as 𝜆 is turned on, whereas for
the 2D model there are no gaps in the spectrum for
all sufficiently small 𝜆.
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“overlap.” Consequently, one can translate various results
from either point of view to the other and profit from this
connection.

While the relation between dynamical and diffraction
spectra is by now well understood, it continues to be an
intriguing open problem to find the connection between
these spectra and the spectra of Schrödinger operators
associated with aperiodic structures. The interest in
the latter arises from quantum transport questions in
aperiodically ordered solids. In particular, anomalous
transport properties have for a long time been expected
(and are observed in experiments) and could recently be
rigorously confirmed in simple one-dimensional models.
Concretely, on ℓ2(ℤ), let us consider the bounded self-
adjoint operator, known as the Fibonacci Hamiltonian,

(𝐻𝜓)𝑛 = 𝜓𝑛−1 +𝜓𝑛+1 +𝜆𝑣𝑛𝜓𝑛

with potential 𝑣𝑛 = 𝜒[1−𝛼,1)(𝑛𝛼 mod 1) (with constant
𝛼 = (√5− 1)/2), which alternatively could be generated
by the Fibonacci substitution 0 ↦ 1, 1 ↦ 10. For 𝜆 > 8,
quantum states display anomalous transport in the sense
that they do not move ballistically or diffusively, nor do
they remain localized.

The spectrum of 𝐻, which is
𝜎(𝐻) = {𝐸 ∣ (𝐻− 𝐸⋅1) is not invertible},

has a dense set of gaps; see Figure 5. All spectral
measures associated with 𝐻 by the spectral theorem
are purely singular continuous, while diffraction and
dynamical spectrum are pure point in this case. For
all values of the coupling constant 𝜆, there are now
quantitative results on the local and global Hausdorff
dimension of the spectrum and on the density of states
measure. On the other hand, similar results are currently
entirely out of reach for Schrödinger operators associated
with the Penrose tiling. However, there is recent progress
for higher-dimensional models obtained as a Cartesian
product of Fibonacci Hamiltonians; see Figure 5 for an
illustration (of proven properties of the spectrum).

Our above sketch is just one snapshot of a field with
many facets and new developments. Connections exist
with many branches of mathematics, including discrete
geometry, topology, and ergodic theory, to name but a
few. Aperiodic order thus provides a versatile platform
for cooperation and proves the point that mathematics is
a unified whole, not a collection of disjoint subjects.
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