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Symplectic
structures are
floppier than
holomorphic
functions or

metrics.

In Euclidean geome-
try in a vector space
over ℝ, lengths and
angles are the funda-
mental measurements,
and objects are rigid.
In symplectic geome-
try, a two-dimensional
area measurement is
the key ingredient, and
the complex numbers
are the natural scalars.
It turns out that sym-

plectic structures are much floppier than holomorphic
functions in complex geometry or metrics in Riemannian
geometry.

The word “symplectic” is a calque introduced by
Hermann Weyl in his textbook on the classical groups.
That is, it is a root-by-root translation of the word
“complex” from the Latin roots

com – plexus,
meaning “together – braided,” into the Greek roots with
the same meaning,

𝜎𝜐𝜇 – 𝜋𝜆𝜀𝜅𝜏𝜄𝜅ó𝜍.
Weyl suggested this word to describe the Lie group that
preserves a nondegenerate skew-symmetric bilinear form.
Prior to this, that Lie group was called the “line complex
group” or the “Abelian linear group” (after Abel, who
studied the group).

A differential 2-form𝜔 on (real) manifold𝑀 is a gadget
that at any point 𝑝 ∈ 𝑀 eats two tangent vectors and
spits out a real number in a skew-symmetric, bilinear
way. That is, it gives a family of skew-symmetric bilinear
functions

𝜔𝑝 ∶ 𝑇𝑝𝑀×𝑇𝑝𝑀 → ℝ
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depending smoothly on the point 𝑝 ∈ 𝑀. A 2-form
𝜔 ∈ Ω2(𝑀) is symplectic if it is both closed (its exterior
derivative satisfies 𝑑𝜔 = 0) and nondegenerate (each
function 𝜔𝑝 is nondegenerate). Nondegeneracy is equiva-
lent to the statement that for each nonzero tangent vector
𝑣 ∈ 𝑇𝑝𝑀, there is a symplectic buddy: a vector 𝑤 ∈ 𝑇𝑝𝑀
so that 𝜔𝑝(𝑣,𝑤) = 1. A symplectic manifold is a (real)
manifold 𝑀 equipped with a symplectic form 𝜔.

Nondegeneracy has important consequences. Purely in
terms of linear algebra, at any point 𝑝 ∈ 𝑀wemay choose
a basis of 𝑇𝑝𝑀 that is compatible with 𝜔𝑝, using a skew-
symmetric analogue of the Gram-Schmidt procedure. We
start by choosing any nonzero vector𝑣1 and then finding a
symplectic buddy𝑤1. These must be linearly independent
by skew-symmetry. We then peel off the two-dimensional
subspace that 𝑣1 and 𝑤1 span and continue recursively,
eventually arriving at a basis

𝑣1,𝑤1,… ,𝑣𝑑,𝑤𝑑,
which contains an even number of basis vectors. So
symplectic manifolds are even-dimensional. This also
allows us to think of each tangent space as a complex
vector space where each 𝑣𝑖 and 𝑤𝑖 span a complex
coordinate subspace. Moreover, the top wedge power,
𝜔𝑑 ∈ Ω2𝑑(𝑀), is nowhere-vanishing, since at each tangent
space,

𝜔𝑑(𝑣1,… ,𝑤𝑑) ≠ 0.
In other words,𝜔𝑑 is a volume form, and𝑀 is necessarily
orientable.

Symplectic geometry enjoys connections to algebraic
combinatorics, algebraic geometry, dynamics, mathemati-
cal physics, and representation theory. The key examples
underlying these connections include:
(1) 𝑀 = 𝑆2 = ℂ𝑃1 with 𝜔𝑝(𝑣,𝑤) = signed area of the

parallelogram spanned by 𝑣 and 𝑤;
(2) 𝑀 any Riemann surface as in Figure 1 with the area

for 𝜔 as in (1);

⋯
Figure 1. The area form on a Riemannian surface
defines its symplectic geometry.
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(3) 𝑀 = ℝ2𝑑 with 𝜔𝑠𝑡𝑑 = ∑𝑑𝑥𝑖 ∧𝑑𝑦𝑖;
(4) 𝑀 = 𝑇∗𝑋, the cotangent bundle of any manifold

𝑋, thought of as a phase space, with 𝑝-coordinates
coming from 𝑋 being positions, 𝑞-coordinates in
the cotangent directions representing momentum
directions, and 𝜔 = ∑𝑑𝑝𝑖 ∧𝑑𝑞𝑖;

(5) 𝑀 any smooth complex projective variety with 𝜔
induced from the Fubini-Study form (this includes
smooth normal toric varieties, for example);

(6) 𝑀 = 𝒪𝜆 a coadjoint orbit of a compact connected
semisimple Lie group𝐺, equipped with the Kostant-
Kirillov-Souriau form 𝜔. For the group 𝐺 = 𝑆𝑈(𝑛),
this class of examples includes complex projective
space ℂ𝑃𝑛−1, Grassmannians G 𝑟𝑘(ℂ𝑛), the full flag
variety ℱℓ(ℂ𝑛), and all other partial flag varieties.

Plenty of orientable manifolds do not admit a symplectic
structure. For example, even-dimensional spheres that are
at least four-dimensional are not symplectic. The reason is
that on a compact manifold, Stokes’ theorem guarantees
that [𝜔] ≠ 0 ∈ 𝐻2(𝑀;ℝ). In other words, compact
symplectic manifolds must exhibit nonzero topology in
degree 2 cohomology. The only sphere with this property
is 𝑆2.

Example (3) gains particular importance because of the
nineteenth century work of Jean Gaston Darboux on the
structure of differential forms. A consequence of his work
is
Darboux’s Theorem. Let𝑀 be a two-dimensional symplec-
tic manifold with symplectic form 𝜔. Then for every point
𝑝 ∈ 𝑀, there exists a coordinate chart 𝑈 about 𝑝 with
coordinates 𝑥1,… , 𝑥𝑑, 𝑦1,… ,𝑦𝑑 so that on this chart,

𝜔 =
𝑑
∑
𝑖=1

𝑑𝑥𝑖 ∧𝑑𝑦𝑖 = 𝜔𝑠𝑡𝑑.

Tools from the
1970s and 1980s set

the stage for
dramatic progress

in symplectic
geometry and

topology.

This makes pre-
cise the notion that
symplectic geome-
try is floppy. In
Riemannian geome-
try there are local
invariants such as
curvature that dis-
tinguish metrics.
Darboux’s theorem
says that symplectic
forms are all lo-
cally identical. What
remains, then, are
global topological
questions such as, What is the cohomology ring of a
particular symplectic manifold? and more subtle sym-
plectic questions such as, How large can the Darboux
charts be for a particular symplectic manifold?

Two tools developed in the 1970s and 1980s set the
stage for dramatic progress in symplectic geometry and
topology. Marsden and Weinstein, Atiyah, and Guillemin
and Sternberg established properties of the momentum
map, resolving questions of the first type. Gromov intro-
duced pseudoholomorphic curves to probe questions of

the second type. Let us briefly examine results of each
kind.

If a symplectic manifold exhibits a certain flavor of
symmetries in the form of a Lie group action, then it
admits a momentum map. This gives rise to conserved
quantities such as angular momentum, whence the name.
The first example of a momentum map is the height
function on a 2-sphere (Figure 2).

Figure 2. The momentum map for 𝑆1 acting on 𝑆2 by
rotation.

In this case, the conserved quantity is angular momen-
tum, and the height function is the simplest example of
a perfect Morse function on 𝑆2. When the Lie group is a
product of circles 𝑇 = 𝑆1 ×⋯×𝑆1, we say that the mani-
fold is a Hamiltonian 𝑇-space, and the momentum map
is denoted Φ ∶ 𝑀 → ℝ𝑛. In 1982 Atiyah and independently
Guillemin and Sternberg proved the Convexity Theorem
(see Figure 3):
Convexity Theorem. If 𝑀 is a compact Hamiltonian 𝑇-
space, then Φ(𝑀) is a convex polytope. It is the convex hull
of the images Φ(𝑀𝑇) of the 𝑇-fixed points.

Figure 3. Atiyah and Guillemin-Sternberg proved that
if a symplectic manifold has certain symmetries, the
image of its momentum map is a convex polytope.

This provides a deep connection between symplectic
and algebraic geometry on the one hand and discrete
geometry and combinatorics on the other. Atiyah’s proof
demonstrates that the momentum map provides Morse
functions on 𝑀 (in the sense of Bott), bringing the power
of differential topology to bear on global topological
questions about 𝑀. Momentum maps are also used to
construct symplectic quotients. Lisa Jeffrey will discuss
the cohomology of symplectic quotients in her 2017
Noether Lecture at the Joint Mathematics Meetings, and
manymore researchers will delve into these topics during
the special session Jeffrey and I are organizing.

Through example (2), we see that two-dimensional sym-
plectic geometry boils down to area-preserving geometry.
Because symplectic forms induce volume forms, a natural
question in higher dimensions is whether symplectic ge-
ometry is as floppy as volume-preserving geometry: can a
manifold be stretched and squeezed in any which way so
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Gromov proved
that symplectic
maps are more

rigid than
volume-

preserving
ones.

long as volume is pre-
served? Using pseudoholo-
morphic curves, Gromov
dismissed this possibility,
proving that symplectic
maps are more rigid than
volume-preserving ones. In
ℝ2𝑑 we let 𝐵2𝑑(𝑟) denote
the ball of radius 𝑟. In
1985 Gromov proved the
nonsqueezing theorem (see
Figure 4):

Nonsqueezing Theorem.
There is an embedding

𝐵2𝑑(𝑅) ↪ 𝐵2(𝑟) × ℝ2𝑑−2

preserving 𝜔𝑠𝑡𝑑 if and only if 𝑅 ≤ 𝑟.
One direction is straightforward: if 𝑅 ≤ 𝑟, then

𝐵2𝑑(𝑅) ⊆ 𝐵2(𝑟) × ℝ2𝑑−2. To find an obstruction to
the existence of such a map, Gromov used a pseudo-
holomorphic curve in 𝐵2(𝑟) × ℝ2𝑑−2 and the symplectic
embedding to produce a minimal surface in 𝐵2𝑑(𝑅),
forcing 𝑅 ≤ 𝑟.

On the other hand, a volume-preserving map exists
for any 𝑟 and 𝑅. Colloquially, you cannot squeeze a
symplectic camel through the eye of a needle.

Gromov’s work has led to many rich theories of
symplectic invariants with pseudoholomorphic curves

Figure 4. The Nonsqueezing Theorem gives geomet-
ric meaning to the aphorism on the impossibility of
passing a camel through the eye of a needle: A sym-
plectic manifold cannot fit inside a space with a nar-
row two-dimensional obstruction, no matter how big
the target is in other dimensions.
This cartoon originally appeared in the article “The
Symplectic Camel” by Ian Stewart—published in the
September 1987 issue of Nature—we thank him for
his permission to use it. Cosgrove is a well-known
cartoonist loosely affiliated with mathematicians. He
did drawings for Manifold for a few years and most
recently did a few sketches for the curious cookbook
Simple Scoff:
https://www2.warwick.ac.uk/newsandevents/
pressreleases/50th_anniversary_cookery.

the common underlying tool. The constructions rely on
subtle arguments in complex analysis and Fredholm
theory. These techniques are essential to current work
in symplectic topology and mirror symmetry, and they
provide an important alternativeperspective on invariants
of four-dimensional manifolds.

Further details on momentum maps may be found in
[CdS], and [McD-S] gives anaccountofpseudoholomorphic
curves.
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A Decade Ago in the Notices: Pseudoholomorphic
Curves

“WHAT IS…Symplectic Geometry?” discusses Gromov’s
“nonsqueezing theorem,” a key result in symplectic
geometry. Gromovproved the theoremusing thenotion
of a pseudoholomorphic curve, which he introduced in
1986.

Readers interested in these topics might also wish
to read “WHAT IS…a Pseudoholomorphic Curve?” by
Simon Donaldson, which appeared in the October 2005
issue of the Notices. “The notion [of pseudoholomor-
phic curve] has transformed the field of symplectic
topology and has a bearing on many other areas such
as algebraic geometry, string theory and 4-manifold
theory,” Donaldson writes. Starting with the basic no-
tion of a plane curve, he gives a highly accessible
explanation of what pseudoholomorphic curves are.
He notes that they have been used as a tool in sym-
plectic topology in two main ways: “First, as geometric
probes to explore symplectic manifolds: for example
in Gromov’s result, later extended by Taubes, on the
uniqueness of the symplectic structure on the complex
projective plane…Second, as the source of numerical
invariants: Gromov–Witten invariants.”

Another related piece “WHAT IS…a Toric Variety?”
by Ezra Miller appeared in the May 2008 issue of
the Notices.
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