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What do these matrices have in common:
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⎦
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0 0 7
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⎦
?

They each possess a well-hidden symmetry, for they are
unitarily similar to the symmetric, but non-Hermitian,
matrices
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and
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,

respectively. (𝑛×𝑛 matrices 𝐴 and 𝐵 are unitarily similar
if 𝐴 = 𝑈∗𝐵𝑈, where 𝑈 is unitary and 𝑈∗ is its adjoint;
operator theorists prefer the term unitarily equivalent
instead.) The existence of these hidden symmetries is
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best explained in the framework of complex symmetric
operators, a surprisingly large class of tractable and
well-behaved operators.

Let ℋ be a complex Hilbert space. Examples include
ℂ𝑛, the Lebesgue spaces 𝐿2(𝑋,𝜇) of square-integrable
functions on 𝑋 with respect to a measure 𝜇, the spaces
ℓ2(ℕ) and ℓ2(ℤ) of square integrable sequences indexed
byℕ andℤ, and theHardyHilbert space𝐻2 ofholomorphic
functions on the unit disk with square-summable Taylor
coefficients at the origin. A conjugate-linear, isometric,
involution 𝐶 ∶ ℋ → ℋ is a conjugation on ℋ; these are
the Hilbert space analogues of complex conjugation. An
example is [𝐶𝑓](𝑥) = 𝑓(1 − 𝑥) on 𝐿2[0, 1].

A linear operator 𝑇 ∶ ℋ → ℋ is bounded if ‖𝑇‖ ∶=
sup{‖𝑇x‖ ∶ ‖x‖ ≤ 1} is finite. A bounded linear operator
𝑇 ∶ ℋ → ℋ is 𝐶-symmetric if 𝑇 = 𝐶𝑇∗𝐶; it is complex
symmetric if 𝑇 is 𝐶-symmetric with respect to some
𝐶. Unbounded examples appear in the complex scaling
theory for Schrödinger operators, certain non-self-adjoint
boundary value problems, and 𝒫𝒯-symmetric quantum
theory [1].

What is the relationship between complex symmetric
operators and complex symmetric matrices? If 𝐶 is a
conjugation on ℋ, then there is an orthonormal basis
(e𝑛) of ℋ whose elements are fixed by 𝐶: 𝐶e𝑛 = e𝑛
for all 𝑛. Since ⟨𝐶x, 𝐶y⟩ = ⟨y,x⟩ for all x,y ∈ ℋ, the
matrix of a 𝐶-symmetric operator 𝑇 with respect to (e𝑛)
is symmetric:

[𝑇]𝑖,𝑗 = ⟨𝑇e𝑗,e𝑖⟩ = ⟨𝐶𝑇∗𝐶e𝑗,e𝑖⟩ = ⟨𝐶e𝑖, 𝑇∗𝐶e𝑗⟩
= ⟨𝑇e𝑖,e𝑗⟩ = [𝑇]𝑗,𝑖.

For example, 𝑇 = 𝐶𝑇∗𝐶 for

𝑇 = ⎡⎢
⎣

0 1 0
0 0 1
0 0 0

⎤⎥
⎦

and 𝐶⎡⎢
⎣

𝑧1
𝑧2
𝑧3

⎤⎥
⎦
= ⎡⎢

⎣

𝑧3
𝑧2
𝑧1

⎤⎥
⎦
.
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Form a unitary
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,

each of whose columns is fixed by 𝐶, and perform the
corresponding change of basis:

𝑈∗𝑇𝑈 =
⎡⎢⎢⎢
⎣
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⎦
.

Voilá! A hidden symmetry is revealed! There are now
procedures to test for the existence of a compatible
conjugation; this is how some of the matrices above were
discovered.

This suggests a striking result: each square complex
matrix is similar to a complex symmetric matrix. Here is
the proof: every matrix is similar to its Jordan canonical
form, and every Jordan block is unitarily similar to a
complex symmetric matrix (mimic the example above).
Thus, 𝐴 = 𝐴T reveals nothing about the Jordan structure
of 𝐴. On the other hand, 𝐴 = 𝐴∗ ensures that 𝐴 has an
orthonormal basis of eigenvectors and only real eigenval-
ues. How can this be? It takes 2(1 + 2+⋯+𝑛) = 𝑛2 +𝑛
real parameters to specify an 𝑛 × 𝑛 complex symmetric
matrix but only 2(1 + 2 + ⋯ + (𝑛 − 1)) + 𝑛 = 𝑛2 real
parameters to specify an 𝑛×𝑛 Hermitian matrix, since its
diagonal entries are real. These 𝑛 real degrees of freedom
make all the difference!

Although less prevalent than their Hermitian counter-
parts, complex symmetric matrices arise throughout
mathematics and its applications. For instance, suppose 𝑓
is holomorphic on 𝔻, with 𝑓(0) = 0 and 𝑓′(0) = 1. Then 𝑓
is injective if and only if for any distinct 𝑧1, 𝑧2,… , 𝑧𝑛 ∈ ℂ,
the Grunsky-Goluzin inequality
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𝑧𝑗 − 𝑧𝑘

)
||||||

≤
𝑛
∑

𝑗,𝑘=1
𝑤𝑗𝑤𝑘 log

1
1 − 𝑧𝑗𝑧𝑘

holds for allw = (𝑤1,𝑤2,… ,𝑤𝑛) ∈ ℂ𝑛. This is aHermitian-
symmetric inequality:

|⟨𝐴w,w⟩| ≤ ⟨𝐵w,w⟩,
in which 𝐵 = 𝐵∗ is positive semidefinite and 𝐴 = 𝐴T. In
applications, complex symmetric matrices have appeared
in the study of thermoelastic waves, quantum reaction
dynamics, vertical cavity surface emitting lasers, electric
power modeling, multicomponent transport, and the
numerical simulation of high-voltage insulators.

The most familiar result about complex symmetric
matrices is the Autonne-Takagi decomposition: if 𝐴 ∈
M𝑛(ℂ) and 𝐴 = 𝐴T, then 𝐴 = 𝑈Σ𝑈T, in which 𝑈 is unitary
and Σ is the diagonal matrix of singular values of 𝐴
(the square roots of the eigenvalues of the positive semi-
definite matrix 𝐴∗𝐴). It was discovered by Léon Autonne
in 1915 and subsequently rediscovered throughout the

early twentieth century in various contexts: T. Takagi
(function theory, 1925), N. Jacobson (projective geometry,
1939), C.L. Siegel (symplectic geometry, 1943), L.-K. Hua
(automorphic functions of matrices, 1944), and I. Schur
(quadratic forms, 1945).

The innocent-looking Volterra operator

[𝑇𝑓](𝑥) = ∫
𝑥

0
𝑓(𝑦)𝑑𝑦

on 𝐿2[0, 1] is a familiar counterexample to many conjec-
tures made by budding operator theorists. For instance,
it has no eigenvalues and it is properly quasinilpotent:
‖𝑇𝑛‖1/𝑛 → 0 and 𝑇𝑛 ≠ 0 for 𝑛 = 0, 1, 2,…. It is a standard
example of a complex symmetric operator: 𝑇 = 𝐶𝑇∗𝐶, in
which [𝐶𝑓](𝑥) = 𝑓(1 − 𝑥). Each element of the orthonor-
mal basis (𝑒2𝜋𝑖𝑛𝑥)𝑛∈ℤ is fixed by 𝐶. With respect to this
basis, the Volterra operator has the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣
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..
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

in which the (0, 0) entry has been highlighted. This drives
home the fact that 𝑇 is a rank-one perturbation of a
skew-Hermitian operator. One might jest that definite
integration is the study of a sparse, infinite complex
symmetric matrix!

Examples of complex symmetric operators abound. For
instance, every idempotent operator, normal operator,
truncated Toeplitz operator, and Hankel matrix is a
complex symmetric operator. What sort of properties do
they have?

An old result of Godič and Lucenko tells us that each
unitary 𝑈 acting on a Hilbert space factors as 𝑈 = 𝐶𝐽, in
which 𝐶 and 𝐽 are conjugations. This generalizes the fact
that a planar rotation is the product of two reflections. A
similar result holds for any complex symmetric operator:
if 𝑇 is 𝐶-symmetric, then 𝑇 = 𝐶𝐽|𝑇|, in which 𝐽 is a
conjugation that commutes with the positive operator
|𝑇| = √𝑇∗𝑇.

There are occasional parallels between the Hermitian
and complex-symmetricworlds. This should be surprising
sincemany “poorly behaved” operators, like Jordanblocks
and the Volterra operator, are complex symmetric. The
celebrated Courant minimax principle asserts that if 𝐴
is an 𝑛 × 𝑛 Hermitian matrix, then the (necessarily real)
eigenvalues 𝜆0 ≥ 𝜆1 ≥ ⋯ ≥ 𝜆𝑛−1 of 𝐴 satisfy

min
codim𝒱=𝑘

max
x∈𝒱
‖x‖=1

x∗𝐴x = 𝜆𝑘.

On the other hand, Danciger’s minimax principle ensures
that if 𝐴 = 𝐴T, then its singular values 𝑠0 ≥ 𝑠1 ≥ ⋯ ≥ 𝑠𝑛−1
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satisfy

min
codim𝒱=𝑘

max
x∈𝒱
‖x‖=1

RexT𝐴x =
⎧
⎨⎩

𝑠2𝑘 if 0≤𝑘< 𝑛
2 ,

0 if 𝑛
2 ≤ 𝑘 ≤ 𝑛.

The peculiar singular value “skipping” phenomenon
occurs because of significant cancellation in the complex-
valued expression xT𝐴x. Naturally, appropriate general-
izations for compact operators exist.

We conclude with a complex-symmetric analogue of
Weyl’s criterion from spectral theory. Let 𝜎(𝐴) denote
the spectrum of a bounded linear operator 𝑇; that is, it
is the set of 𝜆 ∈ ℂ for which 𝑇 − 𝜆𝐼 does not have a
bounded inverse. If 𝑇 = 𝑇∗, then 𝜆 ∈ 𝜎(𝑇) if and only if
there exist unit vectors x𝑛 such that

lim
𝑛→∞

‖(𝑇− 𝜆𝐼)x𝑛‖ = 0.
The familiar equation 𝑇x = 𝜆x characterizes the eigenval-
ues of 𝑇. A similar result holds in the complex-symmetric
setting. If 𝑇 is 𝐶-symmetric, then |𝜆| ∈ 𝜎(√𝑇∗𝑇) if and
only if there are unit vectors x𝑛 so that

lim
𝑛→∞

‖(𝑇− 𝜆𝐶)x𝑛‖ = 0.
In particular, the “antilinear eigenvalue problem” 𝑇x =
|𝜆|𝐶x characterizes the singular values of 𝑇. This can
occasionally be used to obtain information about the
spectrum of |𝑇| without computing 𝑇∗𝑇 itself.
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