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Barry Simon

Spectral Theory Sum Rules, Meromorphic
Herglotz Functions and Large Deviations

Barry Simon received
the 2016 Steele Prize
for Lifetime
Achievement and was
featured in the 2016
August and September
issues of Notices.

Almost exactly forty years
ago, Kruskal and collabora-
tors revolutionized significant
parts of applied mathemat-
ics by discovering remarkable
structures in the KdV equa-
tion. Their main discovery
was that KdV is completely
integrable with the resulting
infinite number of conserva-
tion laws, but deeper aspects
concern the connection to the
1𝐷 Schrödinger equation

(1) − 𝑑2

𝑑𝑥2 +𝑉(𝑥)

where the potential, 𝑉, is
actually fixed time data for
KdV.

In particular, the conserved
quantities which are integrals

of polynomials in 𝑉 and its derivatives can also be
expressed in terms of spectral data. Thus one gets a sum
rule, an equality between coefficient data on one side and
spectral data on the other side. The most celebrated KdV
sum rule is that of Gardner et al.:
(2)
1
𝜋 ∫

∞

0
log |𝑡(𝐸)|−1𝐸1/2𝑑𝐸+ 2

3 ∑
𝑛
|𝐸𝑛|3/2 = 1

8 ∫
∞

−∞
𝑉(𝑥)2𝑑𝑥

where {𝐸𝑛} are the negative eigenvalues and 𝑡(𝐸) the
scattering theory transmission coefficient. We note that
in this sum rule all terms are positive.

While these are well known, what is not so well known
is that there are much earlier spectral theory sum rules,
which, depending on your point of view, go back to 1915,
1920, or 1936. They go under the rubric Szegő’s Theorem,
which expressed in terms of Toeplitz determinants goes
back to 1915. In 1920 Szegő realized a reformulation
in terms of norms of orthogonal polynomials on the
unit circle (OPUC), but it was Verblunsky in 1936 who
first proved the theorem for general measures on 𝜕𝔻
(={𝑧 ∈ ℂ | |𝑧| = 1})—Szegő had it only for purely a.c.
measures—and who expressed it as a sum rule.

To explain the sum rule, given a probability measure, 𝜇,
on 𝜕𝔻 which is nontrivial (i.e. not supported on a finite

Barry Simon is I.B.M. Professor of Mathematics and Theoretical
Physics, Emeritus, at Caltech. His e-mail address is bsimon@
caltech.edu.
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set of points), let {Φ𝑛(𝑧)}∞𝑛=0 be the monic orthogonal
polynomials for 𝜇. They obey a recursion relation
(3)

Φ𝑛+1(𝑧) = 𝑧Φ𝑛(𝑧) − 𝛼𝑛Φ∗
𝑛 (𝑧);Φ0 ≡ 1; Φ∗

𝑛 (𝑧) = 𝑧𝑛Φ𝑛 (
1
̄𝑧)

where {𝛼𝑛}∞𝑛=0 are a sequence of numbers, called Verblun-
sky coefficients, in 𝔻. 𝜇 ↦ {𝛼𝑛}∞𝑛=0 sets up a 1-1
correspondence between nontrivial probability measures
on 𝔻 and 𝔻∞.

The Szegő-Verblunsky sum rule says that if

(4) 𝑑𝜇(𝜃) = 𝑤(𝜃) 𝑑𝜃2𝜋 +𝑑𝜇𝑠

then

(5) ∫ log(𝑤(𝜃)) 𝑑𝜃
2𝜋 = −

∞
∑
𝑛=0

log(1 − 𝛼𝑛|2)

In particular, the condition that both sides are finite at
the same time implies that

(6)
∞
∑
𝑗=0

|𝛼𝑗|2 < ∞ ⟺ ∫ log(𝑤(𝜃)) 𝑑𝜃2𝜋 > −∞

Simon [3] calls a result like (6) that is an equivalence
between coefficient data and measure theoretic data a
spectral theory gem.

In 2000 Killip and I found an analog of the Szegő-
Verblunsky sum rule for orthogonal polynomials on the
real line. One now has nontrivial probability measures
on ℝ, and {𝑝𝑛}∞𝑛=0 are orthonormal polynomials whose
recursion relation is
(7)
𝑥𝑝𝑛(𝑥) = 𝑎𝑛+1𝑝𝑛+1(𝑥)+𝑏𝑛+1𝑝𝑛(𝑥)+𝑎𝑛𝑝𝑛−1(𝑥); 𝑝−1 ≡ 0
where the Jacobi parameters obey 𝑏𝑛 ∈ ℝ, 𝑎𝑛 ≥ 0. There
is now a bijection of nontrivial probability measures of
compact support on ℝ and uniformly bounded sets of
Jacobi parameters (Favard’s Theorem).

If

(8) 𝑑𝜇(𝑥) = 𝑤(𝑥)𝑑𝑥 + 𝑑𝜇𝑠

then the gem of Killip-Simon says that

∞
∑
𝑛=1

(𝑎𝑛 − 1)2 +𝑏2
𝑛 < ∞

⟺
ess supp (𝑑𝜇)=[−2, 2], 𝑄(𝜇)<∞ and ∑

𝑚
(|𝐸𝑚|−2)3/2<∞

(9)

where

(10) 𝑄(𝜇) = − 1
4𝜋 ∫

2

−2
log(√4− 𝑥2

2𝜋𝑤(𝑥))
√4− 𝑥2 𝑑𝑥

The sum rule is

𝑄(𝜇) + ∑
𝜇({𝐸𝑛})>0, |𝐸𝑛|>2

𝐹(𝐸𝑛) =
∞
∑
𝑛=1

[ 1
4𝑏2

𝑛 + 1
2𝐺(𝑎𝑛)](11)
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where

𝐹(𝛽+ 𝛽−1) = 1
4[𝛽2 +𝛽−2 − log(𝛽4)], 𝛽 ∈ ℝ\[−1, 1]

(12)

𝐺(𝑎) = 𝑎2 − 1− log(𝑎2)(13)

The gem comes from 𝐺(𝑎) > 0 on (0,∞)\{1}, 𝐺(𝑎) =
2(𝑎 − 1)2 + O((𝑎 − 1)3), 𝐹(𝐸) > 0 on ℝ\[−2, 2], 𝐹(𝐸) =
2
3(|𝐸|−2)3/2 +O((|𝐸|−2)5/2). To get gems from the sum
rule without worrying about cancellation of infinities, it
is critical that all the terms are positive.

This situation
changed

dramatically
in the

summer of
2014

It was mysterious why there
was any positive combination
and if there was any meaning
to the functions 𝐺 and 𝐹 which
popped out of calculation and
combination. Moreover, the
weight (4− 𝑥2)1/2 was mysteri-
ous. Prior work had something
called the Szegő condition with
theweight (4−𝑥2)−1/2, which is
natural, sinceunder𝑥 = 2 cos𝜃
one finds that (4 − 𝑥2)−1/2𝑑𝑥
goes to 𝑑𝜃 up to a constant.

This situation remained for almost fifteen years, during
which period there was considerable follow-up work
but no really different alternate proof of the Killip-Simon
result. This situation changed dramatically in the summer
of 2014 when Gamboa, Nagel, and Rouault [1] (henceforth
GNR) found a probabilistic approach using the theory of
large deviations from probability theory.

Their approach shed light on all the mysteries. The
measure (4 − 𝑥2)1/2𝑑𝑥 is just (up to scaling and nor-
malization) the celebrated Wigner semicircle law for the
limiting eigenvalue distribution for 𝐺𝑈𝐸. The function 𝐺
of (13) is just the rate function for averages of sums of
independent exponential random variables, as one can
compute from Cramér’s Theorem, and the function F
of (12) is just the logarithmic potential in a quadratic
external field which occurs in numerous places in the
theory of random matrices.

In the first half of my lecture, I’ll discuss sum rules via
meromorphic Herglotz functions and in the second half
the large deviations approach of GNR.

References
[1] F. Gamboa, J. Nagel, and A. Rouault, Sum rules via large

deviations, J. Funct. Anal. 270 (2016), 509–559. MR3425894
[2] R. Killip and B. Simon, Sum rules for Jacobi matrices and

their applications to spectral theory, Ann. Math. 158 (2003),
253–321. MR1999923

[3] B. Simon, Szego’s Theorem and Its Descendants: Spectral The-
ory for 𝐿2 Perturbations of Orthogonal Polynomials, Princeton
University Press, Princeton, NJ, 2011. MR2743058

Alice Silverberg

Through the Cryptographer’s Looking-Glass,
and What Alice Found There

Alice Silverberg

Mathematicians and
cryptographers have
much to learn from
one another. How-
ever, in many ways
they come from dif-
ferent cultures and
don’t speak the same
language. I started
as a number theo-
rist and have been
welcomed into the
community of cryptog-
raphers. Through joint
research projects and
conference organizing,
I have been working to
help the two communi-
ties play well together
and interact more. I

have found living and working in the two worlds of
mathematics and cryptography to be interesting, useful,
and challenging. In the lecture I will share some thoughts
on what I’ve learned, both scientifically and otherwise.

Can more than
three parties

efficiently create
a shared secret?

A primary scientific fo-
cus of the talk will
be on the quest for a
Holy Grail of cryptography,
namely, cryptographically
useful multilinear maps.

Suppose that Alice and
Bobwant to create a shared
secret, for example to use

as a secret key for encrypting a credit card transaction,
but their communication channel is insecure. Creating a
shared secret can be done using public key cryptography,
as follows. Alice and Bob fix a large prime number 𝑝
and an integer 𝑔 that has large order modulo 𝑝. Alice
then chooses a secret integer 𝐴, computes 𝑔𝐴 mod 𝑝, and
sends it to Bob, while Bob similarly chooses a secret 𝐵 and
sends 𝑔𝐵 mod 𝑝 to Alice. Note that Eve, the eavesdropper,
might listen in on the transmissions and learn 𝑔𝐴 mod 𝑝
and/or 𝑔𝐵 mod 𝑝. Alice and Bob can each compute their

Alice Silverberg is professor of mathematics and computer sci-
ence at the University of California, Irvine. Her e-mail address is
asilverb@math.uci.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
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Can Alice, through the cryptographer’s looking glass,
find an efficient way for many parties to create a
shared secret key?

shared secret 𝑔𝐴𝐵 mod 𝑝, Alice computing (𝑔𝐵 mod
𝑝)𝐴 mod 𝑝 and Bob computing (𝑔𝐴 mod 𝑝)𝐵 mod 𝑝. It’s
a secret because it is believed to be difficult for Eve
to compute 𝑔𝐴𝐵 mod 𝑝 when she knows 𝑔𝐴 mod 𝑝 and
𝑔𝐵 mod 𝑝 but not 𝐴 or 𝐵 (this belief is called the
Diffie-Hellman assumption). This algorithm is known as
Diffie-Hellman key agreement.

Can more than two parties efficiently create a shared
secret? It’s a nice exercise to think about why naïvely
extending the above argument doesn’t work with only
one round of broadcasting (in the above, the broadcasting
consists of Alice sending 𝑔𝐴 mod 𝑝, while Bob sends
𝑔𝐵 mod 𝑝).

Here’s an idea for how 𝑛 + 1 people could create a
shared secret. Suppose we could find finite cyclic groups
𝐺1 and 𝐺2 of the same size and an efficiently computable
map

𝑒 ∶ 𝐺𝑛
1 → 𝐺2

such that (with 𝑔 a generator of 𝐺1):
(a) 𝑒(𝑔𝑎1 ,… , 𝑔𝑎𝑛) = 𝑒(𝑔,… ,𝑔)𝑎1⋯𝑎𝑛 for all integers

𝑎1,… ,𝑎𝑛 (multilinear),
(b) 𝑒(𝑔,… ,𝑔) is a generator of𝐺2 (nondegenerate), and
(c) it is difficult to compute 𝑒(𝑔,… ,𝑔)𝑎1⋯𝑎𝑛+1 when

𝑎1,… ,𝑎𝑛+1 are unknown, even given 𝑔𝑎1 ,… ,𝑔𝑎𝑛+1

(the multilinear Diffie-Hellman assumption).
A multilinear version of Diffie-Hellman key agreement
would go as follows. Alice chooses her secret integer
𝑎1 and broadcasts 𝑔𝑎1 , Bob chooses his secret 𝑎2 and
broadcasts 𝑔𝑎2 ,…, and Ophelia chooses her secret 𝑎𝑛+1
and broadcasts 𝑔𝑎𝑛+1 . Then all 𝑛+ 1 people can compute
the group element 𝑒(𝑔,… ,𝑔)𝑎1⋯𝑎𝑛+1 ; for example, Bob
computes 𝑒(𝑔𝑎1 , 𝑔𝑎3 ,… , 𝑔𝑎𝑛+1)𝑎2 . By (c), it’s hard for anyone
else to learn this group element. In this way, 𝑛+1 people

Mathematicians and cryptographers at a 2015
conference on the Mathematics of Cryptography.

can create a shared secret. When 𝑛 = 1 and 𝑒 is the
identity map on a (large) subgroup of the multiplicative
group of the finite field with 𝑝 elements, this is the
Diffie-Hellman key agreement algorithm described above,
which allows two parties to share a secret. For three
parties, such maps 𝑒 can be constructed from pairings
(𝑛 = 2) on elliptic curves. For more than three parties,
finding such cryptographically useful multilinear maps 𝑒
is a major open problem in cryptography and an area of
current research.

In [1], Dan Boneh and I raised this question; gave
applications to broadcast encryption, digital signatures,
and key agreement; and gave evidence that it would be
difficult to find very natural mathematical structures,
like “motives,” giving rise to such maps 𝑒 when 𝑛 > 2.
(As my coauthor generously allowed me to include in
the introduction to our paper, “We have the means and
the opportunity. But do we have the motive?”) Events
since then have led us to become more optimistic that a
creative solution can be found, andwe are hopeful that the
combined efforts of mathematicians and cryptographers
will lead to progress on this problem.

References
[1] Dan Boneh and Alice Silverberg, Applications of mul-

tilinear forms to cryptography, in Topics in Algebraic
and Noncommutative Geometry: Proceedings in Memory
of Ruth Michler, Contemporary Mathematics 324, Ameri-
can Mathematical Society, Providence, RI, 2003, pp. 71–90.
MR1986114
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Lisa Jeffrey

The Real Locus of an Antisymplectic
Involution

Lisa Jeffrey

Suppose 𝑀 is a compact sym-
plectic manifold equipped
with an antisymplectic invo-
lution. Then the fixed point
set of the involution is a
Lagrangian submanifold.

A prototype example is
complex projective space
CPn, with the involution com-
plex conjugation. The fixed
point set of the involution
is then real projective space
RPn. In the case 𝑛 = 1, CP1

is the same as the 2-sphere
𝑆2, and the fixed point set of
the involution is the equator

(which is RP1, which is a circle).
Suppose in addition𝑀 has aHamiltonian torus action. It

is possible to define what it means for the torus action to
be compatible with the involution. In the above example,
the torus action is the standard action of 𝑈(1)𝑛 on CPn.
(For 𝑛 = 1 this is the rotation action of 𝑈(1) rotating
around the vertical axis.)

In 1983 Hans Duistermaat [1] proved many results in
this situation, among them that the image of the moment
map restricted to thefixedpoint set of the involution is the
same as the image of the moment map for the symplectic
manifold (in particular it is a convex polyhedron, as shown
by Atiyah and Guillemin-Sternberg).

Numerous symplectic manifolds fit into this picture. In
particular some character varieties (spaces of conjugacy
classes of representations of the fundamental group) are
naturally equippedwithHamiltonian torus actions. Jeffrey
and Weitsman [2] developed Hamiltonian torus actions
on open dense subsets in 𝑆𝑈(2) character varieties for
orientable 2-manifolds, following a groundbreaking 1986
article by Goldman that describes Hamiltonian flows of a
natural class of functions on these character varieties.

References
[1] J.J. Duistermaat, Convexity and tightness for restrictions

of Hamiltonian functions to fixed point sets of an antisym-
plectic involution. Trans. Amer. Math. Soc. 275 (1983), no. 1,
417–429. MR678361
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Gigliola Staffilani

The Many Faces of Dispersive and Wave
Equations

Gigliola Staffilani

One of the most
beautiful effects
of dispersion is
a rainbow, as in
Figure 1, or, more
prosaically, the re-
fraction of a ray
of light through
a prism, as in
Figure 2.

While looking at
this timeless phe-
nomenon it is
hard to believe it
is connected to

Vinogradov’s Mean Value Theorem, one of several deep
theorems in number theory. The mathematical nature
of dispersion is the starting point of a very rich mathe-
matical activity that has seen incredible progress in the
last twenty years and that has involved many different
branches of mathematics: Fourier and harmonic analy-
sis, analytic number theory, differential and symplectic
geometry, dynamical systems and probability. It would
take a very long book to explain all these interactions and
consequences, so here we just give a small sample, which
we hope can still suggest the wealth of what has been
accomplished and what is still there to discover.

Let us start with one of the best-known equations of
dispersive type, the nonlinear Schrödinger equation (NLS),
the quantum analog of Newton’s 𝐹 = 𝑚𝑎. We consider
the Cauchy problem: that is, given initial data 𝑢(0, 𝑥) at
time 𝑡 = 0:

(1) { 𝑖𝜕𝑡𝑢+Δ𝑢 = 𝜆𝑢|𝑢|2,
𝑢(0, 𝑥) = 𝑢0(𝑥),

where 𝜆 = ±1 and 𝑥 ∈ ℝ2. If we want a periodic solution,
then we take 𝑥 ∈ 𝕋2, the torus of dimension two. Usually
wemeasure the smoothnessof the initial data by assuming
that it is in a Sobolev space of order 𝑠, that is,𝑢0 ∈ 𝐻𝑠. This
problem plays a fundamental role in physics that we will
not discuss here, but certainly once the Cauchy problem

Gigliola Staffilani is the Abby Rockefeller Mauze Professor of Math-
ematics at MIT. Her e-mail address is gigliola@mit.edu.
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Figure 1. An Alaskan rainbow.

Figure 2. The dispersion in a prism has deep
connections to number theory.

is set up one wants to prove existence and uniqueness of
solutions, together with stability properties that allow us
to say that if, for example, the initial data 𝑢0(𝑥) changes
a little, then the solution changes also only a little. This
can be summarized as well-posedness of the initial value
problem. As a physical problem (1) satisfies conservation
of mass

(2) 𝑀 = ∫|𝑢(𝑡, 𝑥)|2𝑑𝑥

and of energy

(3) 𝐸 = 1
2 ∫ |∇𝑢(𝑡, 𝑥)|2𝑑𝑥− 𝜆

4 ∫ |𝑢(𝑡, 𝑥)|4𝑑𝑥.

Hence natural sets of initial data are the spaces 𝐿2 and𝐻1.
Clearly at this level of regularity not even the equation in
(1)makes sense; hence we reformulate (1) via the Duhamel
principle into the integral equation

(4) 𝑢(𝑡, 𝑥) = 𝑆(𝑡)𝑢0(𝑥)+𝜆∫𝑆(𝑡−𝑡′)𝑢(𝑡′, 𝑥)|𝑢(𝑡′, 𝑥)|2𝑑𝑡′,

where 𝑆(𝑡) is the Schrödinger group and 𝑆(𝑡)𝑢0(𝑥) is
the linear solution with initial data 𝑢0. Since 𝐻1 and in
particular 𝐿2 are spaces of relatively low regularities, a
classical energy method based on a priori bounds such
as (2) and (3) is not enough to prove well-posedness.
An extremely efficient and successful way to show well-
posedness instead is via (4) and a fixed point method. For
this it is important to establish a function space in which
a fixed point theorem can be set up. Such a function space
is dictated by estimates for the linear solution 𝑆(𝑡)𝑢0,
since as a first try we can think of the nonhomogeneous
term ∫𝑡0 𝑆(𝑡−𝑡′)|𝑢|2𝑢(𝑡′)𝑑𝑡′ as a perturbation. This brings
us to the famous Strichartz estimates that in ℝ2 read as
(5) ‖𝑆(𝑡)𝑢0‖𝐿𝑞

𝑡 𝐿𝑝
𝑥 ≤ 𝐶‖𝑢0‖𝐿2 ,

where the couple (𝑞, 𝑝) is admissible; that is, it satisfies
2
𝑞 = 2(1

2 − 1
𝑝) .

The proof of (5) is a direct consequence of (2) and of the
dispersive estimate

(6) |𝑆(𝑡)𝑢0(𝑥)| ≤ 𝐶‖𝑢0‖𝐿1

|𝑡| ,

which in turn follows from the explicit formula

𝑆(𝑡)𝑢0(𝑥) =
𝑐1
𝑡 ∫𝑢0(𝑦)𝑒𝑖

|𝑥−𝑦|2
𝑐2𝑡 𝑑𝑦,

where 𝑐1 and 𝑐2 are two given complex numbers. From (6)
we learn that in spite of the fact that the signal 𝑆(𝑡)𝑢0(𝑥)
conserves mass, it is dispersive: its intensity dies off as
long as no obstacles or boundaries are present.

When we consider the periodic version of the problem
(1), the situation is much more subtle, because in fact
the dispersion is interrupted by the boundary conditions.
It is in this case that Bourgain used tools from analytic
number theory to prove that
(7) ‖𝑆(𝑡)𝑢0‖𝐿4

[0,1]𝐿4
𝕋2

≤ 𝐶‖𝑢0‖𝐻𝑠(𝕋2),

where𝕋2 is a rational torus1 and 𝑠 > 0. Themain ingredient
from analytic number theory used in the proof is that
on a circle of radius 𝑅 there are at most exp𝐶 log𝑅

log𝑅 log𝑅
many lattice points sitting on it. It took about twenty
years to obtain (7) for a generic torus. It was proved
by Bourgain and Demeter as a consequence of their
proof of the 𝐿2 decoupling conjecture using classical
harmonic analysis tools and elements from incidence
geometry, initially introduced in this context by Guth.
Here no analytic number theory is used, quite the opposite:
Bourgain, Demeter, and Guth used harmonic analysis to
prove an outstanding conjecture related to the famous
Vinogradov’s Mean Value Theorem.

What one can prove about the global dynamics of the
problem is all linked to the focusing or defocusing nature
of the equation, respectively 𝜆 = 1 and 𝜆 = −1, and then
to the fact that (1) is mass critical, in the sense that the

1That is, the ratio of the two periods is a rational number.
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𝐿2 is invariant with respect to the natural scaling of the
problem. A very short analysis follows below.

The Defocusing NLS in ℝ2

Global well-posedness for smooth (𝑠 ≥ 1) data is a
straightforward consequence of the fact that the local
time of existence depends on the norm 𝐻𝑠 of the data
when 𝑠 > 0, and when 𝑠 = 1 the energy conservation (3)
bounds this norm, since 𝜆 = −1. By using the 𝐼-method,
global well-posedness can be shown for 𝑠 < 1, but close to
1 serious obstructions do not allow this method to reach
𝐿2. In fact, 𝐿2 is a very special case, due to the criticality
of the problem at this level, and a global well-posedness
in 𝐿2 was only recently proved by Dodson. This settles
completely the long-time dynamics of the problem in this
case.

The Focusing NLS in ℝ2

In this case, the long-time dynamics is much richer since
blowup is possible and solitons exist. It is in cases like
these that one would like to show that a generic solution
is made up by finitely many solitons and a radiation that
ultimately behaves as a linear solution. In very general
terms, this goes under the name of the Soliton Resolution
Conjecture. At the moment we are far from proving this
conjecture for the NLS, but a series of recent works by
Duyckaerts, Kenig, and Merle proved the conjecture for
certain nonlinear wave equations. On top of the usual
Strichartz estimates, a large number of new tools had

The periodic case
is much more

delicate

to be implemented in
order to obtain this
result. Among these
tools we recall the
profile decomposition,
initially introduced by
Gerard and collabora-
tors in order to study

the failure of compactness of Strichartz inequalities, and
channels of energy.

The question of blowup for NLS equations instead
has been studied in great detail in a series of works
by Raphäel and Merle. In an astonishing result, they
confirmed mathematically what is now known as the
log− log blow-up regime, which had been previously
numerically identified by Papanicolaou, C. Sulem, and
P.-L. Sulem.

The Defocusing NLS in 𝕋2

As mentioned above, the periodic case is much more deli-
cate since boundary effects amplify the nonlinear nature
of the problem. As recalled above, using the Strichartz
estimate (7), Bourgain proved local well-posedness for
rational tori in 𝐻𝑠 for 𝑠 > 0. Now that (7) is also avail-
able for irrational tori, Bourgain’s result can be extended.
Local well-posedness in 𝐿2 is still an open, difficult, and
extremely interesting question. Again in the defocusing
case the energy estimate (3) is enough to show global

well-posedness in 𝐻𝑠 for 𝑠 ≥ 1. For rational tori also
in this case the 𝐼-method can be used to show global
well-posedness slightly below 𝐻1. For irrational tori this
should still hold, but no proof has been published yet. In
any case, we now know that smooth solutions are global,
and for these global solutions a very interesting and
physically meaningful problem is to study the transfer
of energy from low to high frequencies. This concept
is linked to the notion of weak turbulence and forward
cascade, on which we will not elaborate here. What we
will say, though, is that one possible way to study if such
a transfer of energy occurs is to analyze the growth in
time of the norm 𝐻𝑠, for 𝑠 large, of a smooth solution
𝑢. So far, we know that this growth cannot be more
than polynomial. Although this result is concerned with
smooth data, the tools used to obtain it are fundamentally
based on very fine estimates of wave packets at a very low
regime of regularity. Also as of now the proofs of these
results have been presented for rational tori. One should
be able to repeat them also in the irrational case. In fact,
for irrational tori, one may expect a lower degree for the
polynomial growth, since the set of frequencies that are
in resonance, believed to be responsible for the transfer
of energy, can be proved to be smaller in the irrational
case. As for exhibiting solutions that actually have an 𝐻𝑠

norm that grows in time at least logarithmically, at the
moment no such result is available. It has been proved,
though, by Colliander, Keel, Takaoka, Tao, and the author
of this note, with techniques that resemble those used
in dynamical systems, that there are solutions that start
small but grow arbitrarily large.

Finally, we would like to touch upon the fact that the
periodic NLS can also be viewed as an infinite-dimensional
Hamiltonian system by rewriting equation (1) for 𝑢(𝑡, 𝑥)
as a system for its Fourier coefficients 𝑎𝑘(𝑡) + 𝑖𝑏𝑘(𝑡) for
𝑘 ∈ ℤ2. For such a system, a Gibbsmeasure can be defined
with support in 𝐻−𝜖, and Bourgain proved that a global
NLS flow can be defined on the support of the Gibbs
measure (almost sure global well-posedness), and the
Gibbs measure ultimately can be proved to be invariant.
Note that such a result is the first in proving generically
global well-posedness in a space of supercritical regularity
with respect to the intrinsic scaling of the equation. In
order to prove this result elements of probability had to
be introduced, and many generalizations have now been
considered and not only for NLS.

Let us now conclude by introducing one last con-
cept associated with dispersive equations that can be
viewed as infinite-dimensional Hamiltonian systems: the
nonsqueezing theorem. In finite dimensions this is a cel-
ebrated theorem of Gromov. It states that a Hamiltonian
flow that is also a symplectomorphism cannot squeeze a
ball into a cylinder of smaller radius. Kuksin has inves-
tigated quite extensively how to extend this theorem to
the infinite-dimensional case. For the infinite-dimensional
Hamiltonian system associated to (1) the 𝐿2 space can be
equipped with a symplectic structure, but unfortunately,
as recalled above, for now we do not know if a global NLS
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flow in 𝐿2 can be defined. Nevertheless, nonsqueezing
theorems have been proved in the periodic case for the
1D cubic and NLS, for the KdV equation, and conditionally
for other systems. Moreover, recently Killip, Visan, and
Zhang proved that in the appropriate sense the global
flow for (1) in ℝ2 is indeed nonsqueezing.

You will not find here a section on the global dynamics
of the focusing periodic NLS, since it remains wide open.

Anna Wienhard

A Tale of Rigidity and Flexibility—Discrete
Subgroups of Higher Rank Lie Groups

Anna Wienhard

In 1872 Felix Klein proposed to
approach geometry as the study
of symmetry. Instead of start-
ing with geometric quantites, he
considered the geometric prop-
erties of a space to be those
that are invariant under a cer-
tain group of transformations.
This gave a unified approach
to various geometries that had
been studied extensively in the
nineteenth century, in particular,
to classical Euclidean geometry,
spherical geometry, the newly
discovered hyperbolic geometry,
and projective geometry, the ge-

ometry of perspective art. In fact, Klein interpreted
all three—Euclidean geometry, spherical geometry, and
hyperbolic geometry—as subgeometries of projective ge-
ometry. Felix Klein’s approach to geometry has deeply
influenced our understanding of geometry in modern
mathematics and theoretical physics.

The key role in Klein’s approach is played by Lie groups,
which arise as continuous groups of symmetries. Exam-
ples of Lie groups are ℝ𝑛 (as translations of Euclidean
space 𝔼𝑛), invertible matrices GL(𝑛,ℝ), matrices of de-
terminant one SL(𝑛,ℝ), symplectic matrices Sp(2𝑛,ℝ),
and orthogonal matrices SO(𝑝, 𝑞). It has since become an
important endeavor in mathematics to understand the
structure of Lie groups and also of their subgroups, in
particular, their discrete subgroups.

Discrete subgroups of Lie groups preserve additional
structure of the space. This additional structure breaks
the continuous symmetry preserved by the ambient Lie
group. For example, thegroupof translationsℝ𝑛 preserves
𝔼𝑛 with all its geometric properties. But if we consider

Anna Wienhard is a professor at Mathematisches Institut,
Ruprecht-Karls-Universität Heidelberg. Her e-mail address is
wienhard@mathi.uni-heidelberg.de.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1455

Figure 1. The group of symmetries preserving this
pattern is the lattice ℤ2 in ℝ2.

Figure 2. The group of symmetries preserving this
pattern in the hyperbolic Poincaré disk is a lattice in
SL(2,ℝ).

Figure 3. The group of symmetries preserving this
circle packing is a nonlattice (“thin”) subgroup of
SO(1,3). Thin subgroups are generally harder to
understand than lattice subgroups.

inside 𝔼𝑛 the set of points with integer coordinates, then
this set of points is not preserved under translation by
an element in ℝ𝑛, but only by elements in the discrete
subgroup ℤ𝑛. The subgroup ℤ𝑛 is an example of a lattice
in ℝ𝑛; it has finite volume fundamental domain, namely,
the unit square. Figure 1 shows a planar pattern with
symmetry group ℤ2. Figure 2 shows a pattern in the
hyperbolic Poincaré disk with symmetry group a lattice
in SL(2,ℝ).
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Discrete subgroups also arise as monodromies of dif-
ferential equations or from geometric, dynamical, or
number-theoretic constructions. A special case of dis-
crete subgroups is lattices. Lattices are very “big” discrete
subgroups: they have finite covolume with respect to a
natural measure on the Lie group. Discrete subgroups
that are not lattices are sometimes called thin or small
subgroups of the Lie groups, as in Figure 3. Whereas
lattices in Lie groups are fairly well understood, it is
rather difficult to get a handle on discrete subgroups that
are not lattices.

For lattices there is a big difference between Lie groups
of rank one, which are those whose associated geometry
exhibits strictly negative curvature, and Lie groups of
higher rank, which are those whose associated geometry
exhibits only nonpositive curvature. For example, SL(𝑛,ℝ)
is of rank one if and only if 𝑛 = 2, in which case it is
the group of symmetries of the hyperbolic plane. A series
of celebrated rigidity results of G. Margulis implies that
every lattice in a higher rank Lie group arises from a
number-theoretic construction and that many questions
about these lattices can be answered by considering the
ambient Lie group, which is much easier to understand.
Since then rigidity has been the overarching paradigm
when studying subgroups of Lie groups of higher rank. In
the rank one situation, in particular for SL(2,ℝ), lattices
are essentially free groups or fundamental groups of
surfaces, and these groups are rather flexible. They allow
for a continuous space of deformations within SL(2,ℝ).

In recent years new developments in geometry, low-
dimensional topology, number theory, analysis, and
representation theory have led to the discovery of sev-
eral interesting examples of discrete subgroups that are
thin (i.e., not lattices) but—quite surprisingly—admit an
interesting structure theory, which arises from a combi-
nation of the flexibility of free groups, surface groups,
and more generally hyperbolic groups with the rigidity
of higher rank Lie groups. One particularly exciting de-
velopment is the discovery of higher Teichmüller spaces

Wienhard discusses projective deformations of a 
hyperbolic 3-manifold with postdoctoral fellow 
Dr. Gye-Seon Lee.

and their relation to various areas in mathematics, such
as analysis, algebraic geometry, geometry, dynamics, and
representation theory.

Donald St. P. Richards

Distance Correlation: A New Tool for Detect-
ing Association and Measuring Correlation
between Data Sets

Donald St. P. Richards

The difficulties of de-
tecting association, mea-
suring correlation, and
establishing cause and
effect have fascinated
mankind since time im-
memorial. Democritus,
the Greek philosopher,
emphasized well the
importance and the diffi-
culty of proving causality
when he wrote, “I would
rather discover one cause
than gain the kingdom of
Persia.”

To address problems of relating cause and effect,
statisticians have developed many inferential techniques.
Perhaps the most well-known method stems from Karl
Pearson’s coefficient of correlation, which Pearson intro-
duced in the late nineteenth century based on ideas of
Francis Galton. The Pearson coefficient applies only to
scalar random variables, however, and it is inapplicable
generally if the relationship between 𝑋 and 𝑌 is highly
nonlinear; this has led to the amusing enumeration of
correlations between pairs of unrelated variables, e.g.,
“Median salaries of college faculty” and “Annual liquor
sales in college towns.”

Székely et al. [3] defined a new distance covariance,
𝒱(𝑋,𝑌), and related correlation coefficient, ℛ(𝑋,𝑌).
These entities are defined for random vectors 𝑋 and 𝑌 of
any dimension. Moreover, 𝑋 and 𝑌 are mutually indepen-
dent if and only if ℛ(𝑋,𝑌) = 0. These properties provide
advantages of ℛ(𝑋,𝑌) over the Pearson coefficient and
other measures of correlation.

Donald St. P. Richards is professor of statistics at Penn State Uni-
versity. His e-mail address is richards@stat.psu.edu.
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Figure 1. The distance correlation coefficient exhibited a superior ability to resolve astrophysical data into
concentrated horseshoe- or 𝑉-shapes and led to more accurate classification of galaxies and identification
of outlying pairs. The subplots for each galaxy type are shown in four middle frames, their superposition in
the large left frame. Potential outlying pairs in the scatter plot for Type 3 galaxies are circled in the large right
frame.

The distance
correlation

coefficient has
now been applied
in many contexts.
It has been found
to exhibit higher
statistical power,
i.e., fewer false

positives, than the
Pearson

coefficient

For a pair of jointly
distributed random vec-
tors (𝑋,𝑌), it is
nontrivial to calculate
𝒱(𝑋,𝑌). Recent work
of Dueck et al. [1] cal-
culates 𝒱(𝑋,𝑌) for the
Lancaster distributions.

The distance corre-
lation coefficient has
now been applied in
many contexts. It has
been found to ex-
hibit higher statistical
power, i.e., fewer false
positives, than the Pear-
son coefficient, to find
nonlinear associations
that were undetected
by the Pearson coef-
ficient, and to locate
smaller sets of variables
that provide equivalent
statistical information.

In the field of astrophysics, large amounts of data
are collected and stored in publicly available repositories.
The COMBO-17 database, for instance, provides numerical
measurements on many astrophysical variables for more
than 63,000 galaxies, stars, quasars, and unclassified
objects in the Chandra Deep Field South region of the
sky, with brightness measurements over a wide range
of redshifts. Current understanding of galaxy formation
and evolution is sensitive to the relationships between
astrophysical variables, so it is essential in astrophysics

to be able to detect and verify associations between
variables.

Mercedes Richards et al. [2] applied the distance correla-
tion method to 33 variables measured on 15,352 galaxies
in the COMBO-17 database. For each of the (332 ) = 528
pairs of variables, the Pearson and distance correlation
coefficients were graphed in Figure 1 for galaxies with
redshift 𝑧 ∈ [0, 0.5). We found that, for given values of
the Pearson coefficient, the distance correlation had a
greater ability than other measures of correlation to re-
solve the data into concentrated horseshoe- or V-shapes.
These results were observed over a range of redshifts
beyond the Local Universe and for galaxies ranging in
type from elliptical to spiral.

The greater ability of the distance correlation to resolve
data into well-defined horseshoe- or V-shapes leads to
more accurate classification of galaxies and identification
of outlying pairs of variables. As seen in Figure 1, the
Type 2 and Type 3 groups of spiral galaxies appear to be
contaminated substantially by Type 4 starburst galaxies,
confirming earlier findings of other astrophysicists. Our
study found further evidence of this contamination from
the V-shaped scatter plots for galaxies of Type 2 or 3.

I will also explore data on the relationship between
homicide rates and the strength of state gun laws.1
A Washington Post columnist has claimed that there is
“zero correlation between state homicide rate and state
gun laws” [4]. Although the Pearson coefficient detects
no statistically significant relationship between those
variables, a distance correlation analysis discovers strong
evidence of a relationship when the states are partitioned
by region.

1As sure as my first name is “Donald,” this portion of the talk will
be Huge!
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Distance correlation applications rest on a curious
singular integral: For 𝑥 ∈ ℝ𝑝 and 0 < Re(𝛼) < 1,

∫
ℝ𝑝

1 − 𝑒i⟨𝑠,𝑥⟩
‖𝑠‖𝑝+2𝛼 d𝑠 = 𝜋𝑝/2Γ(1 −𝛼)

𝛼22𝛼Γ(𝛼+ 1
2𝑝)

‖𝑥‖2𝛼,

with absolute convergence for all 𝑥. We shall describe
generalizations of this singular integral arising in the
theory of spherical functions on symmetric cones.
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Tobias Holck Colding

Arrival Time

Tobias Holck Colding

Modeling of a wide
range of physi-
cal phenomena
leads to tracking
fronts moving
with curvature-
dependent speed.
A particularly nat-
ural example is
where the speed is
the mean curvature.
If the movement
is monotone in-
wards, then the
arrival time func-
tion is the time
when the front ar-

rives at a given point. It has long been known that
this function satisfies a natural differential equa-
tion in a weak sense, but one wonders what is
the regularity. It turns out that one can completely an-
swer this question. It is always twicedifferentiable, and the
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second derivative is only continuous in very rigid situa-
tions that have a simple geometric description. The proof
weaves together analysis and geometry. For more, see my
article with Bill Minicozzi, “Level Set Method: For Motion
by Mean Curvature,” in the November 2016 issue of the
Notices.
(See www.ams.org/journals/notices/201610/
rnoti-p1148.pdf).

Figure 1. Droplets and crystal growth can be
modeled as moving fronts.

Figure 2. Cross-sections of a dumbbell moving by
mean curvature. Curves are level sets of the arrival
time function.

Figure 3. Kohn and Serfaty have given a game
theoretic interpretation of arrival time.
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Wilfrid Gangbo

Paths of Minimal Lengths on the Set of Exact
𝑘-forms

Wilfrid Gangbo

Let Ω ⊂ ℝ𝑛 be a bounded con-
tractible domain with smooth
boundary 𝜕Ω. The (linear)
Hodge decomposition of vec-
tor fields states that any
smooth vector field v of Ω
into ℝ𝑛 can be decomposed
into
(1) v = ∇𝜙0 + v0,
where v0 is a differentiable
divergence-free vector field,
parallel to𝜕Ω, and𝜙0 ∶ Ω → ℝ
is a differentiable function.

A very influential paper by
Y. Brenier revealed that any
square integrable vector field
satisfying a certain nondegen-

eracy condition is, up to a change of variables that
preserves Lebesgue measure, the gradient of a real-
valued function. This remarkable result, termed “the
polar factorization of a vector field,” led to the mathemat-
ical renaissance of the Monge-Kantorovich theory, now
called “optimal mass transportation theory.”

Since vector fields can be identified with differential
1-forms, roughly speaking, the polar factorization states
that any differential 1-form is exact up to a change of
coordinates that preserves Lebesgue measure. A natu-
ral mathematical question is whether there exists an
analogous result for differential 𝑘-forms.

It is now time to justify why the polar factorization of a
vector field can be interpreted as a nonlinear Hodge factor-
ization and motivate the optimal transport of differential
forms.

Synopsis: Renaissance of theMonge-Kantorovich
Theory
Any vector field u ∶ Ω → ℝ𝑛 transports any measure on Ω
to another measure on ℝ𝑛. For instance, the transport of
𝜇0, Lebesgue measure on Ω, produces the measure 𝜇1 on
ℝ𝑛 defined by

𝜇1(𝐵) ∶= 𝜇0(u−1(𝐵))
for any 𝐵 ⊂ ℝ𝑛. If u is nondegenerate, then 𝜇1 must be
absolutely continuous with respect to Lebesgue measure
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on ℝ𝑛. In fact, by definition, u is nondegenerate means
that 𝜇1 vanishes on any (𝑛 − 1)-rectifiable set.

Assume without loss of generality that 𝜇0(Ω) = 1, 𝜇0
represents the distribution of a fluid occupying Ω at time
𝑡 = 0, and𝜇1 represents the distribution at time 𝑡 = 1.The
fluid consists of infinitely many particles evolving over
time. Assume that at time 𝑡 the velocity of the particle
located at 𝑥 ∈ ℝ𝑛 is v(𝑡, ⋅) =∶ v𝑡(𝑥). At each time 𝑡, the
positions of the particles are represented by a probability
measure𝜎𝑡. The total kinetic energy of the system at time
𝑡 is then

||v𝑡||2𝐿2(𝜎𝑡) ∶= ∫
ℝ𝑛

|v𝑡(𝑥)|2𝜎𝑡(𝑑𝑥).

Formally, one views the set of probability measures
of bounded second moment as a manifold ℳ. The
tangent space to ℳ at 𝜎 ∈ ℳ includes vector fields
v ∈ 𝐶∞

𝑐 (ℝ𝑛, ℝ𝑛). The metric at 𝜎 is such that ⟨v;v⟩ =
||v||2𝐿2(𝜎).

The square Wasserstein distance between 𝜇0 and 𝜇1
is the minimal kinetic energy required by the fluid to
evolve from its initial to its final configuration. By a
reparametrization argument, the Wasserstein distance
between 𝜇0 and 𝜇1 is

𝑊2(𝜇0, 𝜇1)(2)

∶= min
(𝜎,v)

{∫
1

0
||v𝑡||𝐿2(𝜎𝑡)𝑑𝑡 | 𝜕𝑡𝜎+∇ ⋅ (𝜎v) = 0,

𝜎0 = 𝜇0,𝜎1 = 𝜇1}.

Here, the minimum is performed over the set of paths
𝑡 → (𝜎𝑡,v𝑡) satisfying some measurability conditions for
the expression in (2) to make sense.

There exists a Lipschitz convex function 𝜓 ∶ ℝ𝑑 → ℝ
such that the optimal 𝜎 is given by
(3)
𝜎𝑡(𝐵)=𝜇1({𝑦∈ℝ𝑛 | 𝑡𝑦+(1−𝑡)∇𝜓(𝑦)∈𝐵}), ∀ 𝑡∈[0, 1].

When 𝑡 = 0, (3) means that 𝑆 ∶= ∇𝜓 ∘ u preserves 𝜇0.
Applying ∇𝜙 to both sides of the identity 𝑆 = ∇𝜓 ∘ u
with 𝜙 the Legendre transform of 𝜓, we have

(4) u = ∇𝜙∘ 𝑆.
The pair (∇𝜙,𝑆) is uniquely determined in (4). Pick any
v ∈ 𝐶∞(Ω) and apply the previous factorization to obtain

(5) id+ 𝜖v = ∇𝜙𝜖 ∘ 𝑆𝜖.
The uniqueness of the pair (∇𝜙𝜖, 𝑆𝜖) yields for 𝜖 = 0 that
both ∇𝜙0 and 𝑆0 are the identity map. Thus,

(6) 𝑆𝜖 = id+ 𝜖v0 + 𝑜(𝜖), ∇𝜙𝜖 = id+ 𝜖∇𝜙0 + 𝑜(𝜖).
Observe that for 𝑆𝜖 to preserve Lebesgue measure for
every 𝜖 small enough, v0 must be a divergence-free vector.
Combining (5) and (6), one concludes that

id+ 𝜖v = id+ 𝜖(∇𝜙0 + v0) + 𝑜(𝜖),
and so the decomposition (1) holds.
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There is another characterization of the map 𝑆 in (4). It
is the unique minimizer of

(7) {||u−𝑆||𝐿2(𝜇0) | 𝑆#𝜇0 = 𝜇0}.
In summary, the geodesic problem (2), the projection
problem (7), and the nonlinear factorization of vector
fields are all linked.

An Open Problem
An outstanding open problem is to know if we can
invent an optimal transport of 𝑘-forms, linked to a
nonlinear factorization of differential forms, that yields
the classical Hodge decomposition of differential 𝑘-forms
by a linearization procedure as above. Unfortunately, we
need to introduce some notation to state a meaningful
result. For instance, assume 𝑛 = 2𝑚 and u ∈ 𝐶1(Ω) is
one-to-one. Let

𝜔𝑚 =
𝑚
∑
𝑖=1

𝑑𝑥𝑖 ∧𝑑𝑥𝑖+𝑚

and consider the maps 𝑆 ∶ Ω → Ω that pull 𝜔𝑚 back to
itself; in other words,

(8)
𝑚
∑
𝑖=1

𝑑𝑆𝑖 ∧𝑑𝑆𝑖+𝑚 =
𝑚
∑
𝑖=1

𝑑𝑥𝑖 ∧𝑑𝑥𝑖+𝑚.

For any minimizer 𝑆 of

(9) {||u−𝑆||𝐿2(𝜇0) | 𝑆 satisfies (8), 𝑆 ∈ Diff1(Ω,u(Ω))},
there exists a closed 2-form Φ such that
u = (𝛿Φ⌋𝜔𝑚) ∘ 𝑆, 𝑑Φ = 0, and ∇(𝛿Φ⌋𝜔𝑚) ≥ 0.

Here, ⌋ is the interior product operator, and the interior
derivative 𝛿 is defined as minus the adjoint of the
exterior derivative operator 𝑑. In an ongoing collaborative
research program with B. Dacorogna and O. Kneuss, we
study extensions and variants of the projection problem
(9) and search for geodesics of minimal length.

Figure 1a. The reunited altarpiece at the exhibition
comprises all of the old panels, in their present
condition, together with the aged version of panel 9.

Ingrid Daubechies

Reunited: Francescuccio Ghissi’s St. John
Altarpiece

Ingrid Daubechies

Over a century ago, a
fourteenth-century al-
tarpiece was removed
from its church in
the Marche region in
Italy and dismantled.
The nine individual
scenes—eight smaller
pictures featuring St.
John the Evangelist
flanking a larger cen-
tral crucifixion—had
been sawn apart; the
resulting panels ended
up in different collec-
tions. In the process,
the last of the eight
smaller scenes was
lost.

In preparation for
an exhibition that
opened on Septem-

ber 10, 2016, the North Carolina Museum of Art (NCMA)
commissioned Dutch artist and art reconstruction expert
Charlotte Caspers to paint a replacement panel. Together
with NCMA curator David Steel, she designed a composi-
tion in Ghissi’s style; the subject of the scene could be
determined from theGolden Legend, amedieval bestseller
chronicling lives of saints that was the source for the first
seven small panels.

The new panel demonstrated how bright and sparkling
these altarpieces were in their own time. But it became

Ingrid Daubechies is James B. Duke Professor of Mathematics
and Electrical and Computer Engineering at Duke University. Her
e-mail address is ingrid@math.duke.edu.
DOI: http://dx.doi.org/10.1090/noti1460

Figure 1b. All of the rejuvenated panels of the St.
John Altarpiece by Francescuccio Ghissi, together
with Caspers’s panel 9.
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Figure 2a. Panel 1, The Resurrection of Drusiana,
shown here in its present physical condition.

Figure 2b. With cracks removed and colors remapped,
the painted portion of The Resurrection of Drusiana
is rejuvenated.

clear that the new Caspers panel could not simply be
displayed next to the eight other panels in the same frame:
vivid and bright, it would lure the viewer’s attention away
from the faded originals, even though it was an imposter
next to the real panels.

The Duke IPAI (Image Processing for Art Investigation)
group, however, could help with this. By studying the old

Figure 3. A “crack map” (right) for a detail of panel 3
(left).

as well as the new panels, we could “virtually age” the
new panel, i.e., make a digital copy in which the gold
would look duller, the colors would be altered to mimic
650 years of aging of the pigments, small cracks would
be added. A printout could then “complete” the reunited
Ghissi Altarpiece (as in Figure 1a) without distracting
from its authentic siblings.

The whole project
was really a

triumph of “how
math can help”

The same techni-
cal analysis can also
be applied in the re-
verse direction. From
the correspondence
between “old” and
“new” foreachpigment
mixture used in the
altarpiece, and after
fine-tuning the digital
image manipulations to make the transition from new
to old, we can also take a high-resolution image of the
old panels and map their old, aged colors to corre-
sponding “freshly painted” versions, thus rejuvenating
the fourteenth-century panels (see Figure 2a and 2b).

The exhibition at NCMA features a printout of the
virtually aged panel, completing the others in a reunited
altarpiece, and showcases the bright new panel separately,
with a documentary on its painting process. It also shows
“old” and “new” versions of all panels and short videos
on the different image-processing and analysis steps that
made the reconstruction possible. Some of the image
processing we did was fairly standard and could be
carried out by means of programs like GIMP or Photo-
shop. Other steps—such as automatically identifying
cracks (see Figure 3) so they could then be inpainted
or removing cradling artifacts from X-ray images of
the paintings—involved the development of new or very
recently developed approaches.

For instance, graduate student Rachel (Rujie) Yin first
carried out a nifty combination of a 2D Radon transform
with a wavelet transform in order to locate cradle artifacts
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and then later used new machine-learning techniques
based on sparse expansions and dictionary identification,
which themselves emerged only in the last decade, to
remove from the X-ray images the woodgrain stemming
from the early twentieth-century cradle supports while
leaving intact the woodgrain from the original panels.

Since even the more established image-processing tools
we used are also based on very nicemathematical analysis,
the whole project was really a triumph of “how math can
help.” In fact, we now have several more projects with
the NCMA conservation and curatorial staff. When they
suggest a new collaboration, they preface it with, “We
wonder, could math help us with the following?”

For more information, see dukeipai.org/projects/
ghissi and ncartmuseum.org/exhibitions/view/
13698.
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