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Recreational mathematics is a gateway drug. Give the
novices a taste of logic puzzles, magic tricks, and
perplexing geometric patterns, then, once they’re hooked,

puzzles and
problems meant
to engage the
attention of
research

mathematicians

move them along to the
harder stuff—complex
analysis, algebraic ge-
ometry, interuniversal
Teichmüller theory. As
a recruiting tool this
strategy has been highly
successful. Many a math-
ematician credits Martin
Gardner and his “Mathe-
matical Games” column
for inspiring a lifetime
of mathematical inquiry.

The Mathematics of Various Entertaining Subjects
(MOVES) is recreational math for a different audience.
The puzzles and problems may be the same, but in this
presentation they are meant to engage the attention of
research mathematicians. But that’s certainly not to say
there’s no fun here. The volume consists of selected pa-
pers from a symposium of the same name held in 2013
at the National Museum of Mathematics in New York.

Of course recreational problems have been inspiring
“real” math for a long time. Jennifer Beineke and Jason
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Rosenhouse, the editors of this volume, point out in 
their preface that probability theory began with games of 
chance and that graph theory has roots in puzzles such 
as Euler’s tour of the Königsberg bridges and Hamilton’s 
Icosian game. Going farther back, “Among the oldest 
mathematical documents to have survived to the present 
is the Egyptian Rhind papyrus, which is largely a collec-
tion of ancient brainteasers. The isoperimetric problem 
is discussed by Virgil in the Aeneid.”

The book’s seventeen chapters survey quite a broad 
spectrum of problems and puzzles. Robert Bosch, Tim 
Chartier, and Michael Rowan describe schemes for con-
verting any grayscale image into a maze by solving an op-
timization problem, such as the traveling salesman prob-
lem. Classic coin-weighing puzzles (“Find the counterfeit 
in no more than 𝑘 weighings”) are revisited and updated 
by Tanya Khovanova, who in recent years has shown that 
this thoroughly mined genre still has a multitude of sub-
tle variations. Julie Beier and Carolyn Yackel find fresh re-
sults strewn along another well-trodden path—the study 
of flexagons, which were the subject of Martin Gardner’s 
first proto-column in Scientific American sixty years ago. 
Maureen T. Carroll and Steven T. Dougherty try playing 
tic-tac-toe on a finite affine plane, where a finite set of 
points define the positions of 𝑋s and 𝑂s, and a finite 
set of lines (not necessarily straight) mark the potential 
winning paths.

A review can’t do justice to all these varied topics and 
the mathematics that lies behind them. I am therefore 
going to focus on just three selected chapters.

Random Towers of Hanoi
Max A. Alekseyev and Toby Berger consider a variant 
of the Towers of Hanoi puzzle (introduced in 1883 by 
Édouard Lucas, a significant figure in both serious and 
recreational math). The original problem is challenging 
enough: 64 perforated disks are stacked on a peg, with 
the largest on the bottom and the diameter diminishing 
step by step up to the top. Generations of monks labor to 
transfer the entire heap to another peg, moving one disk 
at a time. They use a third peg as a temporary holding
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Figure 1. The state-transition diagram for a two-disk
Towers of Hanoi problem resembles the Sierpiński
gasket. Each vertex of the graph defines a state of the
system: the disposition of the disks on the three
available pegs. An edge connects two vertices if a
legal move connects the corresponding states. Max A.
Alekseyev and Toby Berger study the solution of the
problem by taking random walks on the graph.

area, but at no stage in the process do they ever place a
larger disk above a smaller one on any of the pegs. When
the task is complete, according to Lucas, the world ends.
The minimum number of moves to complete the transfer
is 264 − 1, or about 1019. Alekseyev and Berger ask: Sup-
pose that instead of applying the most efficient algorithm,
the monks shuffle the disks at random—though always
choosing only legal moves. What then is the expected
length of the solution?

It turns out the graph of the Towers problem is a slight
modification of the Sierpiński gasket, a fractal mesh of
triangles within triangles. Each node of this graph repre-
sents a state of the puzzle—a list of which disks occupy
which pegs—and each edge of the graph represents a le-
gal move shifting one disk between pegs. The nodes at the
three corners of the gasket represent end states where all
the disks are on a single peg. Hence the most efficient
strategy is to follow the sequence of states along a side
of the gasket or, in other words, the shortest path between
two corners.

The random-move strategy corresponds to a random
walk on the graph. If the walk begins at the corner node
with all disks on peg 1, is it guaranteed to someday reach
the corner where all disks are on peg 3? Yes, with proba-
bility 1. But how long does it take on average? Alekseyev
and Berger prove that for a tower of 𝑛 rings, the answer
is not 2𝑛 −1 but rather:

𝐸1→3(𝑛) =
(3𝑛 − 1)(5𝑛 − 3𝑛)

2 ⋅ 3𝑛−1 .

In the case of 𝑛 = 64, this works out to about 564 ∼ 1045

moves. Should we be surprised by how large this number
is or by how small it is? Alekseyev and Berger remark:

[R]eplacing the minimum-moves strategy with a
random walk forestalls the end of the world by a
factor of roughly ( 5

2)64 > 2.9 × 1025 on average.
Although this is reassuring, it would provide fur-
ther comfort to know that the coefficient of varia-
tion of the random number of steps…is small (i.e.,
that its standard deviation is many times smaller

Figure 2. The delta-wye transform, a concept
borrowed from electrical engineering, can simplify
the analysis of the random Towers of Hanoi problem.
Suppose each edge in the Sierpiński-like graph is
replaced by a 1 ohm electrical resistor. When a
voltage is applied across two vertices such as 𝐴 and
𝐶, the current through each resistor gives the
frequency with which a random walker would
traverse the corresponding edge of the graph. In a
complex graph of many nested triangles, calculating
those currents is challenging; it becomes easier when
the graph is replaced by an equivalent Y-shaped
network. If the resistors in the delta network are
each 1, those in the Y-network are each 1/3. In either
case the total resistance from 𝐴 to 𝐶 is 2/3.

than its mean). Exact determination of said coeffi-
cient of variation is an open problem that we may
address in future research.

an adventurous
transposition of
the problem into
quite a different

realm

Alekseyev and Berger
give two proofs of the
mean random walk length.
One proof is a conven-
tional, recursive calcula-
tion of probabilities. The
other is an adventurous
transposition of the prob-
lem into quite a different
realm. They model the
graph of the Sierpiński gas-

ket as a network of electrical resistors, an idea imported
into mathematics from electrical engineering by Peter G.
Doyle and J. Laurie Snell in the 1980s. Suppose every
edge of the Sierpiński graph is a 1 ohm resistor and
you apply a voltage to two corners of the graph, node
1 and node 3. If you then calculate or measure the cur-
rent flowing through each resistor, the result indicates
the relative frequency with which a random walker will
pass along that edge of the graph. In itself, this strategy
is no improvement over the more straightforward calcu-
lus of probabilities. But a rearrangement of the graph
known to electrical engineers as the delta-wye transforma-
tion greatly simplifies the problem. As the name suggests,
the transformation changes a delta, or triangle Δ, into a
Y-shaped network. When the delta-wye transformation is
applied recursively, the entire network is reduced to one
big Y, and calculating the resistance between two corners
is a simple summation.

Heartless Poker
In poker, hands are valued in inverse order of expected
frequency. Roughly 42 percent of all possible 5-card
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Figure 3. “Heartless poker,” played with a 39-card
deck that has just three suits, alters the ranking of
certain hands. Whereas in normal poker a flush (5
cards of one suit) beats a straight (5 cards of
consecutive ranks), in the heartless variant this
ordering is inverted. Dominic Lanphier and Laura
Taalman show that every possible ordering of the
flush, the straight, and the full house (three of a kind
plus a pair) can be achieved by some variation on the
standard card deck.

hands feature a single pair (i.e., 2 cards of the same rank
and nothing else of value). Fewer than 5 percent have two
pairs, and about 2 percent have three of a kind. Based on

Remove all
the hearts

from the deck
for a game of
“heartless
poker.”

this ranking, even novice play-
ers quickly learn that three of
a kind beats two pair, which
in turn beats one pair. The or-
dering of some higher-ranking
hands is less obvious. For one
thing, those hands are so rare
that most players have little
chance to develop much in-
tuition about them. Dominic
Lanphier and Laura Taalman
point out another reason for
occasional confusion about the
ranking of the straight, the flush, and the full house: their
frequencies are not dramatically different. A straight (5
cards in sequence) is less than twice as common as a
flush (5 cards of the same suit). A flush is only 1.4 times
as common as a full house (three of a kind plus a pair).

Lanphier and Taalman ask whether changes to the
game—and in particular changes to the composition of
the deck of cards—might alter the rankings of certain
hands. A standard 52-card deck has four suits and thir-
teen ranks. Suppose we remove all the hearts from the
deck and play a game of “heartless poker” with just 39
cards. Eliminating a suit makes it much easier to draw a
flush, enough so that a straight becomes rarer and more
valuable. Going in the other direction, a “fat pack” of
cards is double the size of a normal deck, with eight suits
and the usual thirteen ranks. Playing with that 104-card
deck makes a flush rarer and more valuable than a full
house. Lanphier and Taalman go on to show that all six
possible orderings of those three hands can be achieved
with some deck that has between three and fifteen suits
and between thirteen and thirty-three ranks.

Then comes the question that takes us slightly beyond
the usual turf of recreational mathematics: Is there any
deck for which two of these hands (or all three) have the
same probability and thus should be valued equally? Tak-
ing the number of ranks 𝑟 and the number of suits 𝑠 to be
continuous variables, they define three curves on the 𝑟𝑠

Figure 4. A crossword puzzle can be modeled as a
bipartite graph. The words to be entered as answers
are the vertices of the graph; two vertices are
connected by an edge if the answers have a letter in
common. The graph is bipartite because only Across
and Down answers can intersect.

plane where the straight, the flush, and the full house are
pairwise equal in frequency. Furthermore, they show that
the three curves have a unique point of intersection. In
other words, there exists a pair of 𝑟 and 𝑠 values for which
the straight, flush, and full house are all equally probable.
However, those values of 𝑟 and 𝑠 are not integers, so we
can’t actually create a physical deck of cards with this
property. Further Diophantine analysis shows that there
are no integer numbers of ranks and suits where any two
of the three hands are of equal value.

Critical Phenomena in Crossword Puzzles
Crossword puzzles are a pleasant diversion for many of
us, but they seem to draw mainly on linguistic skills and
general knowledge, without much mathematical content.
John K. McSweeney demonstrates that even if mathemat-
ical analysis won’t help you solve the crossword in Sun-
day’s newspaper, it can illuminate the inner structure of
the puzzle, help measure its difficulty, and explain why
completing it is satisfying (or not). McSweeney writes:

What distinguishes a crossword puzzle from a
simple list of trivia questions is that the answers
are entered into a grid in crossing fashion, and
therefore each correct answer obtained provides
partial information about others…Indeed, even
if there are only a few easy answers that can be
found immediately, these may trigger further
answers, and, in such a cascading fashion, many
or all of the answers in the puzzle may be found.

McSweeney represents the puzzle as a bipartite graph.
The nodes of the graph are the answers to the puzzle
clues. Two nodes are connected by an edge if the corre-
sponding answers cross within the puzzle diagram and
hence have a letter in common. The graph is bipartite be-
cause edges can only connect Across and Down answers;
two Across answers or two Down answers never intersect.
(McSweeney focuses mainly on American-style puzzles,
and in particular on the Sunday New York Times cross-
word, where every letter entered into the grid forms part
of both an Across and a Down answer; some British puz-
zles allow semiisolated letters.)
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Knowing some of the letters in an answer should gen-
erally make it easier to fill in the rest. This fact leads
to a nonlinearity in the puzzle-solving process that Mc-
Sweeney investigates in detail. Hemodels the solver’s task
as a purely probabilistic process. Each clue 𝑥 is assigned
a difficulty threshold 𝜑𝑥 ∈ ℛ. The answer to clue 𝑥 is
revealed only if the proportion of letters already known
from cross-clues is at least 𝜑𝑥. If 𝜑𝑥 ≤ 0, the answer is
known immediately. If 𝜑𝑥 = 1

2 , the answer will become
clear when half the letters have been revealed. When𝜑𝑥 ≥
1, the answer is a stumper that you can’t understand even
when all the letters are filled in.

Between the easy
and the

impossible are
puzzles

exhibiting
random

fluctuations on a
large scale.

In most of his exper-
iments and analyses Mc-
Sweeney assumes that the
difficulty thresholds are
drawn from a Gaussian
distribution, with a mean
𝜇 greater than zero and
a standard deviation 𝜎
wide enough that at least
a few clues can be an-
swered without help from
orthogonal answers. The
simplest and most sym-
metric case is a square
grid without any black
squares so that all Across
and Down answers inter-

sect one another. In this type of puzzle (almost never
seen in the wild), there are parameter ranges for 𝜇 and
𝜎 where most puzzles are boringly easy or frustratingly
hard, but there’s also a more interesting region with a bi-
modal distribution: The solving algorithm may get stuck
early and make very little progress, but if it completes
a certain fraction of the grid, it will almost surely go on
to solve the entire puzzle. I suspect this bimodal pattern
has a lot to do with the pleasure of working crossword
puzzles: The solver wants a challenge but also wants the
satisfaction of completing the task.

McSweeney also runs simulations based on actual puz-
zles from the Sunday Times. In these grids, patterns of
black squares break the puzzle into loosely coupled re-
gions, so that only subsets of Across and Down answers
intersect. Because of these barriers, it’s not uncommon
to solve most of a puzzle but be stymied in a few cor-
ners where neither Across nor Down clues yield up their
secrets. The bimodal distribution of outcomes is still in
evidence, but it takes a somewhat different form. There
are easy puzzles and impossible puzzles, but those in be-
tween exhibit random fluctuations on a large scale, with
big blocks of the puzzle solved but others left blank. The
patterns resemble those seen in fluids or magnetic mate-
rials near a critical point. In crosswords, the critical pa-
rameter values seem to be near 𝜇 = 0.3,𝜎 = 0.23.

Conclusion
Although MOVES addresses an audience of mathematical
sophisticates, almost all the chapters are readily acces-
sible to students and amateurs. Where proofs are given,

Figure 5. Critical behavior is observed in a random
model of the solution process for New York Times
Sunday crossword puzzles. Each clue is assigned a
difficulty threshold drawn from a Gaussian
distribution with mean 𝜇 and standard deviation 𝜎.
The answer to the clue is known whenever the
proportion of letters revealed by known intersecting
answers exceeds this threshold. In these diagrams
green cells have been filled in successfully and white
cells remain blank. At 𝜇 = 0.3 and 𝜎 = 0.23, the
solutions exhibit large-scale fluctuations, similar to
those seen in physical systems near a critical point.
In some instances the entire puzzle is solved; in
others large areas are left blank.

they are explained in detail. Some knowledge of group
theory is helpful in the chapter on flexagons; graph the-
ory and probability turn up in many contexts. In general,
though, all that’s needed to appreciate this work is a little
facility in mathematical reasoning, and a dose of enthusi-
asm.

At a time when the public is once again debating the
utility of mathematics—Do plumbers need to know alge-
bra? Will calculus get you a better job?—it’s a relief to
open this window on this less fretful cosmos, where math-
ematics is a source of understanding and wonder.
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