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Wiles received the Abel Prize from Crown Prince Haakon of Norway.

On May 24, 2016, Sir Andrew J. Wiles received
theAbel Prize ina ceremonyheld in theAulaof
the University of Oslo in Oslo, Norway. Wiles,
who received the prize from H.R.H.Crown
Prince Haakon at the award ceremony, was

the fourteenth recipient of the 6 million NOK (about
750,000 USD) prize. A prize honoring the Norwegian
mathematician Niels Henrik Abel was first proposed by
the world-renownedmathematician Sophus Lie, also from
Norway, and initially planned for the one-hundredth an-
niversary of Abel’s birth in 1902, but the establishment
of the Abel Prize had to wait another hundred years. The
Abel Prize is administered by the Norwegian Academy of
Science and Letters.

The Abel Prize was awarded to Wiles for “his stunning
proof of Fermat’s Last Theorem,” which opened a new era
in number theory. The citation of the Abel Committee,
read by committee chair John Rognes on the occasion of
the announcement of the 2016 Abel Prize, recounts the
early history of Fermat’s Last Theorem—the assertion that
for any given integer 𝑛 ≥ 3, there are no integer solutions
to 𝑥𝑛 +𝑦𝑛 = 𝑧𝑛 with 𝑥𝑦𝑧 ≠ 0—and how it was eventually
linked to the then-conjectural modularity of semistable
elliptic curves and that it was thismodularity that Andrew

Wiles ultimately established in a proof both surprising
and profound. It is especially appropriate that Wiles’s
groundbreaking work on elliptic curves was recognized
by the awarding of the Abel Prize, elliptic curves being
the natural domains of the elliptic functions introduced
by Abel. As the citation for the 2016 Abel Prize concludes:
“Few results have as rich a mathematical history and as
dramatic a proof as Fermat’s Last Theorem.”

The awarding of the Abel Prize was followed by the
Abel Lectures on the next day, May 25. In his lecture,
Wiles explained how his proof of Fermat’s Last Theorem
exemplified the movement of number theory from the
abelian to the nonabelian. Henri Darmon, in his lecture
“AndrewWiles’s Marvelous Proof,” described Wiles’s work
as “a centerpiece of the Langlands program” and ex-
plained its transformative impact, and Manjul Bhargava
spoke about how Wiles’s work has implications for the
Birch–Swinnerton-Dyer Conjecture.
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The full text of the citation of the Abel Committee
can be found at www.abelprize.no/c54154/binfil/
download.php?tid=67039. An expanded version of
Henri Darmon’s Abel Lecture is included in this issue.
DOI: http://dx.doi.org/10.1090/noti1486
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Interview with Abel Laureate
Sir Andrew J. Wiles
Martin Raussen and Christian Skau

Raussen and Skau : Professor Wiles, please accept our con-
gratulations for having been selected as the Abel Prize 
Laureate for 2016. To be honest, the two of us expected 
this interview to take place several years ago!

You are famed not only among mathematicians but also 
among the public at large for (and now we cite the Abel 
Committee): “the stunning proof of Fermat’s Last Theorem, 
by way of the Modularity Conjecture for elliptic curves, 
opening a new era in number theory.” This proof goes back 
to 1994, which means that you had to wait for more than 
twenty years before it earned you the Abel Prize. Neverthe-
less, you are the youngest Abel Prize Laureate so far. After 
you finished your proof of Fermat’s Last Theorem you had 
to undergo a deluge of interviews, which makes our task 
difficult. How on earth are we to come up with questions 
that you have not answered several times before? Well, we 
will try our best.

Fermat’s Last Theorem: A Historical Account 
We have to start at the very beginning, with a cita-
tion in Latin: “…nullam in infinitum ultra quadratum 
potestatem in duos eiusdem nominis fas est dividere,” 
which means: “it is impossible to separate any power 
higher than the second into two like powers.” In mod-
ern mathematical jargon, this can be written: “The 
equation 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no solution in natural numbers 
for 𝑛 greater that two.” And then it continues: “cuius rei 
demonstrationem mirabilem sane detexi. Hanc marginis 
exiguitas non caperet,” which means: “I have discovered a 
truly marvellous proof of this, which
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this margin is too narrow to contain.” This remark was
written in the year 1637 by the French lawyer and amateur
mathematician Pierre de Fermat [1601–1665] in the mar-
gin of his copy of Diophantus’ Arithmetica. He certainly
did not expect that it would keep mathematicians, profes-
sionals, and amateurs alike busy for centuries trying to
unearth the proof.

Could you please give us a short account of some of
the attempts towards proving Fermat’s Last Theorem up
until the time you embarked on your successful journey?
Furthermore, why was such a simple-minded question so
attractive, and why were attempts to prove it so productive
in the development of number theory?

Wiles: The first serious attempt to solve it was pre-
sumably by Fermat himself. But, unfortunately, we know
nothing about it except for what he explained about his
proofs in the specific cases of 𝑛 = 3 and 𝑛 = 4.1 That is,
he showed that you can’t have the sum of two cubes be
another cube or the sum of two fourth powers being a

1Strictly speaking, Euler was the first to spell out a complete proof
in the case 𝑛 = 3.

198 Notices of the AMS Volume 64, Number 3

http://www.ems-ph.org/journals/newsletter/pdf/2016-09-101.pdf#page=31


fourth power. He did this by a beautiful method, which
we call infinite descent. It was a new method of proof, or
at least a new way of presenting proofs in arithmetic. He
explained this method to his colleagues in letters, and he
also wrote about it in his famous margin, which was big
enough for some of it at least. After the marginal notes
were published by Fermat’s son after his father’s death,
it lay dormant for a while. Then it was picked up by Euler
[1707–1783] and others who tried to find this truly mar-
vellous proof. And they failed. It became quite dramatic
in the mid-nineteenth century—various people thought
they could solve it. There was a discussion concerning
this in the French Academy: Lamé [1795–1870] claiming
he was just about to prove it, and Cauchy [1789–1857]
saying he thought he could too, and so on.

In fact, it transpired that the German mathematician
Kummer [1810–1893] had already written a paper where
he explained that the fundamental problem was what is
known now as the fundamental theorem of arithmetic. In
our normal number system, any number can be factorized
in essentially one way into prime factors. Take a number
like 12; it is 2 times 2 times 3. There is no other way of
breaking it up. But in trying to solve the Fermat problem,
you actually want to use systems of numbers where this
uniqueness does not hold. Every attempt that was made
to solve the Fermat problem had stalled because of this
failure of unique factorization. Kummer analyzed this in
incredible detail. He came up with the most beautiful
results, and the end product was that he could solve
it for many, many cases. For example, for 𝑛 ≤ 100 he
solved it for all primes except for 37, 59, and 67. But
he did not finally solve it. His method was based on the
idea that Fermat had introduced—the method of infinite
descent—but in these new number systems.

The new number systems he was using spawned
algebraic number theory as we see it today. One tries to
solve equations in these new systems of numbers instead
of solving them with ordinary integers and rational
numbers. Attempts in the style of Fermat carried on for a
while but somewhat petered out in the twentieth century.
No one came up with a fundamentally new idea. In the
second half of the twentieth century, number theory
moved on and considered other questions. Fermat’s
problem was all but forgotten by the professionals.

It was a
roadblock right in

the middle of
modern

mathematics.

Then, in 1985, Ger-
hard Frey, a German
mathematician, came up
with a stunning new
idea where he took a
hypothetical solution to
the Fermat problem and
rewrote it so that itmade
what is called an elliptic
curve. And he showed,
or suggested, that this
elliptic curve had very
peculiar properties. He conjectured that you can’t really
have such an elliptic curve. Building on this a year later, an
American mathematician, Kenneth Ribet, demonstrated,
using this Frey curve, that any solution of Fermat would

contradict another well-known conjecture called the Mod-
ularity Conjecture. This conjecture had been proposed in
a weak form by Taniyama [1927–1958] and was refined
by Shimura, but the first real evidence for it came from
André Weil [1906–1998], who made it possible to check
this precise form of the Modularity Conjecture in some
detail. And a lot of evidence was amassed showing that
this should certainly be true. So, at that point, mathe-
maticians could see that: “Yes, Fermat is going to be true.
Moreover, there has to be a proof of it.” What happened
was that the Modularity Conjecture was a problem that
mathematics could not just put to one side and go on for
another five hundred years. It was a roadblock right in the
middle of modern mathematics. It was a very, very central
problem. As for Fermat, you could just leave it aside and
forget it almost forever. This Modularity Conjecture you
could not forget. So, at the point when I heard that Ribet
had done this, I knew that this problem could be solved
and I was going to try.

Raussen and Skau :Concerning speculations about Fer-
mat’s claimed proof, do you think he had the same idea as
Lamé, assuming, wrongly as it turned out, that the cyclo-
tomic integers have unique factorization?

Wiles: No, I don’t think so, though the idea might be
in there somewhere. It is very hard to understand. André
Weil wrote about this. All the other problems Fermat
considered had to do with curves that were of genus
zero or genus one. And suddenly he is writing down a
curve that has higher genus. How is he going to think
about it? When I was trying this myself as a teenager,
I put myself in Fermat’s frame of mind because there
was hardly anything else I could do. I was capable of
understanding his mathematics from the seventeenth
century but probably not much beyond that. It seemed to
me that everything he did came down to something about
quadratic forms, and I thought that might be a way of
trying to think about it. Of course, I never succeeded, but
there is nothing else that suggests Fermat fell into this
trap with unique factorization. In fact, from the point of
view of quadratic forms, he understood that sometimes
there was unique factorization and sometimes there was
not. So he understood that difference in his own context.
I think it is unlikely that that was the mistake.

Raussen and Skau : In the same book by André Weil
that you referred to, titled Number Theory: An approach
through History from Hammurapi to Legendre, it is men-
tioned that Fermat looked at the equation of a cube minus
a square equal to 2 [𝑥3−𝑦2 = 2] and he showed that it has
essentially only one solution, namely 𝑥 = 3 and 𝑦 = ±5.
André Weil speculates that Fermat at the time looked at
the ring 𝑍[√ − 2], which does have unique factorization.

Wiles: Yes, he used unique factorization, but theway he
did it was in terms of quadratic forms. And I think he also
looked at quadratic forms corresponding to 𝑍[√ − 6]
where there is not unique factorization. So I think he
understood. It was my impression when I thought about
it that he understood the difference.
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A Mathematical Education
Raussen and Skau : You were apparently already inter-
ested in mathematical puzzles as quite a young boy. Have
you any thoughts about where this interest came from?
Were you influenced by anyone in particular?

Wiles: I just enjoyed mathematics when I was very
young. At the age of ten, I was looking through library
shelves devoted to mathematics. I would pull out books
and at one point I pulled out a book of E. T. Bell
[1883–1960] titled The Last Problem, which on its cover
describes the Fermat equation, the Wolfskehl Prize, and
the romantic history of the problem. I was completely
captivated by it.

Raussen and Skau : Were there other things that fasci-
nated you in this book by Eric Temple Bell?

Wiles: It is entirely about that one equation, really. And
it is actually quite wordy. So there is less mathematics in
some sense than you might think. I think it was more the
equation. Then, when I found this equation, I looked for
other elementary books on number theory and learned
about congruences and solved congruences and so on,
and looked at other things that Fermat did.

Raussen and Skau : You did this work besides your
ordinary schoolwork?

Wiles: Yes, I don’t think my schoolwork was too taxing
from that point of view.

Raussen and Skau : Was it already clear to you at that
time that you had an extraordinary mathematical talent?

Wiles: I certainly had a mathematical aptitude and
obviously loved to do mathematics, but I don’t think I felt
that I was unique. In fact, I don’t believe I was unique in
the school I attended. There were others who had just as
strong a claim to be future mathematicians, and some of
them have become mathematicians, too.

Raussen and Skau :Did you already plan to studymath-
ematics and to embark on a mathematical career at that
age?

Wiles: No, I don’t think I really understood you could
spend your life doing mathematics. I think that only came
later. But I certainly wanted to study it as long as I could.
I’m sure that as far as my horizon extended, it involved
mathematics.

Raussen and Skau : You started to study mathemat-
ics as a student at Oxford in 1971. Can you tell us a little
bit about how that worked out? Were there any particu-
lar teachers or any particular areas that were particularly
important for you?

Wiles: Before I went to college (actually in high school),
one of my teachers had a PhD in number theory. He
gave me a copy of Hardy and Wright’s An Introduction
to the Theory of Numbers, and I also found a copy of
Davenport’s The Higher Arithmetic. And these two books
I found very, very inspiring in terms of number theory.

Raussen and Skau : So you were on track before you
started studying?

Wiles: Yes, I was on track before. In fact, to some
extent, I felt college was a distraction because I had to
do all these other things: applied maths, logic, and so on,
and I just wanted to do number theory. You were not

allowed to do number theory in your first year. And you
could not really get down to it before your third year.

Raussen and Skau : But you were not interested in ge-
ometry, not as much as in algebra and number theory,
anyway?

Wiles: No, I was primarily interested in algebra and
number theory. I was happy to learn these other things,
but I really was most excited about number theory. My
teachers arranged for me to take extra classes in number
theory, but there was not that much to offer.

At one point, I decided that I should put all the years
of Latin I had done at school to good use and try to
read some of Fermat in the original, but I found that was
actually too hard. Even if you translated the Latin, the way
they wrote in those days wasn’t in the algebraic symbols
I was used to, so it was quite difficult.

Raussen and Skau : It must have been a relief when
you were done and came to Cambridge to start studying
number theory for real, with John Coates as your supervi-
sor.

Wiles: That’s right. I had a year, a preliminary year,
in which I just studied a range of subjects and then I
could do a special paper. John Coates was not yet at
Cambridge, but I think he helped me, maybe over the
summer. Anyway, that summer I met him and started
working with him right away, and that was just wonderful.
The transition from undergraduate work, where you were
just reading and studying, to research—that was the real
break for me. It was just wonderful.

Elliptic Curves
Raussen and Skau : We assume it was John Coates who
initiated your work on elliptic curves and Iwasawa theory?

Wiles: Absolutely. He had some wonderful ideas and
was generous to share them with me.

Raussen and Skau : Did you tell John Coates that you
were interested in the Fermat problem?

Wiles: Perhaps I did. I don’t remember. It is really true
that there hadn’t been any new ideas since the nineteenth
century. People were trying to refine the old methods and,
yes, there were refinements. But it didn’t look like these
refinements and the solution were going to converge. It
was just too hard that way.

Raussen and Skau : At the time you started to work
with John Coates, you had no idea that these elliptic curves
were going to be crucial for the solution of Fermat’s Last
Theorem?

Wiles: No, it’s a wonderful coincidence. The strange
thing is that, in a way, the two things that are most
prominent in Fermat that we remember today are his
work on elliptic curves and his famous last theorem. For
example, this equation you mentioned, 𝑦2 +2 = 𝑥3, is an
elliptic curve. And the two strands came together in the
proof.

Raussen and Skau : Could you explain what an elliptic
curve is and why elliptic curves are of interest in number
theory?

Wiles: For a number theorist, the life of elliptic curves
started with Fermat as equations of the form 𝑦2 equals
a cubic polynomial in 𝑥 with rational coefficients. Then,
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the problem is to find the rational solutions to such
an equation. What Fermat noticed was the following.
Sometimes you can start with one or even two rational
solutions and use them to generate infinitely many others.
And yet sometimes there are no solutions. This latter
situation occurs, for example, in the case 𝑛 = 3 of
Fermat’s Last Theorem, the equation being, in fact, an
elliptic curve in disguise. Sometimes you can show there
are no rational solutions. You could have infinitely many
and you could have none. This was already apparent to
Fermat.

In the early nineteenth century, one studied these
equations in complex numbers. Abel [1802–1829] himself
came in at this point and studied elliptic functions and
related these to elliptic curves, implying that elliptic
curves have a group structure. They were very well
understood in terms of doubly periodic functions in the
early nineteenth century. But that is what underlies the
complex solutions, solutions to the equation in complex
numbers.

The solutions to the equation in rational numbers were
studied by Poincaré [1854–1912]. What’s now known as
the Mordell–Weil theorem was proved by Mordell [1888–
1972] and then Weil in the 1920s, answering a question of
Poincaré. In our setting, it says that the 𝐾-rational points
on an elliptic curve over a number field𝐾, in particular for
𝐾 equal to the rationals, form a finitely generated abelian
group. That is, from Fermat’s language, you can start with
a finite number of solutions and, using those, generate
all the solutions by what he called the chord-and-tangent
process.

By now you know the structure; it is a very beautiful
algebraic structure, the structure of a group, but that
does not actually help you find the solutions. So, no one
really had any general methods for finding the solutions
until the conjectures of the 1960s, which emerged from
the Birch and Swinnerton-Dyer Conjecture. There are two
aspects to it; one is somewhat analytic, and one is in terms
of what is called the Tate–Shafarevich group. Basically,
the Tate–Shafarevich group gives you the obstruction to
an algorithm for finding the solutions. And the Birch
and Swinnerton-Dyer Conjecture tells you that there is
actually an analytic method for analyzing this so-called
Tate–Shafarevich group. If you combine all this together,
ultimately it should give you an algorithm for finding the
solutions.

Birch and Swinnerton-Dyer, Tate–Shafarevich,
Selmer…
Raussen and Skau : You worked on the Birch and
Swinnerton-Dyer Conjecture when you were a graduate
student together with John Coates?

Wiles: Yes, that is exactly what he proposed working
on. We got the first result in certain special families of
elliptic curves on this analytic link between the solutions
and what is called the 𝐿-function of the elliptic curve.

Raussen and Skau : These were curves admitting com-
plex multiplication?

Wiles: Exactly; these were the elliptic curves with
complex multiplication.

Interviewed in Oslo in May, Wiles told Martin
Raussen and Christian Skau that he set out to prove
the Modularity Conjecture with no idea from what
branch of mathematics the answer would come.

Raussen and Skau : Was this the first general result
concerning the Birch and Swinnerton-Dyer Conjecture?

Wiles: It was the first one that treated a family of cases
rather than individual cases. There was a lot of numerical
data for individual cases, but this was the first infinite
family of cases.

Raussen and Skau : This was over the rational num-
bers?

Wiles: Yes.
Raussen and Skau : We should mention that the Birch

and Swinnerton-Dyer Conjecture is one of the Clay Mil-
lennium Prize Problems, which would earn a person who
solves it one million dollars.

Wiles: That’s right. I think it’s appealing, partly be-
cause it has its roots in Fermat’s work, just like the
Fermat problem. It is another “elementary-to-state” prob-
lem concerned with equations—in this case of very low
degree—whichwe can’tmaster andwhich Fermat initiated.
I think it is a very appealing problem.

Raussen and Skau : Do you think it is within reach? In
other words, do we have the necessary tools for somebody
daring enough to attack it and succeed? Or do we have to
wait for another three hundred years to see it solved?

Wiles: I don’t suppose it will take three hundred years,
but I don’t think it is the easiest of the Millennium
Problems. I think we are still lacking something. Whether
the tools are all here now, I am not sure. They may be.
There are always these speculations with these really
difficult problems; it may be that the tools simply aren’t
there. I don’t believe that anyone in the nineteenth century
could have solved Fermat’s Last Theorem, certainly not in
the way it was eventually solved. There was just too big
a gap in mathematical history. You had to wait another
hundred years for the right pieces to be in place. You can
never be quite sure about these problems, whether they
are accessible to your time. That is really what makes
them so challenging; if you had the intuition for what can
be done now and what can’t be done now, you would be
a long way towards a solution!
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Raussen and Skau :Youmentioned the Tate–Shafarevich
group and in that connection the Selmer group appears.
Selmer [1920–2006] was a Norwegian mathematician,
and it was Cassels [1922–2015] who was responsible for
naming this group the Selmer group. Could you say a few
words about the Selmer group and how it is related to the
Tate–Shafarevich group, even if it’s a little technical?

Wiles: It is technical, but I can probably explain the
basic idea of what the Selmer group is. What you are
trying to do is to find the rational solutions on an
elliptic curve. The method is to take the rational points
on the elliptic curve—suppose you have got some—and
you generate field extensions from these. So when I say
generate extensions, I mean that you can take roots of
those points on the elliptic curve. Just like taking the 𝑛th
root of 5 or the cube root of 2. You can do the same
thing on an elliptic curve; you can take the 𝑛th root of a
point. These are all points which added to themselves 𝑛
times give you the point you started with. They generate
certain extensions of the number field you started with,
in our case the rational number field Q.

You can put a lot of restrictions on those exten-
sions. And the Selmer group is basically the smallest
set of extensions you can get putting on all the obvious
restrictions.

Let me summarize this. You’ve got the group of points.
They generate some extensions; that’s too big—you don’t
want all extensions. You cut that down asmuch as you can
using local criteria, using 𝑝-adic numbers; that’s called
the Selmer group. And the essential difference between
the group generated by the points and the Selmer group
is the Tate–Shafarevich group. So the Tate–Shafarevich
group gives you the error term, if you like, in trying to
get at the points via the Selmer group.

Raussen and Skau : Selmer’s paper, which Cassels
refers to, studied the Diophantine equation 3𝑥3 + 4𝑦3 +
5𝑧3 = 0 and similar ones. Selmer showed that it has just
a trivial solution in the integers, while modulo 𝑛 it has
nontrivial solutions for all 𝑛. In particular, this curve has
no rational points. Why did Cassels invoke Selmer’s name
in naming the group?

Wiles: Yes, there are quite subtle relationships between
these. What happens is you are actually looking at one
elliptic curve, which in this case would be 𝑥3+𝑦3+60𝑧3 =
0. That is an elliptic curve, in disguise, if you like, and the
Tate–Shafarevich group involves looking at other ones
like it, for example, 3𝑥3 +4𝑦3 +5𝑧3 = 0, which is a genus
one curve but which has no rational points. Its Jacobian
is the original elliptic curve 𝑥3 +𝑦3 + 60𝑧3 = 0. One way
of describing the Tate–Shafarevich group is in terms of
these curves that have genus one but don’t have rational
points. And by assembling these together you can make
the Tate–Shafarevich group, and that is reflected in the
Selmer group. It is too intricate to explain in words, but
it is another point of view. I gave it in more arithmetic
terminology in terms of extensions. The more geometric
terminology was in terms of these twisted forms.

The Modularity Conjecture
Raussen and Skau : What you proved in the end was a
special case of what is now called the Modularity Conjec-
ture. In order to explain this, one has to start with modular
forms and how modular forms can be put in relation with
elliptic curves. Could you give us some explanations?

Wiles: Yes; we have described an elliptic curve (over
the rationals) as an equation 𝑦2 = 𝑥3+𝑎𝑥+𝑏, where the 𝑎
and 𝑏 are assumed to be rational numbers. (There is also
a condition that the discriminant should not vanish.) As I
said, at the beginning of the nineteenth century you could
describe the complex solutions to this equation. You could
describe these very nicely in terms of the Weierstrass ℘-
function, in terms of a special elliptic function. But what
we want is actually a completely different uniformization
of these elliptic curves which captures the fact that the 𝑎
and 𝑏 are rational numbers. It is a parametrization just
for the rational elliptic curves. And because it captures
the fact that it is defined over the rationals, it gives you
a much better hold on solutions over the rationals than
the elliptic functions do. The latter really only sees the
complex structure.

And the place it comes from are modular forms or
modular curves. To describe modular functions first: we
are used to functions which satisfy the relation of being
invariant under translation. Every time we write down
a Fourier series, we have a function which is invariant
under translation. Modular functions are ones which are
invariant under the action of amuch bigger group, usually
a subgroupof𝑆𝐿2(ℤ). So, youwould ask for a function 𝑓(𝑧)
in one complex variable, usually on the upper-half-plane,
which satisfies 𝑓(𝑧) is the same as 𝑓((𝑎𝑧 + 𝑏)/(𝑐𝑧 + 𝑑))
(or, more generally, is that times a power of 𝑐𝑧 + 𝑑).

Modular functions
hold the key to the

arithmetic of
elliptic curves.

These are called
modular functions,
and they were ex-
tensively studied in
thenineteenth century.
Surprisingly, they hold
the key to the arith-
metic of elliptic curves.
Perhaps the simplest
way to describe it is

that because we have an action of 𝑆𝐿2(ℤ) on the upper-
half-plane𝐻—bytheactionzgoes to (𝑎𝑧+𝑏)/(𝑐𝑧+𝑑)—we
can look at the quotient 𝐻 modulo this action. You can
then give the quotient the structure of a curve. In fact, it
naturally gets the structure of a curve over the rational
numbers. If you take a subgroup of 𝑆𝐿2(ℤ), or more
precisely what is called a congruence subgroup, defined
by the 𝑐 value being divisible by𝑁, then you call the curve
a modular curve of level 𝑁. The Modularity Conjecture
asserts that every elliptic curve over the rationals is actu-
ally a quotient of one of these modular curves for some
integer 𝑁. It gives you a uniformization of elliptic curves
by these other entities, these modular curves. On the face
of it, it might seem we are losing because this is a high
genus curve—it is more complicated. But it actually has a
lot more structure because it is a moduli space.

Raussen and Skau : And that is a very powerful tool?
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Wiles: That is a very powerful tool, yes. You have
function theory, you have deformation theory, geometric
methods, etc. You have a lot of tools to study it.

Raussen and Skau : Taniyama, the young Japanese
mathematician who first conjectured or suggested these
connections; his conjecture was more vague, right?

Wiles: His conjecture was more vague. He didn’t pin it
down to a function invariant under themodular group. I’ve
forgotten exactly what he conjectured; it was invariant
under some kind of group, but I forget exactly which
group he was predicting. But it was not as precise as the
congruence subgroups of the modular group. I think it
was originally written in Japanese, so it was not circulated
as widely as it might have been. I believe it was part of
notes compiled after a conference in Japan.

Raussen and Skau : It was an incredibly audacious con-
jecture at that time, wasn’t it?

Wiles: Apparently, yes.
Raussen and Skau : But then it gradually caught the at-

tention of othermathematicians. You told us already about
Gerhard Frey, who came up with a conjecture relating
Fermat’s Last Theorem with the Modularity Conjecture.

Wiles: That’s right. Gerhard Frey showed that if you
take a solution to the Fermat problem, say 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝,
and you create the elliptic curve 𝑦2 = 𝑥(𝑥 − 𝑎𝑝)(𝑥 + 𝑏𝑝),
then the discriminant of that curve would end up being
a perfect 𝑝th power. And if you think about what that
means assuming the Modularity Conjecture—you have to
assume something a bit stronger as well (the so-called
epsilon conjecture of Serre)—then it forces this elliptic
curve to have the level 𝑁 that I spoke about to be equal
to one, and hence the associated congruence subgroup is
equal to 𝑆𝐿2(ℤ). But 𝐻 modulo 𝑆𝐿2(ℤ) is a curve of genus
zero. It has no elliptic curve quotient, so it wasn’t there
after all, and hence there can’t be a solution to the Fermat
problem.

The Quest for a Proof
Raussen and Skau : That was the point of departure for
your own work, with crucial further ingredients due to
Serre and Ribet making this connection clear. May we
briefly summarize the story that then followed? It has
been told by you many times, and it is the focus of a BBC
documentary.

You had moved to the United States, first to Harvard,
then to Princeton University, becoming a professor there.
When you heard of Ribet’s result, you devoted all your
research time to proving the Modularity Conjecture for
semistable elliptic curves over the rationals. This work
went on for seven years of really hard work in isolation.
At the same time you were working as a professor in
Princeton and you were raising small children.

A proof seems to be accomplished in 1993, and the de-
velopment culminates in a series of three talks at the Isaac
Newton Institute in Cambridge back in England, announc-
ing your proof of Fermat’s Last Theorem. You are cele-
brated by your mathematical peers. Even the world press
takes an interest in your results, which happens very rarely
for mathematical results.

But then, when your result is scrutinized by six referees
for a highly prestigious journal, it turns out that there is
a subtle gap in one of your arguments and you are sent
back to the drawing board. After a while, you send for
your former student, Richard Taylor, to come to Princeton
to help you in your efforts. It takes a further ten months
of hard and frustrating work; we think we do not exagger-
ate by calling it a heroic effort under enormous pressure.
Then, in a sudden flash of insight, you realize that you can
combine some of your previous attempts with new results
to circumvent the problem that had caused the gap. This
turns out to be what you need in order to get the part of
the Modularity Conjecture that implies Fermat’s Last The-
orem. What a relief that must have been! Would you like to
give a few comments on this dramatic story?

It is irresponsible
to work on one
problem to the
exclusion of

everything else.

Wiles: With regard
to my own work, when
I became a profes-
sional mathematician
working with Coates, I
realized I really had to
stop working on Fer-
mat because it was
time-consuming and I
could see that in the
last hundred years al-
most nothing hadbeen
done. And I saw others, even very distinguished mathe-
maticians, had come to grief on it. When Frey came out
with this result, I was a bit skeptical that the Serre part
of the conjecture was going to be true, but when Ribet
proved it, then, okay, this was it!

And it was a long, hard struggle. In some sense, it is
irresponsible to work on one problem to the exclusion of
everything else, but this is the way I tend to do things.
Whereas Fermat is very narrow (I mean, it is just this
one equation, whose solution may or may not help with
anything else), the setting of the Modular Conjecture was
one of the big problems in number theory. It was a great
thing to work on anyway, so it was just a tremendous
opportunity.

When you are working on something like this, it takes
many years to really build up the intuition to see the kinds
of things you need and the kinds of things a solution will
depend on. It’s something like discarding everything you
can’t use and won’t work till your mind is so focused that
even making a mistake, you’ve seen enough that you’ll
find another way to the end.

Funnily enough, concerning the mistake in the argu-
ment that I originally gave, people have worked on that
aspect of the argument and quite recently they have
actually shown that you can produce arguments very like
that. In fact, in every neighboring case, arguments similar
to the original method seem to work, but there is this
unique case that it doesn’t seem to work for, and there
is not yet any real explanation for it. So the same kind of
argument I was trying to use, using Euler systems and so
on, has been made to work in every surrounding case, but
not the one I needed for Fermat. It’s really extraordinary.
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Raussen and Skau : You once likened this quest for the
proof of the Modularity Theorem to a journey through a
dark, unexplored mansion. Could you elaborate?

Wiles: I started off really in the dark. I had no prior
insights of how the Modularity Conjecture might work or
how you might approach it. One of the troubles with this
problem—it’s a little like the Riemann Hypothesis but
perhaps even more so—was that you didn’t even know
what branch of mathematics the answer would be coming
from.

To start with, there are three ways of formulating
the problem: one is geometric, one is arithmetic, and
one is analytic. And there were analysts—I would not
understand their techniques at all well—who were trying
to make headway on this problem.

I think I was a little lucky because my natural instinct
was with the arithmetic approach and I went straight
for the arithmetic route, but I could have been wrong.
The only previously known cases where the Modularity
Conjecture was known to hold were the cases of complex
multiplication, and that proof is analytic, completely
analytic.

Partly out of necessity, I suppose, and partly because
that’s what I knew, I went straight for an arithmetic
approach. I found it very useful to think about it in a
way that I had been studying in Iwasawa theory. With
John Coates, I had applied Iwasawa theory to elliptic
curves. When I went to Harvard, I learned about Barry
Mazur’s work, where he had been studying the geometry
of modular curves using a lot of the modern machinery.
There were certain ideas and techniques I could draw on
from that. I realized after a while, I could actually use that
to make a beginning—to find some kind of entry into the
problem.

Raussen and Skau : Before you started on the Modu-
larity Conjecture, you published a joint paper with Barry
Mazur, proving the main theorem of Iwasawa theory over
the rationals. Can you please tell us what Iwasawa theory
is all about?

Wiles: Iwasawa theory grew out of the work of Kummer
on cyclotomic fields and his approach to Fermat’s Last
Theorem. He studied the arithmetic, and in particular the
ideal class groups, of prime cyclotomic fields. Iwasawa’s
idea was to consider the tower of cyclotomic fields
obtained by taking all 𝑝-power roots of unity at once.
The main theorem of Iwasawa theory proves a relation
between the action of a generator of the Galois group on
the𝑝-primary class groups and the𝑝-adic𝐿-functions. It is
analogous to the construction used in the study of curves
over finite fields where the characteristic polynomial of
Frobenius is related to the zeta function.

Raussen and Skau : And these tools turned out to be
useful when you started to work on the Modularity Conjec-
ture?

Wiles: They did; they gave me a starting point. It wasn’t
obvious at the time, but when I thought about it for a
while, I realized that there might be a way to start from
there.

Parallels to Abel’s Work
Raussen and Skau :Wewant to read you a quotation: “The
ramparts are raised all around but, enclosed in its last re-
doubt, the problem defends itself desperately. Who will be
the fortunate genius who will lead the assault upon it or
force it to capitulate?”

Wiles: It must have been E. T. Bell, I suppose. Is it?
Raussen and Skau : No, it’s not. It is actually a

quote from the book Histoire des Mathématiques by
Jean-Étienne Montucla [1725–1799], written in the late
eighteenth century. It is really the first book ever written
on the history of mathematics. The quotation refers to
the solvability or unsolvability of the quintic equation
by radicals. As you know, Abel [1802–1829] proved the
unsolvability of the general quintic equation when he was
twenty-one years old. He worked in complete isolation,
mathematically speaking, here in Oslo. Abel was obsessed,
or at least extremely attracted, to this problem. He also
got a false start. He thought he could prove that one could
actually solve the quintic by radicals. Then he discovered
his mistake and he finally found the unsolvability proof.
Well, this problem was, at that time, almost three hundred
years old and very famous. If we move fast-forward two
hundred years, the same quotation could be used about
the Fermat problem, which was around three hundred
fifty years old when you solved it. It is a very parallel story
in many ways. Do you have any comments?

Wiles: Yes. In some sense, I do feel that Abel, and then
Galois [1811–1832], were marking a transition in algebra
from these equations, which were solvable in some very
simple way, to equations which can’t be solved by radicals.
But this is an algebraic break that came with the quintic.
In some ways, the whole trend in number theory now is
the transition frombasically abelian and possibly solvable
extensions to insolvable extensions. How do we do the
arithmetic of insolvable extensions?

I believe the Modularity Conjecture was solved because
we had moved on from this original abelian situation
to a nonabelian situation, and we were developing tools,
modularity and so onwhich are fundamentally nonabelian
tools. (I should say, though, that the proof got awaymostly
with using the solvable situation, not because it was more
natural but because we have not solved the relevant
problems in the general nonsolvable case.)

It is the same transition in number theory that he was
making in algebra, which provides the tools for solving
this equation. So I think it is very parallel.

Raussen and Skau : There is an ironic twist with Abel
and the Fermat problem. When he was twenty-one years
old, Abel came to Copenhagen to visit Professor Degen
[1766–1825], who was the leading mathematician in Scan-
dinavia at that time. Abel wrote a letter to his mentor in
Oslo, Holmboe [1795–1850], stating three results about the
Fermat equation without giving any proofs—one of them
is not easy to prove, actually. This, of course, is just a cu-
riosity today.

But in the same letter, he gives vent to his frustration,
intimating that he can’t understand why he gets an equa-
tion of degree 𝑛2 and not 𝑛 when dividing the lemniscate
arc in 𝑛 equal pieces. It was only after returning to Oslo
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that he discovered the double periodicity of the lemniscate
integral and also of the general elliptic integral of the first
kind.

If one thinks about it, what he did on the Fermat equa-
tion turned out to be just a curiosity. But what he achieved
on elliptic functions, and implicitly on elliptic curves,
turned out later to be a relevant tool for solving it. Of
course, Abel had no idea that this would have anything to
do with arithmetic. So this story tells us that mathematics
sometimes develops in mysterious ways.

Wiles: It certainly does, yes.

Work Styles
Raussen and Skau :May we ask for some comments about
work styles of mathematicians in general and also about
your own? Freeman Dyson, a famous physicist and mathe-
matician at IAS in Princeton, said in his Einstein Lecture in
2008: “Some mathematicians are birds, others are frogs.
Birds fly high in the air and survey broad vistas of math-
ematics out to the horizon. They delight in concepts that
unify our thinking and bring together diverse problems
from different parts of the landscape. Frogs live in the mud
below and see only the flowers that grow nearby. They
delight in the details of particular objects and they solve
problems one at a time.”

Freeman Dyson didn’t say that birds were better than
frogs or the other way around. He considered himself a
frog rather than a bird.

Whenwe are looking at your work, for us it seems rather
difficult to decide where to place you in his classification
scheme: among the birds (those who create theories) or
among the frogs (those who solve problems). What is your
own perception?

Wiles: Well, I don’t feel like either. I’m certainly not a
bird—unifying different fields. I think of frogs as jumping
a lot. I think I’m very, very focused. I don’t know what
the animal analogy is, but I think I’m not a frog in the
sense of enjoying the nearby landscape. I’m very, very
concentrated on the problem I happen to work on and I
am very selective. And I find it very hard to even take my
mind off it enough to look at any of the flowers around,
so I don’t think that either of the descriptions quite fit.

Raussen and Skau : Based on your own experience,
could you describe the interplay between hard, concen-
trated, and persevering work on the one side and, on the
other side, these sudden flashes of insight that seemingly
come out of nowhere, often appearing in a more relaxed
setting. Your mind must have worked unconsciously on
the problem at hand, right?

Wiles: I think what you do is that you get to a situation
where you know a theory so well, and maybe even more
than one theory, so that you have seen every angle and
tried a lot of different routes.

There is this tremendous amount of work in the
preparatory stage where you have to understand all the
details and maybe some examples—that is your essential
launch pad. When you have developed all this, you let
the mind relax and then at some point—maybe when you
go away and do something else for a little bit—you come
back and suddenly it is all clear. Why did you not think

of that? This is something the mind does for you. It is the
flash of insight.

I remember (this is a trivial example in a non-
mathematical setting) someone once showed me some
script—it was some Gothic script—and I couldn’t make
head nor tail of it. I was trying to understand a few letters,
and I gave up. Then I came back half an hour later and I
could read the whole thing. The mind somehow does this
for you and we don’t quite know how, but we do know
what we have to do to set up the conditions where it will
happen.

Raussen and Skau : This is reminiscent of a story about
Abel. While in Berlin, he shared an apartment with some
Norwegian friends who were not mathematicians. One of
his friends said that Abel typically woke up during the
night, lit a candle, and wrote down ideas that he woke up
with. Apparently his mind was working while asleep.

Wiles: Yes, I do that, except I don’t feel the need to
write them down when I wake up with it because I know
I will not forget it. But if I have an idea when I am about
to go to sleep, I am terrified that I will not wake up with
that idea, so then I have to write it down.

Raussen and Skau : Are you thinking in terms of for-
mulas or in terms of geometric pictures or what?

I often feel that
doing

mathematics is
like being a
squirrel.

Wiles: It is not really
geometric. I think it is
patterns and I think
it is just parallels be-
tween situations I have
seen elsewhere and the
one I am facing now. In
a perfect world, what
is it all pointing to?
What are the ingredi-
ents that ought to go
into this proof? What
am I not using that I still have in my pocket? Sometimes
it is just desperation. I assemble every piece of evidence
I have and that’s all I’ve got. I have got to work with that
and there is nothing else.

I often feel that doing mathematics is like being a
squirrel and there are some nuts at the top of a very tall
tree. But there are several trees and you don’t know which
one. What you do is that you run up one and you think, no,
it does not look good on this one, and you go down and
up another one, and you spend your whole life just going
up and down these trees. But you’ve only got up to thirty
feet. Now, if someone told you the rest of the trees—it’s
not in them, you have only one tree left—then you would
just keep going until you found it. In some sense, it is
ruling out the wrong things—that is really crucial. And
if you just believe in your intuition and your intuition is
correct and you stick with your one tree, then you will
find it.

Problems in Mathematics
Raussen and Skau : Felix Klein [1849–1925] once said:
“Mathematics develops as old results are being understood
and illuminated by new methods and insights. Proportion-
ally with a better and deeper understanding new problems
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naturally arise.” And David Hilbert [1862–1943] stressed
that “problems are the lifeblood of mathematics.” Do you
agree?

Wiles: I certainly agreewithHilbert, yes. Goodproblems
are the lifeblood of mathematics. I think you can see this
clearly in number theory in the second half of the
last century. For me personally, there is obviously the
Modularity Conjecture but also the whole Langlands
program and the Birch and Swinnerton-Dyer Conjecture.
These problems give you a very clear focus on what we
should try to achieve. We also have the Weil Conjectures
on curves and varieties over finite fields and the Mordell
Conjecture and so on.

These problems somehow concentrate the mind and
also simplify our goals in mathematics. Otherwise, we can
get very, very spread out and not sure what’s of value and
what’s not of value.

Raussen and Skau :Dowe have as good problems today
as when Hilbert formulated his twenty-three problems in
1900?

Wiles: I think so, yes.
Raussen and Skau : Which one do you think is the most

important problem today? And how does the Langlands
program fit in?

Wiles: Well, I think the Langlands program is the
broadest spectrum of problems related to my field. I
think that the Riemann Hypothesis is the single greatest
problem from the areas I understand. It is sometimes
hard to say exactly why that is, but I do believe that
solving it would actually help solve some of these other
problems. And then, of course, I have a very personal
attachment to the Birch and Swinnerton-Dyer Conjecture.

Raussen and Skau : Intuition can lead us astray some-
times. For example, Hilbert thought that the Riemann Hy-
pothesis would be solved in his lifetime. There was another
problem on his list, the seventh, that he never thought
would be solved in his lifetime, but which was solved by Gel-
fond [1906–1968] in 1934. So our intuition can be wrong.

Wiles: That is right. I’m not surprised that Hilbert
felt that way. The Riemann Hypothesis has such a clear
statement, and we have the analogue in the function field
setting. We understand why it is true there and we feel we
ought to be able to translate it. Of course, many people
have tried and failed. But I would still expect it to be
solved before the Birch and Swinnerton-Dyer Conjecture.

Investing in Mathematics
Raussen and Skau : Let’s hope we’ll find out in our life-
times!

Classical mathematics has, roughly speaking, two
sources: one of them coming from the physical sciences
and the other one from—let’s for simplicity call it num-
ber theoretical speculations, with number theory not
associated to applications.

That has changed. For example, your own field of ellip-
tic curves has been applied to cryptography and security.
People are making money with elliptic curves nowadays!
On the other hand, many sciences apart from physics
really take advantage and profit from mathematical
thinking and mathematical results. Progress in industry

nowadays often depends on mathematical modelling
and optimization methods. Science and industry propose
challenges to the mathematical world.

In a sense, mathematics has become more applied than
it ever was. One may ask whether this is a problem for
puremathematics. It appears that puremathematics some-
times is put to the sidelines, at least from the point of view
of the funding agencies. Do you perceive this as a serious
problem?

Wiles: Well, I think in comparison with the past, one
feels that mathematicians two, three hundred years ago
were able to handle a much broader spectrum of mathe-
matics, and a lot more of it touched applied mathematics
than a typical pure mathematician would do nowadays.
On the other hand, that might be because we only remem-
ber the very best and most versatile mathematicians from
the past.

I think it is always going to be a problem if funding
agencies are short-sighted. If they want to see a result
in three years, then it is not going to work. It is hard to
imagine a pure development and then the application all
happening within three to five years. It is probably not
going to happen.

On theother hand, I don’t believe you canhave ahappily
functioning applied maths world without the pure maths
to back it up, providing the future and keeping them on
the straight and narrow. So it would be very foolish not to
invest in pure mathematics. It is a bit like only investing
in energy resources that you can see now. You have to
invest in the future; you have to invest in fusion power
or solar power or these other things. You don’t just use
up what is there and then start worrying about it when it
is gone. It is the same with mathematics; you can’t just
use up the pure mathematics we have now and then start
worrying about it when you need a pure result to generate
your applications.

Mathematical Awards
Raussen and Skau : You have already won a lot of prizes
as a result of your achievements, culminating in proving
Fermat’s Last Theorem. You have won the Rolf Schock
Prize, given by the Swedish Academy; the Ostrowski Prize,
which was given to you in Denmark; the Fermat Prize in
France; the Wolf Prize in Israel; the Shaw Prize in Hong
Kong (the prize that has been named the Nobel Prize of
the East), and the list goes on, culminating with the Abel
Prize tomorrow. May we ask you whether you enjoy these
awards and the accompanying celebrations?

Wiles: I certainly love them, I have to say. I think they
are a celebration of mathematics. I think with something
like Fermat, it is something people are happy to see in
their lifetime. I would obviously be very happy to see the
Riemann Hypothesis solved. It is just exciting to see how
it finally gets resolved and just to understand the end
of the story—because a lot of these stories we won’t live
to see the end of. Each time we do see the end of such
a story, it is something we will naturally celebrate. For
me, I learned about the Fermat problem from this book
of E. T. Bell and about the Wolfskehl Prize attached to
it. The Wolfskehl Prize was still there—only just, I may

206 Notices of the AMS Volume 64, Number 3



say; I only had a few years left before the deadline for it
expired.

Raussen and Skau : This gives us the lead to talk a little
about that prize. The Wolfskehl Prize was founded in 1906
by Paul Wolfskehl [1856–1906], who was a German physi-
cian with an interest in mathematics. He bequeathed one
hundred thousand Reichmarks (equivalent to more than
one million dollars in today’s money) to the first person to
prove Fermat’s Last Theorem. The prize was, according to
the testament, valid until 13 September 2007 and you re-
ceived it in 1997. By then, due in part to the hyperinflation
Germany suffered after World War I, the prize money had
dwindled a lot.

Wiles: For me, the amount of money was unimportant.
It was the sentimental feeling attached to the Wolfskehl
Prize that was important for me.

Graduate Students
Raussen and Skau : You have had altogether twenty-one
PhD students and you have attracted very gifted students.
Some of them are really outstanding. One of them, Man-
jul Bhargava, won the Fields Medal in 2014. It must be a
pleasure to be advisor to such students.

Wiles: Yes, I don’t want to take too much credit for
it. In the case of Manjul, I suggested a problem to him,
but after that I had nothing much more to do. He was
coming up with these absolutely marvelous discoveries.
In some sense, you get more credit if you have very gifted
students, but the truth is that very gifted students don’t
really require that much help.

Raussen and Skau : What is the typical way for you of
interacting with graduate students?

Wiles: Well, I think the hardest thing to learn as a
graduate student is that afterwards you need to carry on
with the rest of your professional life; it’s hard to pick
problems. And if you just assign a problem and they do it,
in some sense that hasn’t given them terribly much. Okay,
they solved that problem, but the hard thing is then to
have to go off and find other problems! So I prefer it if we
come to a decision on the problem together.

I give them some initial idea and which area of mathe-
matics to look at, having not quite focused on the problem.
Then, as they start working and become experts, they can
see a better way of pinning down what the right question
is. And then they are part of the process of choosing
the problem. I think that is a much better investment for
their future. It doesn’t always work out that way, and
sometimes the problem you give them turns out to be the
right thing. But usually it is not that way and usually it’s
a process to find the right problem.

Hobbies and Interests
Raussen and Skau : We always end the Abel interviews by
asking the laureate what they enjoy doing when they are
not working with mathematics. What are your hobbies and
interests outside mathematics?

Wiles: Well, it varies at different times. When I was
doing Fermat and being a father with young children, that
combination was all-consuming.

I like to read and I like various kinds of literature:
novels, some biographies—it is fairly balanced. I don’t
have any other focused obsessions. When I was in school,
I played on chess teams and bridge teams, but when
I started to do serious mathematics, I completely lost
interest in those.

Raussen and Skau : What about music; are you fond of
music?

Wiles: I go and listen to concerts, but I am not
myself actively playing anything. I enjoy listening to
music—classical, preferably.

Raussen and Skau :Are you interested in other sciences
apart from mathematics?

Wiles: I would say somewhat. These are things I
do to relax, so I don’t like them to be too close to
mathematics. If it is something like animal behavior or
astrophysics or something from a qualitative point of
view—I certainly enjoy learning about those—likewise
about what machines are capable of, and many other
kinds of popular science, but I’m not going to spend my
time learning the details of string theory. I’m too focused
to be willing to do that. Not that I would not be interested,
but this is my choice.

Raussen and Skau : We would like to thank you very
much for this wonderful interview, first of all on behalf
of the two of us but also on behalf of the Norwegian, the
Danish, and the European Mathematical Societies. Thank
you so much!

Wiles: Thank you very much!
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Sidebar 1. Abel Prize Winners

2016: Andrew Wiles
2015: John Forbes Nash Jr. and Louis Nirenberg
2014: Yakov Sinai
2013: Pierre Deligne
2012: Endre Szemerédi
2011: John Milnor
2010: John Tate
2009: Mikhail Leonidovich Gromov
2008: John G. Thompson and Jacques Tits
2007: S. R. Srinivasa Varadhan
2006: Lennart Carleson
2005: Peter Lax
2004: Michael Atiyah and Isadore Singer
2003: Jean-Pierre Serre
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Sidebar 2. Notices articles on Wiles

July/August 1993: Wiles Proves Taniyama’s Conjecture; Fermat’s Last Theorem Follows, by
Kenneth A. Ribet, math.berkeley.edu/~ribet/Articles/notices.pdf
October 1993: Fermat Fest Draws a Crowd, by Allyn Jackson
October 1994: Another Step Toward Fermat, by Allyn Jackson, www.ams.org/notices/199501/
rubin.pdf
July 1995: The Proof of Fermat’s Last Theorem by R. Taylor and A. Wiles, by Gerd Faltings, www.
ams.org/notices/199507/faltings.pdf
July 1996: Wiles Receives NAS Award in Mathematics, by John Coates, www.ams.org/notices/
199607/comm-wiles.pdf
January 1997: Review of BBC’s Horizon Program, ”Fermat’s Last Theorem,” reviewed by Andrew
Granville, www.ams.org/notices/199701/comm-granville.pdf
March 1997: Announcement: 1997 Cole Prize, www.ams.org/notices/199703/comm-cole.pdf
November 1997: Paul Wolfskehl and the Wolfskehl Prize, by Klaus Barner, www.ams.org/
notices/199710/barner.pdf
November 1997: Book Review: Fermat’s Enigma by Simon Singh, reviewed by Allyn Jackson,
www.ams.org/notices/199710/comm-fermat.pdf
December 1999: Research News: A Proof of the Full Shimura-Taniyama-Weil Conjecture Is
Announced, by Henri Darmon, www.ams.org/notices/199911/comm-darmon.pdf
December 2001: Theater Review: Fermat’s Last Tango, reviewed by Robert Osserman, www.ams.
org/notices/200111/rev-osserman.pdf
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Andrew Wiles’s Marvelous Proof
Henri Darmon

Fermat famously claimed to have discovered “a
truly marvelous proof” of his Last Theorem,
which the margin of his copy of Diophantus’s
Arithmetica was too narrow to contain. While
this proof (if it ever existed) is lost to posterity,

Andrew Wiles’s marvelous proof has been public for over
two decades and has now earned him the Abel Prize.
According to the prize citation, Wiles merits this recogni-
tion “for his stunning proof of Fermat’s Last Theorem by
way of the modularity conjecture for semistable elliptic
curves, opening a new era in number theory.”

Few can remain insensitive to the allure of Fermat’s
Last Theorem, a riddle with roots in the mathematics

It is also a centerpiece
of the “Langlands
program,” the

imposing, ambitious
edifice of results and
conjectures which

has come to dominate
the number theorist’s

view of the world.

of ancient Greece,
simple enough
to be understood
and appreciated
by a novice
(like the ten-
year-old Andrew
Wiles browsing
the shelves of
his local pub-
lic library), yet
eluding the con-
certed efforts of
the most brilliant
minds for well
over three cen-
turies, becoming
over its long his-
tory the object of
lucrative awards
like theWolfskehl Prize and,more importantly,motivating
a cascade of fundamental discoveries: Fermat’smethod of
infinite descent, Kummer’s theory of ideals, the ABC con-
jecture, Frey’s approach to ternary diophantine equations,
Serre’s conjecture on mod 𝑝 Galois representations,….

Even without its seemingly serendipitous connection
to Fermat’s Last Theorem, Wiles’s modularity theorem
is a fundamental statement about elliptic curves (as evi-
denced, for instance, by the key role it plays in the proof

Henri Darmon is James McGill Professor of Mathematics at McGill
University and a member of CICMA (Centre Interuniversitaire en
Calcul Mathématique Algébrique) and CRM (Centre de Recherches
Mathématiques). His e-mail address is darmon@math.mcgill.ca.

This report is a very slightly expanded transcript of the Abel Prize
lecture delivered by the author on May 25, 2016, at the University
of Oslo.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1487

Wiles giving his first lecture in Princeton about his
approach to proving the Modularity Conjecture in
early 1994.

of Theorem 2 of Karl Rubin’s contribution in this volume).
It is also a centerpiece of the “Langlands program,” the
imposing, ambitious edifice of results and conjectures
which has come to dominate the number theorist’s view
of the world. This program has been described as a “grand
unified theory” of mathematics. Taking a Norwegian per-
spective, it connects the objects that occur in the works
of Niels Hendrik Abel, such as elliptic curves and their
associated Abelian integrals and Galois representations,
with (frequently infinite-dimensional) linear representa-
tions of the continuous transformation groups whose
study was pioneered by Sophus Lie. This report focuses
on the role of Wiles’s theorem and its “marvelous proof”
in the Langlands program in order to justify the closing
phrase in the prize citation: howWiles’s proof has opened
“a new era in number theory” and continues to have a
profound and lasting impact on mathematics.

Our “beginner’s tour” of the Langlands program will
only give a partial and undoubtedly biased glimpse of
the full panorama, reflecting the author’s shortcomings
as well as the inherent limitations of a treatment aimed
at a general readership. We will motivate the Langlands
program by starting with a discussion of diophantine
equations: for the purposes of this exposition, they are
equations of the form
(1) 𝒳 ∶ 𝑃(𝑥1,… , 𝑥𝑛+1) = 0,
where 𝑃 is a polynomial in the variables 𝑥1,… , 𝑥𝑛+1
with integer (or sometimes rational) coefficients. One can
examine the set, denoted 𝒳(𝐹), of solutions of (1) with
coordinates in any ring 𝐹. As we shall see, the subject
draws much of its fascination from the deep and subtle
ways in which the behaviours of different solution sets
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can resonate with each other, even if the sets 𝒳(ℤ) or
𝒳(ℚ) of integer and rational solutions are foremost in
our minds. Examples of diophantine equations include
Fermat’s equation 𝑥𝑑 + 𝑦𝑑 = 𝑧𝑑, the Brahmagupta–Pell
equation 𝑥2−𝐷𝑦2 = 1with𝐷 > 0, as well as elliptic curve
equations of the form 𝑦2 = 𝑥3 +𝑎𝑥+𝑏, in which 𝑎 and 𝑏
are rational parameters, the solutions (𝑥, 𝑦) with rational
coordinates being the object of interest in the latter case.

It canbe instructive to approachadiophantine equation
by first studying its solutions over simpler rings, such as
the complete fields of real or complex numbers. The set
(2) ℤ/𝑛ℤ ∶= {0, 1,… ,𝑛 − 1}
of remainders after division by an integer 𝑛 ≥ 2, equipped
with its natural laws of addition, subtraction, and mul-
tiplication, is another particularly simple collection of
numbers of finite cardinality. If 𝑛 = 𝑝 is prime, this ring
is even a field: it comes equipped with an operation of
division by nonzero elements, just like the more familiar
collections of rational, real, or complex numbers. The fact
that 𝔽𝑝 ∶= ℤ/𝑝ℤ is a field is an algebraic characterisation
of the primes that forms the basis for most known ef-
ficient primality tests and factorisation algorithms. One
of the great contributions of Evariste Galois, in addition
to the eponymous theory which plays such a crucial role
in Wiles’s work, is his discovery of a field of cardinality
𝑝𝑟 for any prime power 𝑝𝑟. This field, denoted 𝔽𝑝𝑟 and
sometimes referred to as the Galois field with 𝑝𝑟 elements,
is even unique up to isomorphism.

For a diophantine equation 𝒳 as in (1), the most basic
invariant of the set

(3) 𝒳(𝔽𝑝𝑟) ∶= { (𝑥1,… , 𝑥𝑛+1) ∈ 𝔽𝑛+1
𝑝𝑟 such that

𝑃(𝑥1,… , 𝑥𝑛+1) = 0 }

of solutions over 𝔽𝑝𝑟 is of course its cardinality

(4) 𝑁𝑝𝑟 ∶= #𝒳(𝔽𝑝𝑟).
What patterns (if any) are satisfied by the sequence
(5) 𝑁𝑝,𝑁𝑝2 ,𝑁𝑝3 ,… ,𝑁𝑝𝑟 ,…?
This sequence can be packaged into a generating series
like

(6)
∞
∑
𝑟=1

𝑁𝑝𝑟𝑇𝑟 or
∞
∑
𝑟=1

𝑁𝑝𝑟

𝑟 𝑇𝑟.

For technical reasons it is best to consider the exponential
of the latter:

(7) 𝜁𝑝(𝒳;𝑇) ∶= exp(
∞
∑
𝑟=1

𝑁𝑝𝑟

𝑟 𝑇𝑟) .

This power series in 𝑇 is known as the zeta function
of 𝒳 over 𝔽𝑝. It has integer coefficients and enjoys the
following remarkable properties:

(1) It is a rational function in 𝑇:

(8) 𝜁𝑝(𝒳;𝑇) = 𝑄(𝑇)
𝑅(𝑇) ,

where𝑄(𝑇) and 𝑅(𝑇) are polynomials in 𝑇whose
degrees (for all but finitely many 𝑝) are inde-
pendent of 𝑝 and determined by the shape—the
complex topology—of the set 𝒳(ℂ) of complex
solutions;

(2) the reciprocal roots of𝑄(𝑇) and𝑅(𝑇) are complex
numbers of absolute value 𝑝𝑖/2 with 𝑖 an integer
in the interval 0 ≤ 𝑖 ≤ 2𝑛.

The first statement—the rationality of the zeta function,
which was proved by Bernard Dwork in the early 1960s—
is a key part of the Weil conjectures, whose formulation
in the 1940s unleashed a revolution in arithmetic ge-
ometry, driving the development of étale cohomology
by Grothendieck and his school. The second statement,
which asserts that the complex function 𝜁𝑝(𝒳;𝑝−𝑠) has
its roots on the real lines ℜ(𝑠) = 𝑖/2 with 𝑖 as above,
is known as the Riemann hypothesis for the zeta func-
tions of diophantine equations over finite fields. It was
proved by Pierre Deligne in 1974 and is one of the major
achievements for which he was awarded the Abel Prize in
2013.

That the asymptotic behaviour of 𝑁𝑝 can lead to deep
insights into the behaviour of the associated diophantine
equations is one of the key ideas behind the Birch and
Swinnerton-Dyer conjecture. Understanding the patterns
satisfied by the function
(9) 𝑝 ↦ 𝑁𝑝 or 𝑝 ↦ 𝜁𝑝(𝒳;𝑇)
as the prime 𝑝 varies will also serve as our motivating
question for the Langlands program.

It turns out to be fruitful to package the zeta functions
over all the finite fields into a single function of a complex
variable 𝑠 by taking the infinite product
(10) 𝜁(𝒳; 𝑠) = ∏

𝑝
𝜁𝑝(𝒳;𝑝−𝑠)

as 𝑝 ranges over all the prime numbers. In the case of the
simplest nontrivial diophantine equation 𝑥 = 0, whose
solution set over 𝔽𝑝𝑟 consists of a single point, one has
𝑁𝑝𝑟 = 1 for all 𝑝, and therefore

(11) 𝜁𝑝(𝑥 = 0;𝑇) = exp(∑
𝑟≥1

𝑇𝑟

𝑟 ) = (1 −𝑇)−1.

It follows that

𝜁(𝑥 = 0; 𝑠) = ∏
𝑝

(1− 1
𝑝𝑠)

−1
(12)

= ∏
𝑝

(1+ 1
𝑝𝑠 + 1

𝑝2𝑠 + 1
𝑝3𝑠 +⋯)(13)

=
∞
∑
𝑛=1

1
𝑛𝑠 = 𝜁(𝑠).(14)

The zeta function of even the humblest diophantine
equation is thus a central object of mathematics: the
celebrated Riemann zeta function, which is tied to some
of the deepest questions concerning the distribution of
prime numbers. In his great memoir of 1860, Riemann
proved that, even though (13) and (14) only converge
absolutely on the right half-plane ℜ(𝑠) > 1, the function
𝜁(𝑠) extends to a meromorphic function of 𝑠 ∈ ℂ (with a
single pole at 𝑠 = 1) and possesses an elegant functional
equation relating its values at 𝑠 and 1 − 𝑠. The zeta
functions of linear equations 𝒳 in 𝑛+1 variables are just
shifts of the Riemann zeta function, since 𝑁𝑝𝑟 is equal to
𝑝𝑛𝑟, and therefore 𝜁(𝒳; 𝑠) = 𝜁(𝑠 − 𝑛).
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Moving on to equations of degree two, the general
quadratic equation in one variable is of the form 𝑎𝑥2+𝑏𝑥+
𝑐 = 0, and its behaviour is governed by its discriminant

(15) Δ ∶= 𝑏2 − 4𝑎𝑐.
This purely algebraic fact remains true over the finite
fields, and for primes 𝑝 ∤ 2𝑎Δ one has

(16) 𝑁𝑝 = { 0 if Δ is a nonsquare modulo 𝑝,
2 if Δ is a square modulo 𝑝.

A priori, the criterion for whether 𝑁𝑝 = 2 or 0—whether
the integer Δ is or is not a quadratic residue modulo
𝑝—seems like a subtle condition on the prime 𝑝. To get
a better feeling for this condition, consider the example
of the equation 𝑥2 − 𝑥 − 1, for which Δ = 5. Calculating
whether 5 is a square or not modulo 𝑝 for the first few
primes 𝑝 ≤ 101 leads to the following list:
(17)

𝑁𝑝={2 for 𝑝=11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101,…
0 for 𝑝=2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73,…

A clear pattern emerges from this experiment: whether
𝑁𝑝 = 0 or 2 seems to depend only on the rightmost digit
of 𝑝, i.e., on what the remainder of 𝑝 is modulo 10. One
is led to surmise that

(18) 𝑁𝑝 = { 2 if 𝑝 ≡ 1, 4 (mod 5),
0 if 𝑝 ≡ 2, 3 (mod 5),

a formula that represents a dramatic improvement over
(16), allowing a much more efficient calculation of 𝑁𝑝 for
example. The guess in (18) is in fact a consequence of
Gauss’s celebrated law of quadratic reciprocity:

Theorem (Quadratic reciprocity). For any equation 𝑎𝑥2+
𝑏𝑥+𝑐, withΔ ∶= 𝑏2−4𝑎𝑐, the value of the function 𝑝 ↦ 𝑁𝑝
(for 𝑝 ∤ 𝑎Δ) depends only on the residue class of 𝑝 modulo
4Δ and hence is periodic with period length dividing 4|Δ|.

The repeating pattern satisfied by the 𝑁𝑝’s as 𝑝 varies
greatly facilitates the manipulation of the zeta functions
of quadratic equations. For example, the zeta function of
𝒳 ∶ 𝑥2 − 𝑥− 1 = 0 is equal to

𝜁(𝒳; 𝑠) = 𝜁(𝑠)×{(1− 1
2𝑠 −

1
3𝑠 +

1
4𝑠)+(1

6𝑠 −
1
7𝑠 −

1
8𝑠 +

1
9𝑠)

+ (1 1
11𝑠 −

1
12𝑠 −

1
13𝑠 +

1
14𝑠)+⋯} .(19)

The series that occurs on the right-hand side is a prototyp-
ical example of a Dirichlet 𝐿-series. These 𝐿-series, which
are the key actors in the proof of Dirichlet’s theorem on
the infinitude of primes in arithmetic progressions, enjoy
many of the same analytic properties as the Riemann zeta
function: an analytic continuation to the entire complex
plane and a functional equation relating their values at 𝑠
and 1−𝑠. They are also expected to satisfy a Riemann hy-
pothesis which generalises Riemann’s original statement
and is just as deep and elusive.

It is a (not completely trivial) fact that the zeta function
of the general quadratic equation in 𝑛 variables

(20)
𝑛
∑

𝑖,𝑗=1
𝑎𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛
∑
𝑖=1

𝑏𝑖𝑥𝑖 + 𝑐 = 0

involves the same basic constituents, Dirichlet series,
as in the one-variable case. This means that quadratic
diophantine equations in any number of variables are
well understood, at least as far as their zeta functions are
concerned.

The plot thickens when equations of higher degree
are considered. Consider for instance the cubic equation
𝑥3 − 𝑥 − 1 of discriminant Δ = −23. For all 𝑝 ≠ 23,
this cubic equation has no multiple roots over 𝔽𝑝𝑟 , and
therefore 𝑁𝑝 = 0, 1, or 3. A simple expression for 𝑁𝑝 in
this case is given by the following theorem of Hecke:

Theorem (Hecke). The following hold for all primes 𝑝 ≠
23:

(1) If 𝑝 is not a square modulo 23, then 𝑁𝑝 = 1.
(2) If 𝑝 is a square modulo 23, then

(21) 𝑁𝑝 = { 0 if 𝑝 = 2𝑎2 +𝑎𝑏+ 3𝑏2,
3 if 𝑝 = 𝑎2 +𝑎𝑏+ 6𝑏2,

for some 𝑎,𝑏 ∈ ℤ.
Hecke’s theorem implies that

𝜁(𝑥3 − 𝑥− 1; 𝑠) = 𝜁(𝑠) ×
∞
∑
𝑛=1

𝑎𝑛𝑛−𝑠,(22)

where the generating series
(23)
𝐹(𝑞)∶=∑𝑎𝑛𝑞𝑛 = 𝑞−𝑞2−𝑞3+𝑞6+𝑞8−𝑞13−𝑞16+𝑞23+⋯
is given by the explicit formula

(24) 𝐹(𝑞) = 1
2
⎛
⎝

∑
𝑎,𝑏∈ℤ

𝑞𝑎2+𝑎𝑏+6𝑏2 −𝑞2𝑎2+𝑎𝑏+3𝑏2⎞
⎠
.

The function 𝑓(𝑧) = 𝐹(𝑒2𝜋𝑖𝑧) that arises by setting 𝑞 =
𝑒2𝜋𝑖𝑧 in (24) is a prototypical example of a modular form:
namely, it satisfies the transformation rule
(25)

𝑓(𝑎𝑧+ 𝑏
𝑐𝑧+ 𝑑) = (𝑐𝑧+𝑑)𝑓(𝑧), {𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑− 𝑏𝑐 = 1

23|𝑐, ( 𝑎
23) = 1.

under so-calledmodular substitutionsof the form𝑧↦ 𝑎𝑧+𝑏
𝑐𝑧+𝑑 .

This property follows from the Poisson summation for-
mula applied to the expression in (24). Thanks to (25), the
zeta function of𝒳 can bemanipulated with the same ease
as the zeta functions of Riemann and Dirichlet. Indeed,
Hecke showed that the 𝐿-series ∑∞

𝑛=1 𝑎𝑛𝑛−𝑠 attached to
a modular form ∑∞

𝑛=1 𝑎𝑛𝑒2𝜋𝑖𝑛𝑧 possesses very similar an-
alytic properties, notably an analytic continuation and a
Riemann-style functional equation.

The generating series 𝐹(𝑞) can also be expressed as an
infinite product:
(26)
1
2
⎛
⎝

∑
𝑎,𝑏∈ℤ

𝑞𝑎2+𝑎𝑏+6𝑏2 −𝑞2𝑎2+𝑎𝑏+3𝑏2⎞
⎠
=𝑞

∞
∏
𝑛=1

(1−𝑞𝑛)(1−𝑞23𝑛).

The first few terms of this power series identity can readily
be verified numerically, but its proof is highly nonobvious
and indirect. It exploits the circumstance that the space of
holomorphic functions of 𝑧 satisfying the transformation
rules (25) togetherwith suitable growthproperties is a one-
dimensional complex vector space which also contains
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the infinite product above. Indeed, the latter is equal to
𝜂(𝑞)𝜂(𝑞23), where

(27) 𝜂(𝑞) = 𝑞1/24
∞
∏
𝑛=1

(1 − 𝑞𝑛)

is the Dedekind eta function whose logarithmic derivative
(after viewing 𝜂 as a function of 𝑧 through the change of
variables 𝑞 = 𝑒2𝜋𝑖𝑧) is given by

𝜂′(𝑧)
𝜂(𝑧) = −𝜋𝑖(−1

12 + 2
∞
∑
𝑛=1

(∑
𝑑|𝑛

𝑑)𝑒2𝜋𝑖𝑛𝑧)(28)

= 𝑖
4𝜋

∞
∑

𝑚=−∞

∞
∑

𝑛=−∞

1
(𝑚𝑧+ 𝑛)2 ,(29)

where the term attached to (𝑚,𝑛) = (0, 0) is excluded
from the last sum. The Dedekind 𝜂-function is also
connected to the generating series for the partition
function 𝑝(𝑛) describing the number of ways in which
𝑛 can be expressed as a sum of positive integers via the
identity

(30) 𝜂−1(𝑞) = 𝑞−1/24
∞
∑
𝑛=0

𝑝(𝑛)𝑞𝑛,

“There are five
elementary
arithmetical
operations:
addition,

subtraction,
multiplication,
division,…and

modular forms.”

which plays a starring
role alongside Jeremy
Irons and Dev Patel in
a recent film about
the life of Srinivasa
Ramanujan.

Commenting on the
“unreasonable effec-
tiveness and ubiquity
of modular forms,”
Martin Eichler once
wrote, “There are
five elementary arith-
metical operations:
addition, subtraction,
multiplication, divi-
sion,…and modular
forms.” Equations (26),
(29), and (30) are just a
few of the many won-

drous identities which abound, like exotic strains of
fragrant wild orchids, in what Roger Godement has called
the “garden of modular delights.”

The example above and many others of a similar type
are described in Jean-Pierre Serre’s delightful monograph
[Se], touching on themes that were also covered in Serre’s
lecture at the inaugural Abel Prize ceremony in 2003.

Heckewas able to establish that all cubic polynomials in
one variable aremodular; i.e., the coefficients of their zeta
functions obey patterns just like those of (24) and (25).
Wiles’s achievement was to extend this result to a large
class of cubic diophantine equations in two variables over
the rational numbers: the elliptic curve equations which
can be brought to the form

(31) 𝑦2 = 𝑥3 +𝑎𝑥+ 𝑏

after a suitable change of variables and which are non-
singular, a condition equivalent to the assertion that the
discriminant Δ ∶= −16(4𝑎3 + 27𝑏2) is nonzero.

To illustrate Wiles’s theorem with a concrete example,
consider the equation
(32) 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥,
of discriminant Δ = 64. After setting
(33)
𝜁(𝐸; 𝑠) = 𝜁(𝑠−1)×(𝑎1 +𝑎22−𝑠 +𝑎33−𝑠 +𝑎44−𝑠 +⋯)−1 ,
the associated generating series satisfies the following
identities reminiscent of (24) and (26):

𝐹(𝑞) = ∑𝑎𝑛𝑞𝑛 = 𝑞− 2𝑞5 −3𝑞9 + 6𝑞13 +2𝑞17 −𝑞25 +⋯

(34)

= ∑
𝑎,𝑏

𝑎 ⋅ 𝑞(𝑎2+𝑏2)(35)

= 𝑞
∞
∏
𝑛=1

(1 − 𝑞4𝑛)2(1 − 𝑞8𝑛)2,(36)

where the sum in (35) runs over the (𝑎, 𝑏) ∈ ℤ2 for which
the Gaussian integer 𝑎 + 𝑏𝑖 is congruent to 1 modulo
(1+𝑖)3. (This identity follows fromDeuring’s study of zeta
functions of elliptic curves with complex multiplication
and may even have been known earlier.) Once again, the
holomorphic function 𝑓(𝑧) ∶= 𝐹(𝑒2𝜋𝑖𝑧) is a modular form
satisfying the slightly different transformation rule
(37)

𝑓(𝑎𝑧+ 𝑏
𝑐𝑧+ 𝑑) = (𝑐𝑧+𝑑)2𝑓(𝑧), {𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑 − 𝑏𝑐 = 1,

32|𝑐.
Note the exponent 2 that appears in this formula. Because
of it, the function 𝑓(𝑧) is said to be a modular form of
weight 2 and level 32. The modular forms of (25) attached
to cubic equations in one variable are of weight 1, but
otherwise the parallel of (35) and (36) with (24) and (26)
is striking. The original conjecture of Shimura–Taniyama,
and Weil asserts the same pattern for all elliptic curves:

Conjecture (Shimura–Taniyama–Weil). Let 𝐸 be any ellip-
tic curve. Then

(38) 𝜁(𝐸; 𝑠) = 𝜁(𝑠 − 1) × (
∞
∑
𝑛=1

𝑎𝑛𝑛−𝑠)
−1

,

where 𝑓𝐸(𝑧) ∶= ∑𝑎𝑛𝑒2𝜋𝑖𝑛𝑧 is a modular form of weight 2.
The conjecturewas actuallymore precise andpredicted

that the level of 𝑓𝐸—i.e., the integer that appears in the
transformation property for 𝑓𝐸 as the integers 23 and 32
in (25) and (37) respectively—is equal to the arithmetic
conductor of 𝐸. This conductor, which is divisible only by
primes forwhich the equationdefining𝐸becomessingular
modulo 𝑝, is a measure of the arithmetic complexity of
𝐸 and can be calculated explicitly from an equation for
𝐸 by an algorithm of Tate. An elliptic curve is said to be
semistable if its arithmetic conductor is squarefree. This
class of elliptic curves includes those of the form
(39) 𝑦2 = 𝑥(𝑥 − 𝑎)(𝑥 − 𝑏)
with gcd(𝑎, 𝑏) = 1 and 16|𝑏. The most famous elliptic
curves in this class are those that ultimately do not exist:
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Andrew Wiles, Henri Darmon, and Mirela Çiperiani in
June 2016 at Harvard University during a conference
in honor of Karl Rubin’s sixtieth birthday.

the “Frey curves” 𝑦2 = 𝑥(𝑥 − 𝑎𝑝)(𝑥 + 𝑏𝑝) arising from
putative solutions to Fermat’s equation 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝,
whose nonexistence had previously been established in a
landmark article of Kenneth Ribet1 under the assumption
of their modularity. It is the proof of the Shimura–
Taniyama–Weil conjecture for semistable elliptic curves
that earned Andrew Wiles the Abel Prize:

Theorem (Wiles). Let 𝐸 be a semistable elliptic curve. Then
𝐸 satisfies the Shimura–Taniyama–Weil conjecture.

The semistability assumption in Wiles’s theorem was
later removed by Christophe Breuil, Brian Conrad, Fred
Diamond, and Richard Taylor around 1999. (See, for
instance, the account [Da] that appeared in the Notices at
the time.)

As a prelude to describing some of the important ideas
in its proof, one must first try to explain why Wiles’s
theorem occupies such a central position in mathematics.
The Langlands program places it in a larger context
by offering a vast generalisation of what it means for
a diophantine equation to be “associated to a modular
form.” The key is to viewmodular forms attached to cubic
equations or to elliptic curves as in (24) or (34) as vectors
in certain irreducible infinite-dimensional representations
of the locally compact topological group
(40) GL2(𝔸ℚ) = ∏ ′

𝑝GL2(ℚ𝑝) ×GL2(ℝ)
(where ∏′

𝑝 denotes a restricted direct product over all
the prime numbers consisting of elements (𝛾𝑝)𝑝 for
which the 𝑝th component 𝛾𝑝 belongs to the maximal

1See the interview with Ribet as the new AMS president in this
issue, page 229.

compact subgroup GL2(ℤ𝑝) for all but finitely many 𝑝).
The shift in emphasis frommodular forms to the so-called
automorphic representations which they span is decisive.
Langlands showed how to attach an 𝐿-function to any
irreducible automorphic representation of 𝐺(𝔸ℚ) for an
arbitrary reductive algebraic group𝐺, of which the matrix
groups GL𝑛 and more general algebraic groups of Lie
type are prototypical examples. This greatly enlarges the
notion of what it means to be “modular”: a diophantine
equation is now said to have this property if its zeta
function can be expressed in terms of the Langlands 𝐿-
functions attached to automorphic representations. One
of the fundamental goals in the Langlands program is to
establish further cases of the following conjecture:
Conjecture. All diophantine equations are modular in the
above sense.

This conjecture can be viewed as a far-reaching gen-
eralisation of quadratic reciprocity and underlies the
non-Abelian reciprocity laws that are at the heart of
Andrew Wiles’s achievement.

Before Wiles’s proof, the following general classes of
diophantine equations were known to be modular:
• Quadratic equations, by Gauss’s law of quadratic

reciprocity;
• Cubic equations in one variable, by the work of Hecke

and Maass;
• Quartic equations in one variable.
This last case deserves further comment, since it has
not been discussed previously and plays a primordial
role in Wiles’s proof. The modularity of quartic equations
follows from the seminal work of Langlands and Tunnell.
While it is beyond the scope of this survey to describe
their methods, it must be emphasised that Langlands and
Tunnell make essential use of the solvability by radicals of
the general quartic equation, whose underlying symmetry
group is contained in thepermutationgroup𝑆4 on4 letters.
Solvable extensions are obtained from a succession of
Abelian extensions, which fall within the purview of the
class field theory developed in the nineteenth and first
half of the twentieth century. On the other hand, the
modularity of the general equation of degree > 4 in one
variable, which cannot be solved by radicals, seemed to
lie well beyond the scope of the techniques that were
available in the “pre-Wiles era.” The readerwhoperseveres
to the end of this essay will be given a glimpse of how
our knowledge of the modularity of the general quintic
equation has progressed dramatically in the wake of
Wiles’s breakthrough.

Prior to Wiles’s proof, modularity was also not known
for any interesting general class of equations (of degree
> 2, say) in more than one variable; in particular it had
only been verified for finitely many elliptic curves over ℚ
up to isomorphism over ℚ̄ (including the elliptic curves
over ℚ with complex multiplication, of which the elliptic
curve of (31) is an instance.) Wiles’s modularity theorem
confirmed the Langlands conjectures in the important
test case of elliptic curves, which may seem like (and, in
fact, are) very special diophantine equations, but have
provided a fertile terrain for arithmetic investigations,

March 2017 Notices of the AMS 213



both in theory and in applications (cryptography, coding
theory…).

Wiles’s proof is
also important

for having
introduced a
revolutionary
new approach

which has
opened the

floodgates for
many further
breakthroughs
in the Langlands

program.

Returning to the main
theme of this report,
Wiles’sproof is also impor-
tant for having introduced
a revolutionary new ap-
proach which has opened
the floodgates for many
further breakthroughs in
the Langlands program.

To expand on this
point, we need to present
another of the dramatis
personae in Wiles’s proof:
Galois representations. Let
𝐺ℚ = Gal(ℚ̄/ℚ) be the
absolute Galois group of
ℚ, namely, the automor-
phism group of the field
of all algebraic numbers.
It is a profinite group,
endowed with a natu-
ral topology for which
the subgroups Gal(ℚ̄/𝐿)
with 𝐿 ranging over the
finite extensions of ℚ
form a basis of open
subgroups. Following the

original point of view taken by Galois himself, the group
𝐺ℚ acts naturally as permutations on the roots of poly-
nomials with rational coefficients. Given a finite set 𝑆 of
primes, one may consider only the monic polynomials
with integer coefficients whose discriminant is divisible
only by primes ℓ ∈ 𝑆 (eventually after a change of vari-
ables). The topological group 𝐺ℚ operates on the roots of
such polynomials through a quotient, denoted 𝐺ℚ,𝑆—the
automorphism group of the maximal algebraic extension
unramified outside 𝑆, which can be regarded as the sym-
metry group of all the zero-dimensional varieties over ℚ
having “nonsingular reduction outside 𝑆.”

In addition to the permutation representations of 𝐺ℚ
that were so essential in Galois’s original formulation
of his theory, it has become important to study the
(continuous) linear representations

(41) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ 𝐺𝐿𝑛(𝐿)
of this Galois group, where 𝐿 is a complete field, such as
the fields ℝ or ℂ of real or complex numbers, the finite
field 𝔽ℓ𝑟 equipped with the discrete topology, or a finite
extension 𝐿 ⊂ ℚ̄ℓ of the field ℚℓ of ℓ-adic numbers.

Galois representations were an important theme in the
work of Abel and remain central in modern times. Many
illustrious mathematicians in the twentieth century have
contributed to their study, including three former Abel
Prize winners: Jean-Pierre Serre, John Tate, and Pierre
Deligne. Working on Galois representations might seem
to be a prerequisite for an algebraic number theorist to
receive the Abel Prize!

Likediophantine equations,Galois representationsalso
give rise to analogous zeta functions. More precisely, the
group𝐺ℚ,𝑆 contains, for eachprime𝑝 ∉ 𝑆, a distinguished
element called the Frobenius element at 𝑝, denoted 𝜎𝑝.
Strictly speaking, this element is well defined only up
to conjugacy in 𝐺ℚ,𝑆, but this is enough to make the
arithmetic sequence
(42) 𝑁𝑝𝑟(𝜚) ∶= Trace(𝜚(𝜎𝑟

𝑝))
well defined. The zeta function 𝜁(𝜚; 𝑠) packages the
information from this sequence in exactly the same way
as in the definition of 𝜁(𝒳; 𝑠).

For example, if 𝒳 is attached to a polynomial 𝑃 of
degree 𝑑 in one variable, the action of 𝐺ℚ,𝑆 on the
roots of 𝑃 gives rise to a 𝑑-dimensional permutation
representation
(43) 𝜚𝒳 ∶ 𝐺ℚ,𝑆 ⟶ GL𝑑(ℚ),
and 𝜁(𝒳, 𝑠) = 𝜁(𝜚𝒳, 𝑠). This connection goes far deeper,
extending to diophantine equations in 𝑛+1 variables for
general 𝑛 ≥ 0. The glorious insight at the origin of the
Weil conjectures is that 𝜁(𝒳; 𝑠) can be expressed in terms
of the zeta functions of Galois representations arising
in the étale cohomology of 𝒳, a cohomology theory with
ℓ-adic coefficients which associates to 𝒳 a collection

{𝐻𝑖
et(𝒳/ℚ̄,ℚℓ)}0≤𝑖≤2𝑛

of finite-dimensional ℚℓ-vector spaces endowed with a
continuous linear action of 𝐺ℚ,𝑆. (Here 𝑆 is the set of
primes 𝑞 consisting of ℓ and the primes for which the
equation of 𝒳 becomes singular after being reduced
modulo 𝑞.) These representations generalise the repre-
sentation 𝜚𝒳 of (43), insofar as the latter is realised by
the action of 𝐺ℚ,𝑆 on 𝐻0

et(𝒳ℚ̄,ℚℓ) after extending the
coefficients from ℚ to ℚℓ.

Theorem (Weil, Grothendieck,…). If 𝒳 is a diophantine
equation having good reduction outside 𝑆, there exist Ga-
lois representations 𝜚1 and 𝜚2 of 𝐺ℚ,𝑆 for which

(44) 𝜁(𝒳; 𝑠) = 𝜁(𝜚1; 𝑠)/𝜁(𝜚2; 𝑠).
The representations 𝜚1 and 𝜚2 occur in ⊕𝐻𝑖

et(𝒳/ℚ̄,ℚℓ),
where the direct sum ranges over the odd and even values
of 0 ≤ 𝑖 ≤ 2𝑛 for 𝜚1 and 𝜚2 respectively. More canonically,
there are always irreducible representations 𝜚1,… ,𝜚𝑡 of
𝐺ℚ,𝑠 and integers 𝑑1,…𝑑𝑡 such that

(45) 𝜁(𝒳; 𝑠) =
𝑡
∏
𝑖=1

𝜁(𝜚𝑖; 𝑠)𝑑𝑖 ,

arising from the decompositions of the (semisimplifi-
cation of the) 𝐻𝑖

et(𝒳ℚ̄,ℚℓ) into a sum of irreducible
representations. The 𝜁(𝜚𝑖, 𝑠) can be viewed as the
“atomic constituents” of 𝜁(𝒳, 𝑠) and reveal much of
the “hidden structure” in the underlying equation. The de-
composition of 𝜁(𝒳; 𝑠) into a product of different 𝜁(𝜚𝑖; 𝑠)
is not unlike the decomposition of a wave function into
its simple harmonics.

A Galois representation is said to bemodular if its zeta
function can be expressed in terms of generating series
attached to modular forms and automorphic representa-
tions and is said to be geometric if it can be realised in
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an étale cohomology group of a diophantine equation as
above. The “main conjecture of the Langlands program”
can now be amended as follows:

Conjecture. All geometric Galois representations of 𝐺ℚ,𝑆
are modular.

Given a Galois representation
(46) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL𝑛(ℤℓ)
with ℓ-adic coefficients, one may consider the resulting
mod ℓ representation
(47) ̄𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL𝑛(𝔽ℓ).
The passage from 𝜚 to ̄𝜚 amounts to replacing the
quantities 𝑁𝑝𝑟(𝜚) ∈ ℤℓ as 𝑝𝑟 ranges over all the prime

Since then,
“modularity lifting
theorems” have
proliferated, and
their study, in ever
more general and
delicate settings,
has spawned an

industry.

powers with their
mod ℓ reduction.
Such a passage would
seem rather contrived
for the sequences
𝑁𝑝𝑟(𝒳)—why study
the solution counts of
a diophantine equa-
tion over different
finite fields, taken
modulo ℓ?—if one
did not know a pri-
ori that these counts
arise from ℓ-adic Ga-
lois representations
with coefficients in ℤℓ.
There is a correspond-
ing notion of what it
means for ̄𝜚 to bemod-
ular, namely, that the
data of 𝑁𝑝𝑟( ̄𝜚) agrees, very loosely speaking, with the
mod ℓ reduction of similar data arising from an automor-
phic representation. We can now state Wiles’s celebrated
modularity lifting theorem, which lies at the heart of his
strategy:

Wiles’s Modularity Lifting Theorem. Let

(48) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℤℓ)
be an irreducible geometric Galois representation satisfy-
ing a few technical conditions (involving, for the most part,
the restriction of 𝜚 to the subgroup 𝐺ℚℓ = Gal(ℚ̄ℓ/ℚℓ) of
𝐺ℚ,𝑆). If ̄𝜚 is modular and irreducible, then so is 𝜚.

This stunning result was completely new at the time:
nothing remotely like it had ever beenprovedbefore! Since
then, “modularity lifting theorems” have proliferated, and
their study, in evermore general and delicate settings, has
spawned an industry and led to a plethora of fundamental
advances in the Langlands program.

Let us first explain how Wiles himself parlays his
original modularity lifting theorem into a proof of the
Shimura–Taniyama-Weil conjecture for semistable elliptic
curves. Given such an elliptic curve 𝐸, consider the groups
(49)
𝐸[3𝑛] ∶= {𝑃 ∈ 𝐸(ℚ̄) ∶ 3𝑛𝑃 = 0} , 𝑇3(𝐸) ∶= lim

←
𝐸[3𝑛],

the inverse limit being taken relative to the multiplication-
by-3 maps. The groups 𝐸[3𝑛] and 𝑇3(𝐸) are free modules
of rank 2 over (ℤ/3𝑛ℤ) and ℤ3 respectively and are
endowed with continuous linear actions of 𝐺ℚ,𝑆, where 𝑆
is a set of primes containing 3 and the primes that divide
the conductor of 𝐸. One obtains the associated Galois
representations:

(50)
̄𝜚𝐸,3 ∶ 𝐺ℚ,𝑆 ⟶ Aut(𝐸[3]) ≃ GL2(𝔽3),

𝜚𝐸,3 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℤ3).
The theorem of Langlands and Tunnell about themodular-
ity of the general quartic equation leads to the conclusion
that ̄𝜚𝐸,3 is modular. This rests on the happy circumstance
that
(51) GL2(𝔽3)/⟨±1⟩ ≃ 𝑆4,
and hence that 𝐸[3] has essentially the same symmetry
group as the general quartic equation! The isomorphism
in (51) can be realised by considering the action ofGL2(𝔽3)
on the set {0, 1, 2,∞} of points on the projective line over
𝔽3.

If 𝐸 is semistable, Wiles is able to check that both
𝜚𝐸,3 and ̄𝜚𝐸,3 satisfy the conditions necessary to apply
the Modularity Lifting Theorem, at least when ̄𝜚𝐸,3 is
irreducible. It then follows that 𝜚𝐸,3 is modular, and
therefore so is 𝐸, since 𝜁(𝐸; 𝑠) and 𝜁(𝜚𝐸,3; 𝑠) are the same.

Note the key role played by the result of Langlands–
Tunnell in the above strategy. It is a dramatic illustration
fo the unity and historical continuity of mathematics that
the solution in radicals of the general quartic equation,
one of the great feats of the algebraists of the Italian
Renaissance, is preciselywhat allowed Langlands, Tunnell,
and Wiles to prove their modularity results more than
five centuries later.

Having established the modularity of all semistable el-
liptic curves 𝐸 for which ̄𝜚𝐸,3 is irreducible, Wiles disposes
of the others by applying his lifting theorem to the prime
ℓ = 5 instead of ℓ = 3. The Galois representation ̄𝜚𝐸,5 is
always irreducible in this setting, because no elliptic curve
overℚ can have a rational subgroup of order 15. Nonethe-
less, the approach of exploiting ℓ = 5 seems hopeless
at first glance, because the Galois representation 𝐸[5] is
not known to be modular a priori, for much the same
reason that the general quintic equation cannot be solved
by radicals. (Indeed, the symmetry group SL2(𝔽5) is a
double cover of the alternating group 𝐴5 on 5 letters and
thus is closely related to the symmetry group underlying
the general quintic.) To establish the modularity of 𝐸[5],
Wiles constructs an auxiliary semistable elliptic curve 𝐸′

satisfying
(52) ̄𝜚𝐸′,5 = ̄𝜚𝐸,5, ̄𝜚𝐸′,3 is irreducible.
It then follows from the argument in the previous para-
graph that 𝐸′ is modular, hence that 𝐸′[5] = 𝐸[5] is
modular as well, putting 𝐸 within striking range of the
modularity lifting theorem with ℓ = 5. This lovely epi-
logue of Wiles’s proof, which came to be known as the
“3-5 switch,” may have been viewed as an expedient trick
at the time. But since then the prime switching argument
has become firmly embedded in the subject, and many
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variants of it have been exploited to spectacular effect in
deriving new modularity results.

The modularity of
elliptic curves was
only the first in a

series of
spectacular
applications.

Wiles’s modularity
lifting theorem reveals
that “modularity is
contagious” and can
often be passed on to
an ℓ-adic Galois rep-
resentation from its
mod ℓ reduction. It
is this simple prin-
ciple that accounts
for the tremendous
impact that the Modu-
larity Lifting Theorem,
and the many variants

proved since then, continue to have on the subject. Indeed,
the modularity of elliptic curves was only the first in a
series of spectacular applications of the ideas introduced
by Wiles, and since 1994 the subject has witnessed a
real golden age, in which open problems that previously
seemed completely out of reach have succumbed one by
one.

Among these developments, let us mention:
• The two-dimensional Artin conjecture, first formu-

lated in 1923, concerns the modularity of all odd,
two-dimensional Galois representations

(53) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℂ).
The image of such a 𝜚 modulo the scalar matrices
is isomorphic either to a dihedral group, to 𝐴4, to
𝑆4, or to 𝐴5. Thanks to the earlier work of Hecke,
Langlands, and Tunnell, only the case of projective
image 𝐴5 remained to be disposed of. Many new cases
of the two-dimensional Artin conjecture were proved
in this setting by Kevin Buzzard, Mark Dickinson, Nick
Shepherd-Barron, and Richard Taylor around 2003 us-
ing the modularity of all mod 5 Galois representations
arising from elliptic curves as a starting point.

• Serre’s conjecture, which was formulated in 1987,
asserts the modularity of all odd, two-dimensional
Galois representations

(54) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(𝔽𝑝𝑟),
with coefficients in a finite field. This result was proved
byChandrasekhar Khare and Jean-PierreWintenberger
in 2008 by a glorious extension of the “3-5 switching
technique” in which essentially all the primes are used.
(See Khare’s report in this volume.) This result also
implies the two-dimensional Artin conjecture in the
general case.

• The two-dimensional Fontaine–Mazur conjecture con-
cerning themodularity of odd, two-dimensional𝑝-adic
Galois representations

(55) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℚ̄𝑝)
satisfying certain technical conditions with respect
to their restrictions to the Galois group of ℚ𝑝. This
theorem was proved in many cases as a consequence
of work of Pierre Colmez, Matthew Emerton, and Mark
Kisin.

• The Sato–Tate conjecture concerning the distribution
of the numbers 𝑁𝑝(𝐸) for an elliptic curve 𝐸 as the
prime 𝑝 varies, whose proof was known to follow
from the modularity of all the symmetric power
Galois representations attached to 𝐸, was proved in
large part by Laurent Clozel, Michael Harris, Nick
Shepherd-Barron, and Richard Taylor around 2006.

• One can also make sense of what it should mean
for diophantine equations over more general number
fields to be modular. The modularity of elliptic curves
over all real quadratic fields has been proved very
recentlybyNunoFreitas, BaoLeHung, andSamirSiksek
by combining the ever more general and powerful
modularity lifting theorems currently available with a
careful diophantine study of the elliptic curves which
could a priori fall outside the scope of these lifting
theorems.

• Among the spectacular recent developments building
on Wiles’s ideas is the proof, by Laurent Clozel and
Jack Thorne, of the modularity of certain symmetric
powers of the Galois representations attached to
holomorphic modular forms, which is described in
Thorne’s contribution to this volume.
These results are just a sampling of the transformative

impact of modularity lifting theorems. The Langlands pro-
gram remains a lively area, with many alluring mysteries
yet to be explored. It is hard to predict where the next
breakthroughs will come, but surely they will continue to
capitalise on the rich legacy of Andrew Wiles’s marvelous
proof.
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The Mathematical Works of
Andrew Wiles

Christopher Skinner, with contributions from Karl Rubin,
Barry Mazur, Mirela Çiperiani, Chandrashekhar Khare,

and Jack Thorne

Sir Andrew J. Wiles was awarded the Abel Prize
for 2016 for “his stunning proof of Fermat’s Last
Theorem by way of the modularity conjecture for
semistable elliptic curves, opening a new era in
number theory.”1 Andrew Wiles announced his

proof of Fermat’s Last Theorem in June of 1993 in a series
of three lectures at a conference at the Isaac Newton
Institute for Mathematical Sciences at the University
of Cambridge. Overnight Wiles and his proof became
an international media sensation, making headlines in
papers around the world. The story of this proof—the
subsequent discovery of a gap and its ultimate and
beautiful completion in September of 1994—has entered
into popular legend.2 The surprising drama of the proof is
told in the 1996 BBC Horizon documentary Fermat’s Last
Theorem, directed by Simon Singh, which ably conveys
the human side of what is often seen as the distant and
rarefied world of mathematical research.3

All this is well known. What is less well known, possibly
even among number theorists, is that before his proof
of Fermat’s Last Theorem, Wiles had made significant
contributions to two of the most important problems for
late-twentieth-century number theory:

Christopher Skinner is professor of mathematics at Princeton Uni-
versity. His e-mail address is cmcls@math.princeton.edu.
1Citation by the Abel Prize Committee of the Norwegian Acad-
emy of Science and Letters for the 2016 Abel Prize Laureate: www.
abelprize.no/c67107/binfil/download.php?tid=67059
2No doubt many number theorists share my own experiences of
striking up conversations with strangers, who, upon discovering
that I am a mathematician and even a number theorist, ask about
“that guy who solved that famous problem—the one who worked
in his attic for seven years.”
3I have watched this documentary many times with groups of
mathematically talented high school students from around the
world. Twenty years later it still inspires questions and conversa-
tion about what it means to do mathematical research or what a
life spent doing mathematics can be.
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Andrew Wiles with his PhD advisor, John Coates (left);
his first PhD student Karl Rubin (right); and Ken Ribet
(second from right), whose work linking the
Modularity Conjecture to Fermat’s Last Theorem
inspired Wiles to reengage with the problem that had
fascinated him since childhood. This photo was taken
at the Newton Institute in Cambridge, UK, during the
conference at which Wiles first announced his proof
of the Modularity Conjecture.

• Wiles proved, together with John Coates, the first the-
oretical evidence for the celebrated Birch–Swinnerton-
Dyer Conjecture; this is now known as the Coates–
Wiles Theorem.

• Wiles proved Iwasawa’s Main Conjecture forℚ, in joint
work with Barry Mazur, and for all totally real fields.

Each of these is a landmark result on its own and would
be considered the highlight of a distinguished career.
Two of the following contributions describe these works
and their proofs. Karl Rubin, Wiles’s first PhD student,
writes about the Coates–Wiles Theorem. Barry Mazur,
Wiles’s collaborator on his first proof of Iwasawa’s Main
Conjecture for ℚ, writes about Wiles’s work on the Main
Conjectures. Anyone seeking to learn about the context,
significance, and ideas of Wiles’s proof of Fermat’s Last
Theorem can do no better than to read Henri Darmon’s
Abel Prize lecture in this same issue of the Notices.
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What are you working on now? This is a question that
eminent mathematicians are frequently asked (or so I am
reliably informed) and certainly one that Andrew Wiles
has repeatedly faced in the years following his proof of
Fermat’s Last Theorem. In her contribution below, Mirela
Çiperiani writes about her collaboration with Andrew
Wiles, from the mid-2000s, on a very natural Diophantine
question: does a genus one curve over ℚ have a rational
point over a solvable extensionofℚ?AsÇiperiani explains,
results and techniques arising from the proof of Fermat’s
Last Theorem also play a role in this work.

What distinguishes a great mathematical proof? There
is, of course, no definitive answer to this question. Cer-
tainly proofs of famous or important open conjectures
can lay claim to being great. By this measure, Andrew
Wiles’s proof of Fermat’s Last Theorem is a truly great
proof. But proofs that introduce new ideas or open doors
to progress on problems that were previously viewed as
out of reach also have their claim to greatness. As noted in
the Abel Prize citation, Andew Wiles’s proofs also achieve
greatness by this second measure.

The new techniques and ideas that led to a suc-
cessful proof of the modularity of semistable elliptic
curves have been remarkably robust, also leading to the
resolution of a host of problems within the circle of
the Langlands Program: proofs of Serre’s conjecture, the
Artin conjecture for odd two-dimensional representations,
the Sato–Tate conjecture, meromorphic continuation of
Hasse–Weil 𝐿-functions of elliptic curves over totally real
fields, modularity of all elliptic curves over real quadratic
fields, and automorphy of small symmetric powers of
modular forms, to list just a few.

Much of this progress has been achieved by the efforts
of Richard Taylor, who was a PhD student of Wiles and
later a coauthor of the paper that introduced one of the
key ingredients4 of the proof of modularity; by Wiles’s
PhD students; and by Taylor’s collaborators and PhD
students. But Wiles’s work also inspired many others to
push his ideas further. Among these is Chandrashekhar
Khare, who writes below about some of the progress
on modularity of two-dimensional Galois representations
that followed Wiles’s proof and of the use of this in
Khare’s own proof, with Jean-Pierre Wintenberger, of
Serre’s conjecture. In a related contribution, Jack Thorne
describes how Wiles’s original techniques evolved and
were adapted to proving the automorphy of higher-
dimensional Galois representations, leading to his proof,
with Laurent Clozel, of the automorphy of some small
symmetric powers of a holomorphic modular form.

But we should not lose sight of Wiles’s earlier contribu-
tions in the glow of the successes arising from the proof
of Fermat’s Last Theorem. The proof of the Coates–Wiles
Theorem and Wiles’s proof of Iwasawa’s Main Conjec-
ture for totally real fields have inspired similar progress.
For example, Kazuya Kato’s (2004) spectacular success
in constructing an Euler system for elliptic curves and
then relating it to the special values of the Hasse–Weil
𝐿-function of the curve via an explicit reciprocity law can

4Now generally known as the Taylor–Wiles method.

be seen as a vast generalization of the ideas in the proof
of the Coates–Wiles theorem. My own work with Eric
Urban (2014), which together with Kato’s result proves
much of the Main Conjecture in the Iwaswa theory of
elliptic curves, is in large part the natural generalization
to some unitary groups ofWiles’smethods for proving the
Iwasawa Main Conjecture for totally real fields. Andrew
Wiles’s ideas continue to inform and shape progress on
some of the fundamental problems in algebraic number
theory.

Karl Rubin
Wiles’s Work on Elliptic Curves with Complex
Multiplication
During my senior year at Princeton, 1975–76, there was
a lot of buzz in the common room about something
everyone referred to as “Coates–Wiles.” I had a vague idea
of what an elliptic curve was, but I doubt that I had any
clear idea of what John Coates and Andrew Wiles had
done. But I could tell that it was important, and I had a
mental image of two very senior mathematicians who had
made a great breakthrough.

I arrived at Harvard as a graduate student in 1976.
Wiles arrived a year later, and I discovered that this
“very senior” mathematician was scarcely older than I
was and had been a graduate student at the time of
this spectacular result. I became his student and had
the unusual experience of attending my advisor’s thesis
defense.

Here’s what the excitement was about. An elliptic curve
𝐸 over the field ℚ of rational numbers is a curve defined
by an equation 𝑦2 = 𝑥3 +𝑎𝑥+𝑏, with 𝑎,𝑏 ∈ ℚ satisfying
4𝑎3 + 27𝑏2 ≠ 0. It is classical that the rational points
𝐸(𝐹) on 𝐸 over any field 𝐹 containing ℚ form an abelian
group, and Mordell proved that 𝐸(ℚ) is finitely generated.
The rank of 𝐸 is the dimension of the ℚ-vector space
𝐸(ℚ)⊗ℤ ℚ.

In the late 1950s, after extensive computations, Birch
and Swinnerton-Dyer made the following conjecture.

Conjecture (Birch & Swinnerton-Dyer). For every elliptic
curve 𝐸 over ℚ, we have

(BSD) rank(𝐸(ℚ)) = ord𝑠=1 𝐿(𝐸, 𝑠).
Here 𝐿(𝐸, 𝑠) is the Hasse–Weil 𝐿-function of 𝐸, defined

by an Euler product that converges on the complex
half-plane ℜ(𝑠) > 3/2, and ord𝑠=1 𝐿(𝐸, 𝑠) is its order of
vanishing at 𝑠 = 1. This conjecture is still unproved and
is one of the Clay Millennium Problems.

Clearly, to make progress on this conjecture, or even
for the statement to make sense, one needs to know that
𝐿(𝐸, 𝑠) has an analytic continuation at least to 𝑠 = 1. This
was already known, thanks to a theorem of Deuring, for
elliptic curves with complex multiplication: we say that 𝐸
has complex multiplication if the ring of endomorphisms
End(𝐸) is larger than ℤ, in which case End(𝐸) ⊗ℤ ℚ is an

Karl Rubin is Edward and Vivian Thorp Professor of Mathematics
at UC Irvine. His e-mail address is krubin@math.uci.edu.
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imaginary quadratic field. (The case End(𝐸) = ℤ is much
morecommon.) Forexample, theelliptic curve𝑦2 = 𝑥3+𝑎𝑥
has complex multiplication because (𝑥, 𝑦) ↦ (−𝑥, 𝑖𝑦) is
an automorphism of 𝐸 of order 4. Deuring proved that if 𝐸
has complex multiplication, then 𝐿(𝐸, 𝑠) can be identified
with the 𝐿-function attached to a Hecke character and
hence has an analytic continuation to the entire complex
plane. Further, in this case Damerell proved that there is
an explicit Ω ∈ ℝ× such that 𝐿(𝐸, 1)/Ω ∈ ℤ.

By the mid-1970s little was known about (BSD) beyond
computational examples. Thatwas how things stoodwhen
Coates and Wiles made their breakthrough:

Theorem 1 (Coates and Wiles, 1977 [2]). Suppose 𝐸 has
complex multiplication. If 𝐸(ℚ) is infinite, then 𝐿(𝐸, 1) = 0.

In other words, if rank(𝐸(ℚ)) > 0, then ord𝑠=1 𝐿(𝐸, 𝑠) >
0.

The key to the proof of Theorem 1 is the use of
Robert’s elliptic units to provide the crucial link between
the algebraic and analytic sides of (BSD). Elliptic units are
global units in abelian extensions of imaginary quadratic
fields, defined by analytic functions, so they live in both
the algebraic and analytic worlds.

Suppose 𝐸 has complex multiplication, and let 𝐾
be the imaginary quadratic field End(𝐸) ⊗ℤ ℚ. Suppose
𝑝 ≥ 5 is a prime where 𝐸 has good reduction, and
𝑝 factors as 𝑝 = 𝜋𝜋̄ ∈ End(𝐸) ⊂ 𝐾. For 𝑛 ≥ 1 let
𝐸[𝜋𝑛] ⊂ 𝐸(𝐾̄) denote the kernel of the endomorphism
𝜋𝑛, let 𝐾𝑛 ∶= 𝐾(𝐸[𝜋𝑛]), and let

Γ𝑛 ∶= Gal(𝐾𝑛/𝐾) ≅ (ℤ/𝑝𝑛ℤ)×.
Since 𝐾𝑛 is an abelian extension of 𝐾, there is a subgroup
𝒞𝑛 ⊂ 𝐾×

𝑛 of elliptic units. We also let 𝑈𝑛 denote the units
in the ring of integers of the completion of 𝐾𝑛 at the
unique prime above 𝜋.

Coates andWiles constructed a “logarithmic derivative”
homomorphism 𝜓𝑛 ∶ 𝑈𝑛 → 𝐸[𝜋𝑛] and computed that

𝜓𝑛(𝒞𝑛) =
𝐿(𝐸, 1)

Ω 𝐸[𝜋𝑛].

Under a mild additional assumption on 𝑝, they showed
that the group of Γ𝑛-equivariant homomorphisms
HomΓ𝑛(𝑈𝑛, 𝐸[𝜋𝑛]) is cyclic of order 𝑝𝑛, generated by 𝜓𝑛,
and therefore
(1) HomΓ𝑛(𝑈𝑛/𝒞𝑛, 𝐸[𝜋𝑛]) ≅ ℤ/(𝑝𝑛, 𝐿(𝐸,1)

Ω )ℤ.
Now suppose 𝐸(ℚ) is infinite. Fix a point 𝑃 ∈ 𝐸(ℚ) of

infinite order, and for every positive integer 𝑛 choose a
point 𝑄𝑛 ∈ 𝐸(𝐾̄) such that 𝜋𝑛(𝑄𝑛) = 𝑃. The “Kummer
map” that sends 𝜎 ∈ Gal(𝐾̄/𝐾𝑛) to 𝜎(𝑄𝑛)−𝑄𝑛 defines a
homomorphism

𝜅𝑛 ∈ HomΓ𝑛(Gal(𝐾̄/𝐾𝑛), 𝐸[𝜋𝑛]).
Using class field theory, 𝜅𝑛 induces a homomorphism

𝜅̃𝑛 ∈ HomΓ𝑛(𝑈𝑛/𝒞𝑛, 𝐸[𝜋𝑛]),
and Coates and Wiles showed that there is an integer 𝑘,
independent of 𝑛, such that 𝜅̃𝑛 has order𝑝𝑛−𝑘 for all 𝑛 ≥ 𝑘.
Comparing this with (1) as 𝑛 grows proves Theorem 1.

The ideas in the proof of Theorem 1, along with
methods Wiles developed for his work on Iwasawa’s Main

Conjecture and on the modularity of elliptic curves (see
the contributions by Barry Mazur and Henri Darmon,
respectively, in this issue), have continued to play an
important role in progress on the Birch and Swinnerton-
Dyer conjecture.
• Kolyvagin (1990) recognized that elliptic units form

what he calls an Euler system. (In fact, as one of very
few known examples, elliptic units helped him to
formulate the concept of an Euler system.) Combining
the methods of Coates and Wiles with Kolyvagin’s
Euler system machinery led to my 1991 proof of
Iwasawa’s Main Conjecture for imaginary quadratic
fields.

• Using a quite different Euler system of Heegner
points, the combined results in the 1980s of Koly-
vagin, Gross–Zagier, Bump–Friedberg–Hoffstein, and
Murty–Murty showed that (BSD) holds if 𝐸 is modular
and ord𝑠=1 𝐿(𝐸, 𝑠) ≤ 1.

• The work of Wiles on modularity [6], completed by
Taylor–Wiles [4] and Breuil–Conrad–Diamond–Taylor
[1], showed in the 1990s that every elliptic curve over
ℚ is modular. Hence we have the following result for
all elliptic curves over ℚ, with or without complex
multiplication.

Theorem 2. If ord𝑠=1 𝐿(𝐸, 𝑠) ≤ 1, then rank(𝐸(ℚ)) =
ord𝑠=1 𝐿(𝐸, 𝑠).

Along with some Iwasawa-theoretic results due to Kato
(2004) and Skinner and Urban (2014), this is currently the
best result in the direction of the Birch and Swinnerton-
Dyer conjecture for elliptic curves over ℚ.
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Barry Mazur
Andrew Wiles’s Work on the Main Conjecture
of Iwasawa Theory
What a joy it was to work with Andrew on the Main
Conjecture of Iwasawa theory over ℚ, and how great that
Andrew went on to establish it, more generally, for totally
real fields.
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The basic idea behind the Main Conjecture might be
thought of as having, as a starting place, the classical
analytic formulas of number theory, such as Dirichlet’s
Class Number Theorem for quadratic imaginary fields:

𝐿(𝜒, 1)
2𝜋 = ℎ(−𝑑)

𝑤√𝑑
,

where𝜒 is the quadratic Dirichlet character cutting out the
quadratic imaginary field ℚ(√−𝑑) of (integer) conductor
−𝑑 < 0; ℎ(−𝑑) is the order of the ideal class group of that
field; 𝑤 is the number of roots of unity in it; and 𝐿(𝜒, 𝑠)
is the Dirichlet 𝐿-function. One of the striking aspects
of this formula is that the left-hand side is analytic; the
right-hand side is arithmetic.

The “Main Conjecture” is not a misnomer: for any
prime number 𝑝 the conjecture asserts a fundamental
relationship that establishes a close tie between
• the 𝑝-adic 𝐿-functions of a number field 𝑘—these being

𝑝-adic analytic objects closely related to the classical
(complex) 𝐿-functions of 𝑘,

• the deep arithmetic of that number field—namely, the
𝑝-primary parts of ideal class groups of certain abelian
extensions of 𝑘.

Slightly more specifically, the Main Conjecture identifies
the zeroes of 𝑝-adic 𝐿-functions of a number field 𝑘
with the eigenvalues of an operator on a 𝑝-adic vector
space constructed from the 𝑝-primary parts of ideal
class groups of the abelian extensions of 𝑘 alluded to
above or constructed fromsome closely related arithmetic
objects.1

This puts the conjecture somewhat in the spirit of a
suggestion attributed to Hilbert and Pólya that a complex
𝐿-function of a number field might arise naturally as
the characteristic series attached to a certain unbounded
operator on a (naturally defined) Hilbert space. (Their
suggestion, though, goes further by noting that if these
operators were self-adjoint, this would relate well to
the Riemann Hypothesis.) It also is in the spirit of the
classical theory of 𝐿-functions attached to varieties over
finite fields, for such an 𝐿-function can also be thought of
as the characteristic polynomial of the Frobenius operator
on an appropriate étale cohomology group.

To outline an example of the Main Conjecture, we’ll
discuss the relevant group of operators, vector space, 𝑝-
adic 𝐿-functions, and the method for the construction of
the relevant arithmetic objects.

The 𝑝-Cyclotomic Tower and the Fundamental
Operator in the Main Conjecture
Let 𝑛 ≥ 1. Consider the finite field extension ℚ[𝜇𝑛]/ℚ
obtained by adjoining the group of 𝑛th roots of unity,

𝜇𝑛 ∶= {𝑒2𝜋𝑖𝑎/𝑛 | 𝑎 = 0, 1,… ,𝑛 − 1} ⊂ 𝒞∗,
to the field ℚ of rational numbers. The group (ℤ/𝑛ℤ)∗ is
canonically isomorphic to the group 𝐴𝑢𝑡(𝜇𝑛) of automor-
phisms of the cyclic group 𝜇𝑛, this isomorphism being
defined by sending 𝑎 ∈ (ℤ/𝑛ℤ)∗ to the automorphism

1For example, from abelian extensions of 𝑝-power degree unrami-
fied over those alluded-to extensions of 𝑘.

𝜁 ↦ 𝜁𝑎 for any 𝜁 ∈ 𝜇𝑛. Any automorphism of 𝜇𝑛 extends
uniquely to an automorphism of the field ℚ[𝜇𝑛], giving
us canonical isomorphisms:

(ℤ/𝑛ℤ)∗ ≃⟶ 𝐴𝑢𝑡(𝜇𝑛)
≃⟶ Gal(ℚ[𝜇𝑛]/ℚ).

Fixing a prime 𝑝 (for simplicity, suppose 𝑝 > 2) and letting
𝑛 run through powers of 𝑝, form the 𝑝-cyclotomic tower
of (abelian Galois) extensions

ℚ ⊂ ℚ[𝜇𝑝] ⊂ ℚ[𝜇𝑝2] ⊂ ℚ[𝜇𝑝3] ⊂ …
and put ℚ[𝜇𝑝∞] ∶= ⋃∞

𝜈=1 ℚ[𝜇𝑝𝜈]. We have that
Gal(ℚ[𝜇𝑝∞]/ℚ) = lim

𝜈→∞
(ℤ/𝑝𝜈ℤ)∗ = ℤ∗

𝑝 ,

the latter, ℤ∗
𝑝 , being the profinite topological group of

𝑝-adic units, which decomposes as a product, ℤ∗
𝑝 =

F∗
𝑝 ×{1+𝑝ℤ𝑝}, where F∗

𝑝 ≃ Gal(ℚ[𝜇𝑝]/ℚ) is a cyclic group
of order 𝑝−1, and the subgroup Γ ∶= {1+𝑝Z𝑝} ⊂ ℤ∗

𝑝 is an
infinite cyclic pro-𝑝-group. A neat topological generator
to choose for Γ is the 𝑝-adic unit 𝛾 ∶= (1 + 𝑝) ∈ Γ ⊂ ℤ∗

𝑝 .
The field ℚ[𝜇𝑝∞] is generated by two linearly disjoint

subfields:ℚ[𝜇𝑝] and a field, call itℚ∞, Galois overℚ with
Galois group

Gal(ℚ∞/ℚ) = Γ ∶= 1+ 𝑝Z𝑝 ⊂ Z∗
𝑝 .

The topological group Γ is our “group of operators.”

The Vector Space Containing Basic Arithmetic
Data Related to Number Fields
Let 𝑘 ⊂ 𝐾 be number fields, contained in 𝒞, linearly
disjoint from ℚ∞, with 𝐾 totally real, and 𝐾/𝑘 a cyclic
Galois extension. Put 𝐾∞ = 𝐾 ⋅ℚ∞ ⊂ 𝒞. So Gal(𝐾∞/𝐾) =
Gal(ℚ∞/ℚ) = Γ.

Let 𝐿∞ denote the maximal unramified pro-𝑝 abelian
extension of𝐾∞. Let𝑋 ∶= Gal(𝐿∞/𝐾∞), which, since it is a
projective limit of 𝑝-abelian groups, we can view naturally
as a ℤ𝑝-module. Also, Γ = Gal(𝐾∞/𝐾) acts naturally (and
ℤ𝑝-linearly) on 𝑋. The action of an element in Γ on
𝑋 is defined by lifting it to an element in Gal(𝐿∞/𝐾)
and then noting that conjugation by that lifted element
doesn’t depend on the lifting and induces a well-defined
automorphism of 𝑋.

One knows that 𝑉 ∶= 𝑋⊗ℤ𝑝 ℚ̄𝑝 is a finite-dimensional
vector space. If 𝜒 ∶ Gal(𝐾/𝑘) ↪ 𝒞∗ is an odd (faithful)
character cutting out the field extension 𝐾/𝑘, we will be
considering the action of Γ on the 𝜒-part of 𝑉, i.e., on
𝑉𝜒 ∶= {𝑣 ∈ 𝑉 | 𝑔(𝑣) = 𝜒(𝑔) ⋅𝑣}. We want to get as full an
understanding of the 𝑉𝜒 as possible and specifically the
eigenvalues of 1 − 𝛾 on 𝑉𝜒 where 𝛾 ∈ Γ is a topological
generator.

𝐿-Functions
By interpolating special values of the classical complex
𝐿-functions, Kubota and Leopoldt defined the 𝑝-adic 𝐿-
functions over the field 𝑘 = ℚ, and subsequently Deligne
and Ribet defined them over totally real fields 𝑘. Briefly,
in the context above, let 𝜁𝑘(𝜎, 𝑠) denote the partial
zeta-function of 𝑘 associated to elements 𝜎 ∈ Gal(𝐾/𝑘).
The special values 𝜁𝑘(𝜎, 1 − 𝑛) are rational numbers, as
proved by Klingen and Siegel. Let 𝜓 be a one-dimensional
character over 𝑘 with values in ℚ𝑝

∗ and 𝜒𝑛 ∶= 𝜓−1𝜔𝑛
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where 𝜔 is the Teichmüller character. For any integer
𝑛 ≥ 1 one puts

𝐿𝑝(1 − 𝑛,𝜓)
= ∑

𝜎∈Gal(𝐾/𝑘)
𝜒𝑛(𝜎)𝜁𝑘(𝜎, 1 − 𝑛) ⋅ ∏

𝑃 |𝑝
(1 − 𝜒𝑛(𝑃)𝑁(𝑃)1−𝑛),

where “∏𝑃 |𝑝” is taken over all primes 𝑃 of 𝑘 lying above
𝑝, and 𝑁(𝑃) is the norm of the ideal 𝑃.

These special values, {1 − 𝑛 ↦ 𝐿𝑝(1 − 𝑛,𝜓) ∈ ℚ̄𝑝},
interpolate to produce a 𝑝-adic analytic function 𝐿𝑝(𝑠,𝜓)
on ℤ𝑝 if 𝜓 is not trivial and on ℤ𝑝 − {1} with a simple
pole at 𝑠 = 1 when 𝜓 is trivial. Moreover, there is a
unique power series 𝐺𝜓(𝑇) ∈ ℤ̄𝑝[[𝑇]] such that for the
topological generator 𝛾 ∈ Γ ⊂ ℤ∗

𝑝 (viewed as an element
of ℤ∗

𝑝 ) we have

𝐿𝑝(𝑠,𝜓) = 𝐺𝜓(𝛾𝑠 − 1).

The Main Conjecture, then, for 𝜒 odd and 𝑝 > 2
identifies the characteristic polynomial of 𝛾 acting on 𝑉𝜒

as described above, with the Weierstrass polynomial of
the power series 𝐺𝜓(𝛾(1 + 𝑇)−1 − 1) where 𝜓 = 𝜒−1𝜔.
That is, as Andrew proves [3], the eigenvalues of 𝛾 acting
on 𝑉𝜒 are identified with the zeroes of 𝐿𝑝(𝑠,𝜓).

Method
The essential issue in proving the Main Conjecture is to
construct (by means of Galois representations attached to
modular forms) as many abelian unramified extensions
as would be predicted from the analytic side of the
conjectured formula. A version of the classical analytic
formula then allows one to conclude the conjecture. When
the field 𝑘 is ℚ, we did this [1] by a two-step approach,
starting from a marvelous idea of Ken Ribet relating
divisibility of the 𝑝-adic 𝐿-function by 𝑝 to a similar
divisibility of the order of a specific ideal class group
by 𝑝. (For a leisurely discussion of Ribet’s method and
connection with the earlier work of Herbrand, see [2].)
Briefly, the𝑝-adic𝐿-function𝐿𝑝(𝑠, 𝜒) (times an elementary
nonzero factor) occurs as the constant term of a 𝑝-adic
Eisenstein series (of 𝑝-adic weight determined by the
value of 𝑠). Whenever the 𝑝-adic 𝐿-function vanishes,
this Eisenstein series has constant term zero and can be
shown, therefore, to be congruent modulo arbitrarily high
powers of 𝑝 to cuspidal eigenforms. Moreover, since these
cuspidal modular eigenforms are congruent modulo a
highpowerof𝑝 toEisenstein series, their associated𝑝-adic
Galois representationsare extremelywell behavedmodulo
those powers of 𝑝 and can be seen to cut out larger and
larger unramified 𝑝-power abelian extensions of 𝐾∞. The
procedure employed byWiles [3] for the totally real case is
a good dealmore delicate than in the case of 𝑘 = ℚ, in that
one now uses the Galois representations of eigenforms
on Hilbert–Blumenthal moduli spaces to construct the
desired unramified abelian extensions. Andrew works
systematically over the relevantweight space constructing
the appropriate cuspidal Λ-adic Hilbert modular forms,
using Hida’s theory, and [3] proves much more.
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Mirela Çiperiani
Solvable Points on Genus One Curves
In the spring of 2002, as a graduate student at Princeton,
I approached Andrew Wiles to ask about the possibility
of working under his supervision. He suggested that
I think about a problem that was thrillingly natural
and beautiful: Does every genus one curve, defined over
the rational numbers ℚ, have a point over some solvable
extension of ℚ?

Solvable extensions of ℚ—Galois extensions with solv-
able Galois group—are, concretely, fields contained in
root extensions of ℚ, i.e., in fields obtained by starting
with ℚ and considering successive extensions of the
form F( 𝑛√𝛼)/F for some 𝛼 ∈ F and 𝑛 ∈ ℕ. This relation-
ship between solvability of the Galois group and iterated
adjunction of roots is the Galois-theoretic criterion for
solvability by radicals of a polynomial equation in one
variable. Thus, as shown by Abel and Galois, equations
in one variable with coefficients in ℚ and degree at
least 5 need not be solvable by radicals. This connection
to classical Galois theory is one of the appeals of the
problem.

An obvious stumbling block is that, while this is evi-
dently a diophantine equations problem, it is much less
tangible than that of solving a quintic: we don’t have a
generic way of writing the equations that describe genus
one curves defined over ℚ. A priori, a genus one curve
defined over ℚ is cut out by several homogeneous poly-
nomial equations with rational coefficients. The famous
Weierstrass cubic equations 𝑦2𝑧 = 𝑥3 +𝑎𝑥𝑧2 +𝑏𝑧3 (here
𝑎,𝑏 ∈ ℚ such that 𝑥3 +𝑎𝑥+ 𝑏 has no repeated roots) de-
scribe elliptic curves, i.e., genus one curves which do have
a point over their field of definition, namely, (0 ∶ 1 ∶ 0).
However, each genus one curve is a torsor for an elliptic
curve, its Jacobian; i.e., the Jacobian acts on the genus one
curve, and over ℚ that action becomes freely transitive.
Conversely, every torsor for an elliptic curve E is a genus
one curve with Jacobian E. In light of this correspon-
dence, genus one curves over ℚ with fixed Jacobian E are
parametrized by a (Galois) cohomology group, the Weil–
Châtelet group H1 (Gal(ℚ̄/ℚ),E(ℚ̄)). So now we dispense
with defining equations of genus one curves and work
with elements of the Weil–Châtelet group.

In 2006, in joint work with Wiles, we showed that
under certain restrictions, Wiles’s original question has a
positive answer, as stated momentarily. The removal of
these restrictions is the subject of ongoing joint work.
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Theorem ([ÇW]). Let C be a genus one curve defined over
ℚ, with Jacobian E, such that
(1) C has a point defined over the ℓ-adics ℚℓ for all

rational primes ℓ; and
(2) one of the following conditions holds:

(a) the analytic rank of E/ℚ is less than or equal
to 1 or

(b) E is semistable over ℚ.
Then C has a point over a solvable extension of ℚ.

The analytic rank of an elliptic curve E is the order
of vanishing of its 𝐿-series 𝐿(E, 𝑠) at 𝑠 = 1. As for
semistability, after lifting an elliptic curve fromℚ to ℤ and
then reducing modulo a prime, it may remain nonsingular
or it may acquire a node or cusp. Semistability disallows
cusps.

I will now describe two fundamental ideas of Wiles
which provide the frame of the proof. The first is referred
to as the “unramified under ramified principle.” Fix an
elliptic curve E defined overℚ. Genus one curves Cdefined
over ℚ with E as their Jacobian, and with points over
ℚℓ for every rational prime ℓ, form a subgroup of the
Weil–Châtelet group. (This subgroup contains the Tate–
Shafarevich group, which consists of genus one curves
that have both ℓ-adic and real points.)We in fact workwith
their preimages in the Selmer group. These Selmer classes
become trivial after an extension of ℚ unramified at all
but a finite set of primes ℓ. According to the unramified
under ramified principle, if we find a finite set of primes
𝒬 obeying certain conditions and if we have sufficiently
many cohomology classes which are ramified at primes
in 𝒬, then under the cohomology group structure they
will generate all the unramified classes.

We will apply this principle in the case where the genus
one curveC satisfies conditions (1) and (2a) of our theorem
by constructing ramified classes which correspond to
genusonecurveswithpointsover somesolvable extension
of ℚ. These ramified classes will then generate a group
containing all genus one curves that have the same
Jacobian as C and satisfy conditions (1) and (2a). Hence
C has a solvable point. Thus the task is to choose the
set 𝒬 and to construct sufficiently many ramified classes
which have solvable points. This is achieved by using
the cohomology classes constructed by Kolyvagin. The
construction of these classes makes use of Heegner
points. These points are defined on modular curves and
pushed forward to the elliptic curve via its modular
parametrization—whose existence is known by the work
of Wiles extended by Breuil, Conrad, Diamond, and Taylor.

The unramified under ramified principle is sufficient
to prove the theorem in the case when the analytic rank
of E/ℚ is less than or equal to 1. It is not sufficient to
prove it in general, for the following two reasons:

(i) If the analytic rank of E/ℚ is greater than 1, then
the relevant Heegner points are trivial. Hence, in
this case we cannot construct enough nontrivial
Kolyvagin classes.

(ii) The set of primes 𝒬 depends on the order of
the curve C viewed as an element of the Weil–
Châtelet group of E/ℚ, and the existence of the

sufficiently many cohomology classes ramified at
primes in 𝒬 depends on the finiteness of all the
𝑝-primary components of the Tate–Shafarevich
group of E/ℚ. This is only known for elliptic
curves E/ℚ of analytic rank less than or equal to
1 (by the modularity theorem, and the combined
and celebrated work of Kolyvagin, Gross–Zagier,
Bump–Friedberg–Hoffstein, and Murty–Murty).

When conditions (1) and (2b) hold, we can still find
nontrivial Heegner points, using work of Cornut-Vatsal,
by viewing C as a genus one curve over a nontrivial
extension of ℚ. We now attempt to apply the unramified
under ramified principle. However, while this field exten-
sion enables us to construct ramified Kolyvagin classes,
because of issue (ii) we are not able to see that we have
sufficiently many of them.

It is in circumventing the potential existence of an
infinite 𝑝-primary component of the Tate–Shafarevich
group that we need the second idea. It is referred to as
the “patching method.” A similar method was used in
the proof of the modularity theorem. Wiles’s idea is the
following. We construct as many ramified classes as we
can for each in an infinite sequence of field extensions
{𝐹𝑛}. Observe that in order to do this we must choose
unrelated sets of primes 𝒬𝑛 for the fields 𝐹𝑛, all with the
same cardinality. We consider groups 𝑀𝑛 of cohomology
classes over 𝐹𝑛 ramified at primes in 𝒬𝑛 (actually, 𝑀𝑛
is viewed as a module over a ring related to 𝐹𝑛). There
is no natural containment between these modules, but
each of them contains all the classes over ℚ that we want
to capture. However, our Kolyvagin classes generate a
submodule 𝑀′

𝑛 ⊆ 𝑀𝑛, and for no 𝑛 can we see that 𝑀′
𝑛

contains the desired classes. By considering their mod-
ule structure (and ignoring their content), we construct
injective maps 𝑀𝑛 → 𝑀𝑛+1. This gives rise to a module
lim⎯⎯⎯⎯⎯→𝑀𝑛 over an Iwasawa algebra. Miraculously, a structure

I developed
enormous

admiration of
Wiles for his

generosity and
modesty, and awe
for his ability to

see to the heart of
the matter.

theorem from Iwasawa
theory shows us that
each of our genus
one curves C satisfy-
ing conditions (1) and
(2b) lies in some𝑀′

𝑛 for
some 𝑛. Thus 𝐶 has a
solvable point.

Working with Wiles
has been a wonderful
experience. At the be-
ginning, when I barely
knew what an ellip-
tic curve was, I felt
luckybut humbled and
daunted to be en-
trusted with such a
fantastic problem. I
had to rapidly learn

the background material needed to begin thinking about
the problem and to understand Wiles’s proposal to use
the unramified under ramified principle. Later, at times
when the problem seemed impossible, I was buoyed by
Wiles’s confidence that we could solve it. I developed
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enormous admiration of Wiles for his generosity and
modesty, and awe for his ability to see to the heart of the
matter—feelings that stay with me today.
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Chandrashekhar Khare
Modularity of GL2 Galois Representations
and the Work of Andrew Wiles
The work of Andrew Wiles on the modularity of elliptic
curves provided some of the key ideas and techniques
which led to the proof of Serre’s modularity conjecture.
Moreover, and equally importantly, it psychologically
made it possible to imagine that there could be a strat-
egy to prove results that before Wiles’s work seemed
completely inaccessible.

To retrace the path fromWiles’s work [5] onmodularity
of elliptic curves to the proof of Serre’s conjecture [2], we
describe briefly Wiles’s modularity lifting theorem and
his strategy for proving it.

Let𝐺ℚ = Gal(ℚ/ℚ) be the Galois group of an algebraic
closure ℚ of ℚ. Wiles’s modularity lifting theorem is
about 2-dimensional 𝑝-adic Galois representations for a
prime 𝑝 > 2. These are certain homomorphisms

𝜌 ∶ 𝐺ℚ → GL2(ℤ𝑝),
including those that arise from the action of 𝐺ℚ on the
torsion points of an elliptic curve defined over ℚ. Wiles
proved [5], [4] that under certain hypotheses on 𝜌 and on
its residual representation

̄𝜌 ∶ 𝐺ℚ → GL2(𝔽𝑝)
(the reduction of 𝜌 modulo 𝑝), the representation 𝜌 is
modular.

The hypotheses on the residual representation ̄𝜌 in
Wiles’s theorem require that ̄𝜌 be odd (the image of com-
plex conjugation has eigenvalues+1 and−1), irreducible,
and modular. For ̄𝜌, being modular means that there is a
cuspidal modular eigenform (an analytic function on the
complex upper-half-plane with many symmetries)

𝑓(𝜏) =
∞
∑
𝑛=1

𝑎𝑛(𝑓)𝑒2𝜋𝑛𝜏

such that for all but finitely many primes ℓ, the Fourier
coefficient 𝑎ℓ(𝑓) can be matched with the trace of ̄𝜌
evaluated on a Frobenius element in 𝐺ℚ for the prime ℓ.
More precisely, the Fourier coefficients 𝑎𝑛(𝑓) are all alge-
braic integers (so belong to ℚ) and for some embedding
𝜄 ∶ ℚ ↪ ℚ𝑝 of ℚ into an algebraic closure ℚ𝑝 of ℚ𝑝, for
almost all primes ℓ the image of 𝜄(𝑎ℓ(𝑓)) in the residue
field 𝔽𝑝 ofℚ𝑝 equals the trace of ̄𝜌 on a Frobenius element
for ℓ. Similarly, 𝜌 is modular if there is an eigenform 𝑓
and an embedding 𝜄 such that for almost all primes ℓ,
𝜄(𝑎ℓ(𝑓)) equals the trace of 𝜌 on a Frobenius element for
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ℓ. Wiles’s theorem “lifts modularity” in that it asserts that
if ̄𝜌 is modular, then the lift 𝜌 of ̄𝜌 is also modular.

Wiles’s theorem allows for representations 𝜌 where ℤ𝑝
is replaced by more general 𝑝-adic rings. In particular,
it allows for homomorphisms 𝜌 ∶ 𝐺ℚ → GL2(ℚ𝑝); a
continuity argument associates to such a 𝜌 a residual
representation ̄𝜌 ∶ 𝐺ℚ → GL2(𝔽𝑝). Much earlier results
of Shimura and Deligne attach to each eigenform 𝑓 and
embedding 𝜄 ∶ ℚ → ℚ𝑝 a Galois representation

𝜌𝑓,𝜄 ∶ 𝐺ℚ → GL2(ℚ𝑝).
The spirit of Wiles’s modularity lifting theorem is: if
̄𝜌 ≅ ̄𝜌𝑓,𝜄 for some eigenform 𝑓, then 𝜌 ≅ 𝜌𝑔,𝜄′ for some

eigenform 𝑔 (not necessarily the same as 𝑓). More about
this theorem and its context can be found in Darmon’s
lecture in this issue and in the article by Thorne.

Wiles’s strategy for proving his marvelous modularity
lifting theoremcanvery roughlybeparaphrasedas follows.
The kernel of themod𝑝 reductionmapGL2(ℤ𝑝) → GL2(𝔽𝑝)
is prosolvable (the inverse limit of solvable groups), which
enables the use of duality theorems in Galois cohomology
and congruences between modular forms to bootstrap
the modularity property from ̄𝜌 to 𝜌.

One spectacular application of Wiles’s modularity lift-
ing theoremwas the proof of themodularity of semistable
elliptic curves defined over ℚ (and hence Fermat’s Last
Theorem!). Elliptic curves are often encountered as the
projective curves defined by an (affine) Weierstrass equa-
tion: 𝑦2 = 𝑥3 +𝑎𝑥+𝑏 for constants 𝑎 and 𝑏. The curve is
defined over ℚ if 𝑎,𝑏 ∈ ℚ. The points on an elliptic curve
𝐸 form an abelian group, with the addition law defined by
rational functions in 𝑥 and 𝑦; the identity element of the
group is the unique point at infinity (the point (0 ∶ 1 ∶ 0)
in projective coordinates). The torsion points 𝐸[𝑁] on 𝐸
of (positive integer) order 𝑁 form a group isomorphic to
ℤ/𝑁ℤ×ℤ/𝑁ℤ. If the elliptic curve is defined over ℚ, then
the Galois group 𝐺ℚ acts on 𝐸[𝑁] by its action on the
coordinates of the points. The 𝑝-adic Tate module 𝑇𝑝𝐸 of
𝐸 is then the inverse limit of the groups 𝐸[𝑝𝑛] of 𝑝-power
torsion points: 𝑇𝑝𝐸 = lim←⎯⎯⎯⎯⎯𝑛 𝐸[𝑝

𝑛] ≅ ℤ2
𝑝. The action of 𝐺ℚ

on 𝑇𝑝𝐸 determines a 𝑝-adic Galois representation
𝜌𝐸,𝑝 ∶ 𝐺ℚ → GL2(ℤ𝑝).

The residual representation ̄𝜌𝐸,𝑝 of 𝜌𝐸,𝑝 is just the rep-
resentation of 𝐺ℚ on the group of 𝑝-torsion points
𝐸[𝑝] ≅ 𝔽2

𝑝. The modularity of an elliptic curve can be
interpreted as the 𝑝-adic Galois representation 𝜌𝐸,𝑝 being
modular for some prime 𝑝 (equivalently, all primes 𝑝).

The application of the modularity lifting theorem to
modularity of elliptic curves over ℚ comes by taking 𝜌 =
𝜌𝐸,𝑝. For 𝑝 = 2 or 3 the image of the representation 𝜌𝐸,𝑝
is prosolvable (the inverse limit of finite solvable groups).
This is one of the two places in his argument where Wiles
uses lucky accidents which happen for small primes. He
uses results of Langlands and Tunnell which imply that
an odd irreducible representation ̄𝜌 ∶ 𝐺ℚ → GL2(𝔽3) is
modular. This uses the solvability of GL2(𝔽𝑝) for 𝑝 = 3
(indeed, PGL2(𝔽3) is isomorphic to 𝑆4) and the fact that
the map GL2(ℤ𝑝) to GL2(𝔽𝑝) splits for 𝑝 = 3; both these
statements are false for 𝑝 > 3!
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At this point, the modularity lifting theorem allows
Wiles to conclude modularity of semistable 𝐸 unless
̄𝜌𝐸,3 is reducible. To deal with the case when 𝜌𝐸,3 is

reducible, Wiles plays a “3-5” trick. He constructs another
semistable elliptic curve 𝐸′ over ℚ, whose mod 3 repre-
sentation surjects onto GL2(𝔽3) and such that the mod
5 representations arising from 𝐸 and 𝐸′ are isomorphic
and irreducible. Here again the use of the small prime
5 is vital, as the moduli space he considers of elliptic
curves with level 5 structure isomorphic to 𝐸[5] turns
out to be of genus zero, and in fact the projective line
overℚ, and thus has many rational points. Then applying
the modularity lifting theorem he deduces that 𝜌𝐸′,3 is
modular. This implies that 𝜌𝐸′,5 is also modular, hence
̄𝜌𝐸,5 = ̄𝜌𝐸′,5 is modular, and then by another application

of the theorem, that 𝜌𝐸,5, and therefore 𝐸, is modular.
Wiles’s work was generalized by Breuil, Conrad, Dia-

mond, and Taylor (2001) to prove the modularity of all
elliptic curves over ℚ. Recently, Freitas, Hung, and Siksek
(2015) proved the modularity of elliptic curves defined
over all real quadratic fields, using a “3-5-7” trick.

Before theworkofWiles therewasnopath froma𝑝-adic
Galois representation to a modular form. His completely
new method of modularity lifting showed that if only a
small quotient of a 𝑝-adic representation arose from a
modular form, then the entire Galois representation did.
This has turned out to be a very powerful method to
prove modularity of Galois representations!

Conjectures of Serre and Fontaine–Mazur
Serre conjectured [3] that for any ̄𝜌 ∶ 𝐺ℚ → GL2(𝔽𝑝) that
is continuous, odd, and irreducible, there is an eigenform
𝑓 such that ̄𝜌 ≃ ̄𝜌𝑓,𝜄; i.e., ̄𝜌 is modular.

J.-M. Fontaine and B. Mazur conjectured [1] that if 𝜌 ∶
𝐺ℚ → GL2(ℚ𝑝) is continuous, odd, irreducible, unramified
outside a finite set of primes, and potentially semistable
with Hodge–Tate weights (𝑎, 𝑏), say 𝑎 ≤ 𝑏, then the
cyclotomic twist 𝜌(−𝑎) is modular.

Wiles’s modularity lifting results were in the direction
of showing that the conjecture of Serre implies that of
Fontaine–Mazur. These modularity lifting results were
improved in various crucial ways by Diamond, Fujiwara,
and Kisin, including generalizations with the base field
ℚ replaced by a totally real field 𝐹. In an important
development, Skinner and Wiles lifted the condition that
̄𝜌 is irreducible in the case when the lift 𝜌 is ordinary at

𝑝. All these developments were crucial in our later work
on Serre’s conjecture.

Potential Version of Serre’s Conjecture
Theautomorphicdescent resultsof SaitoandShintani, and
Langlands are an important ingredient in the applications
of modularity lifting theorems. These show that given
a cyclic extension of totally real number fields 𝐾/𝐹 of
prime degree and a cuspidal automorphic representation
of 𝜋 of GL2(𝔸𝐾) which is a discrete series at the infinite
places and invariant under 𝜎 ∈ Gal(𝐾/𝐹), then 𝜋 is the
base change of a cuspidal automorphic representation of
GL2(𝔸𝐹). When combined with modularity lifting results,

these descent results imply that modularity of ̄𝜌 follows
by showing that ̄𝜌|𝐺𝐹 arises from a Hilbert modular form
for a solvable, totally real extension 𝐹/ℚ.

To study general representations ̄𝜌 as in Serre’s con-
jecture, Taylor considered moduli spaces over ℚ whose
points over a number field 𝐾 correspond to abelian va-
rieties over 𝐾 (with real multiplication) which give rise
to ̄𝜌|𝐺𝐾 , and at an auxiliary place ℓ ≠ 𝑝 give rise to a
mod ℓ dihedral representation. The latter are known to
be modular by an old result of Hecke. Taylor used a
theorem of Moret–Bailly to produce points of the moduli
spaces he considered over totally real fields 𝐹 (but which
could not be guaranteed to be solvable over ℚ). Then
modularity lifting theorems for representations of 𝐺𝐹
yield that ̄𝜌|𝐺𝐹 arises from a Hilbert modular form over
𝐹. This may be regarded as a potential version of Serre’s
conjecture. Together with automorphic descent for cyclic
prime degree extensions of totally real number fields, this
led to the meromorphic continuation of the Hasse–Weil
𝐿-series attached to elliptic curves over all totally real
fields.

Toproceed along these lines to prove Serre’s conjecture
in the general case, it would be necessary either to
find a general procedure to show existence of totally
real solvable points on geometrically irreducible smooth
projective varieties of general type over ℚ or to prove
nonsolvable automorphic descent for Hilbert modular
forms.

Proof of Serre’s Conjecture
My proof with Wintenberger of Serre’s conjecture [2] took
a different path and used as a starting point results
of Tate and Serre that proved Serre’s conjecture for
representations ̄𝜌 of residue characteristic 𝑝 ≤ 3 with
limited ramification, with no a priori assumptions on the
image of ̄𝜌. Tate and Serre proved that any representation
̄𝜌 ∶ 𝐺ℚ → GL2(𝔽𝑝) unramified outside 𝑝 and with 𝑝 ≤ 3 is

reducible. This is another instance of the magic of small
primes!

Our proof measured the complexity of the represen-
tation ̄𝜌 in terms of its ramification at 𝑝 (Serre’s weight)
and the ramification away from 𝑝 (its Artin conductor 𝑁).
A double induction on (𝑝,𝑁) was used to reduce Serre’s
conjecture to the results of Tate and Serre. A principle
of the proof is to use potential modularity to produce
compatible systems of representations that lift ̄𝜌 such as
would exist if it were known that ̄𝜌 were modular.

Our proof of Serre’s conjecture owes its existence to
the modularity lifting theorems initiated by Wiles, a tool
to attack modularity which was as powerful as it was
unexpected when it was introduced, and also to Wiles’s
prime switching trick in his proof of the modularity of
elliptic curves.
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Jack Thorne
Modularity of 𝑛-Dimensional Galois Repre-
sentations
More than twenty years have passed since Andrew Wiles
proved the first modularity lifting theorems and deduced
Fermat’s Last Theorem as a consequence. His theorems fo-
cussedonproving themodularityof certain2-dimensional
Galois representations. These were the homomorphisms
(1) 𝜚 ∶ 𝐺ℚ,𝑆 → GL2(ℤℓ)
arising from elliptic curves 𝐸, 𝐺ℚ,𝑆 being the Galois group
of the maximal extension of ℚ unramified outside some
finite set of primes 𝑆. Despite this focus, the ideas of the
proof have proved powerful and flexible enough that they
are still a driving force of our understanding of much
more general Galois representations today.

The first key hypothesis imposed on𝜚 is themodularity
of the residual representation
(2) 𝜚 ∶ 𝐺ℚ,𝑆 → GL2(𝔽ℓ)
that is the reduction of 𝜚 modulo ℓ. In other words, one
assumes at the outset the existence of a cuspidal modular
eigenform
(3) 𝑓 = ∑

𝑛≥1
𝑎𝑛(𝑓)𝑞𝑛

which is matched with 𝜚, in the sense that for almost
all primes 𝑝, the Fourier coefficient 𝑎𝑝(𝑓) is congruent
modulo ℓ to the integer 𝑎𝑝(𝐸) = 𝑝 + 1 − #𝐸(𝔽𝑝). This
allows the introduction of a first key player, the Hecke
algebra 𝕋𝜚,𝑆, which acts faithfully on a space of cuspidal
modular forms, all of whose Fourier coefficients agree
modulo ℓ with those of 𝑓 and which have level supported
at the primes of 𝑆.

The second key player is the universal deformation ring
of 𝜚, which we call 𝑅𝜚,𝑆. It is a complete local ring which
is characterized by a universal property. For example, the
set of homomorphisms 𝑅𝜚,𝑆 → ℤℓ is in bijection with the
set of equivalence classes of lifts 𝜚′ ∶ 𝐺ℚ,𝑆 → GL2(ℤℓ) of
𝜚 that one hopes to prove are modular.

These key players are related by a surjective ring
homomorphism
(4) 𝑅𝜚,𝑆 → 𝕋𝜚,𝑆.

Jack Thorne is a Clay Research Fellow and Reader in Number
Theory at the University of Cambridge. His e-mail address is
thorne@dpmms.cam.ac.uk.

Passing to spectra, one can think of Spec𝕋𝜚,𝑆 as a closed
subspace of Spec𝑅𝜚,𝑆: it is the locus of the modular
Galois representations inside the space of all Galois
representations. In particular, the existence of this map
expresses the existence of Galois representations attached
to modular forms, itself a highly nontrivial fact. Diagrams
such as (4) have achieved an iconic status in algebraic
number theory.

The truth of the modularity lifting theorem is implied
by the muchmore refined statement that the map (4) is an
isomorphism. This goes some way towards explaining the
importance of the universal deformation ring 𝑅𝜚,𝑆, which
was first introduced by Mazur. A large part of Wiles’s
fundamental 1995 work is taken up with introducing the
tools necessary to effectively study the map (4), putting
him in a position to prove ‘𝑅 = 𝕋’ in many cases.

One tool that has turned out to be surprisingly versatile
is the Taylor–Wiles method, introduced in the companion
paper [3]. Roughly speaking, this is an effectivemachine to
study (4) in the so-called minimal case where 𝑆 is as small
as possible. To pass from this case to the general case,
Wiles introduced a numerical isomorphism criterion to
compare the situation for varying sets 𝑆. The verification
of this criterion then involves delicate calculations in
Galois cohomology and with modular forms.

The first modularity lifting theorems for Galois rep-
resentations of dimension 𝑛 > 2 were proved by Clozel,
Harris, and Taylor in a paper published in 2008, whichwas
heavily influenced by an earlier unpublished manuscript
of Harris and Taylor. This was made possible thanks to
the construction of 𝑛-dimensional Galois representations
attached to modular forms on unitary groups, itself ini-
tiated by Clozel and Kottwitz and then studied in great
detail by Harris and Taylor in their proof of the local
Langlands conjectures for GL𝑛, allowing one to write the
𝑛-dimensional analogue of the map 𝑅𝜚,𝑆 → 𝕋𝜚,𝑆.

The Taylor–Wiles method was generalized by Clozel,
Harris, and Taylor in order to prove a modularity lifting
theorem in the minimal case. However, such a restriction
on ramification makes these theorems very difficult to
apply in interesting situations. The general case was
treated using a generalization of the numerical criterion
of Wiles, but only conditional on a conjecture (referred
to colloquially as Ihara’s lemma) that remains unproven
today.

Kisin had earlier developed a generalization of the
Taylor–Wiles method in his study of modularity for GL2,
in a work published in 2009. He enlarged the diagram (4)
to a diagram

(5) ⨂̂𝑝∈𝑆𝑅𝜚,𝑝 → 𝑅𝜚,𝑆 → 𝕋𝜚,𝑆,

where each ring 𝑅𝜚,𝑝 is an object parameterizing deforma-
tions of the restriction of 𝜚 to a decomposition group at
𝑝 (in other words, a local Galois group 𝐷𝑝 = Gal(ℚ𝑝/ℚ𝑝)).
In this point of view, the geometry of the rings 𝑅𝜚,𝑝 begins
to play a key role. The Taylor–Wiles–Kisin method finally
allows one to link the modularity of Galois representa-
tions 𝜚1, 𝜚2 ∶ 𝐺ℚ,𝑆 → GL𝑛(ℤℓ) which have the property
that the representations 𝜚1|𝐷𝑝 , 𝜚2|𝐷𝑝 determine points on
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the same irreducible component of Spec𝑅𝜚,𝑝 for each
prime 𝑝 ∈ 𝑆.

Building on this, Taylor [2] made a detailed study of
the irreducible components of certain ‘local’ deformation
rings and introduced a very surprising trick that allowed
him to circumvent completely the conjectural Ihara’s
lemma and prove the first modularity lifting theorems for
GL𝑛 without restriction on the permitted ramification of
𝜚 relative to 𝜚.

These theorems have had spectacular applica-
tions. Combined with the earlier work of Harris,
Shepherd-Barron, and Taylor, they implied that the even-
dimensional symmetric power Galois representations

(6) Sym𝑛−1 𝜚 ∶ 𝐺ℚ,𝑆 → GL𝑛(ℤℓ)
are potentially modular: there exists a number field 𝐹/ℚ
such that the restriction Sym𝑛−1 𝜚|𝐺𝐹 to the absolute
Galois group of 𝐹 is modular, in the sense of being
associated to modular (or automorphic) forms on GL𝑛,𝐹.
These ideas in turn led to the proof of the Sato–Tate
conjecture for elliptic curves over ℚ:

Theorem 1. Let 𝐸 be an elliptic curve over ℚ without
complex multiplication. Then the quantities 𝑎𝑝(𝐸)/2√𝑝 ∈
[−1, 1] are equidistributed as 𝑝 → ∞ with respect to the
Sato–Tate measure

(7) 2
𝜋

√1− 𝑡2 𝑑𝑡.

There are many fruitful directions that remain to be
explored. For example, can one show that the symmetric
powers (6) are modular and not just potentially modular?
In joint work with Clozel [1], I showed that the answer to
this question is affirmative for 𝑛 ≤ 9. A major part of our
proof is ageneralizationof an importantmodularity lifting
theorem of Skinner and Wiles which applies to Galois
representations 𝜚 for which the residual representation 𝜚
is reducible. This modularity lifting theorem also played
a major part in the proof of Serre’s conjecture.

The work of Wiles
has had a

transforming
effect.

The proof of the
Skinner–Wiles theo-
rem employs many
ideas which appear in
Andrew Wiles’s most
famous works, such
as 𝑝-adic families of
modular forms and
congruences between
Eisenstein series and

cuspidal modular forms, as well as many other ideas
whose importance would become apparent only later: we
mention in particular an emphasis on the geometry of
Galois deformation rings. The work of Wiles has had a
transforming effect on this corner of number theory, and
his influence continues to be felt throughout the subject.
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