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Elliptic curves are ubiquitous in number theory, algebraic
geometry, complex analysis, cryptography, physics, and
beyond. They lie at the forefront of arithmetic geometry,
as shown in the feature on Andrew Wiles and his proof of
Fermat’s Last Theorem that appears in this issue of the
Notices. The goal of arithmetic geometry, in general, is
to determine the set of 𝐾-rational points on an algebraic
variety 𝐶 (e.g., a curve given by polynomial equations)
defined over 𝐾, where 𝐾 is a field, and the 𝐾-rational
points, denoted by 𝐶(𝐾), are those points on 𝐶 with
coordinates in 𝐾. For instance, Fermat’s Last Theorem
states that the algebraic variety

𝑋𝑛 +𝑌𝑛 = 𝑍𝑛

has only trivial solutions (one with 𝑋, 𝑌, or 𝑍 = 0) over
ℚ when 𝑛 ≥ 3. Here we will concentrate on the case
of a 1-dimensional algebraic variety, that is, a curve 𝐶,
and a number field 𝐾 (such as the rationals ℚ or the
Gaussian rationals ℚ(𝑖)). Curves are classified by their
geometric genus as complex Riemann surfaces. When the
genus of 𝐶 is 0, as for lines and conics, the classical
methods of Euclid, Diophantus, Brahmagupta, Legendre,
Gauss, Hasse, and Minkowski, among others, completely
determine the 𝐾-rational points on 𝐶. For example,

𝐶1 ∶ 37𝑋+ 39𝑌 = 1 and 𝐶2 ∶ 𝑋2 − 13𝑌2 = 1

have infinitelymany rational points that can be completely
determined via elementary methods. However, when the
genus of 𝐶 is 1, we are in general not even able to decide
whether 𝐶 has 𝐾-rational points, much less determine all
the points that belong to 𝐶(𝐾).
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Figure 1. A curve of genus 1 over the complex
numbers is a Riemann surface with one hole.

For example, the curve
𝐶 ∶ 3𝑋3 + 4𝑌3 = 5

has no ℚ-rational points, but the local methods we use

The study of
elliptic curves

grew in the 1980s.

in the genus 0 case to
rule out global points
fail here.1 A goal of
the theory of elliptic
curves is to find all
the 𝐾-rational points
on curves of genus
one.

An elliptic curve 𝐸 is a smooth projective2 curve of
genus 1 defined over a field 𝐾, with at least one 𝐾-
rational point (i.e., there is at least one point 𝑃 on 𝐸 with
coordinates in 𝐾). If the field 𝐾 is of characteristic 0 (e.g.,

1𝐶 ∶ 3𝑋3 + 4𝑌3 = 5 is an example of Selmer where the local-to-
global principle fails. This means that there are points on 𝐶 over
every completion of ℚ—i.e., over ℝ and the 𝑝-adics ℚ𝑝 for every
prime 𝑝—but not over ℚ itself.
2Curves are considered in projective space ℙ2(𝐾), where, in addi-
tion to the affine points, there may be some points of the curve at
infinity.
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number fields) or characteristic 𝑝 > 3, then every elliptic
curve can be given by a nice choice of coordinates, called
a short Weierstrass model, of the form

𝐸 ∶ 𝑦2 = 𝑥3 +𝐴𝑥+ 𝐵,
with 𝐴 and 𝐵 in 𝐾 (and 4𝐴3 + 27𝐵2 ≠ 0 for smoothness).
In this model there is only one 𝐾-rational point at infinity,
denoted by 𝒪. One aspect that makes the theory of
elliptic curves so rich is that the set 𝐸(𝐾) can be equipped
with an Abelian group structure, geometric in nature (see
Figure 2), where 𝒪 is the zero element (in other words,
elliptic curves are 1-dimensional Abelian varieties).

𝑃

𝑄

𝑅

𝑃+𝑄

Figure 2. The addition law on an elliptic curve.

The Abelian group 𝐸(𝐾) was conjectured to be finitely
generated by Poincaré in the early 1900s and proved to
be so by Mordell for 𝐾 = ℚ in 1922. The result was
generalized to Abelian varieties over number fields by
Weil in 1928 (a result widely known as the Mordell–Weil
Theorem). The classification of finitely generated Abelian
groups tells us that 𝐸(𝐾) is the direct sum of two groups:
its torsion subgroup and a free Abelian group of rank
𝑅 ≥ 0, i.e.,

𝐸(𝐾) ≅ 𝐸(𝐾)tors ⊕ℤ𝑅.
We then call 𝑅 = 𝑅𝐸/𝐾 the rank of the elliptic curve 𝐸/𝐾.
For instance, for

𝐸 ∶ 𝑦2 +𝑦 = 𝑥3 + 𝑥2 − 10𝑥+ 10,
the group 𝐸(ℚ) is generated by 𝑃 = (2,−2) and 𝑄 =
(−4, 1). Here 𝑃 is a point of order 5 and 𝑄 is of infinite
order, and so 𝐸(ℚ) ≅ ℤ/5ℤ⊕ ℤ.

Which finitely generated Abelian groups can arise as
the group structure of an elliptic curve over a fixed field
𝐾? The possible torsion subgroups 𝐸(𝐾)tors that can occur
have been determined only when 𝐾 = ℚ, or when 𝐾 is
a quadratic or cubic number field (e.g., 𝐾 = ℚ(𝑖), or
𝐾 = ℚ( 3√2)). For 𝐾 = ℚ, the list of torsion subgroups
was conjectured by Levi in 1908, later reconjectured by
Ogg in 1970, and finally proved in 1976 by Mazur:

𝐸(ℚ)tors ≅ {ℤ/𝑁ℤ for 1≤𝑁≤10, or 𝑁=12,
ℤ/2ℤ⊕ℤ/2𝑀ℤ for 1≤1𝑀≤4.

In contrast, the list of possible ranks𝑅𝐸/𝐾 is completely
unknown, even over ℚ. We do not even know if this list
is finite or infinite for any fixed number field. The largest
rank known over ℚ is 28, for a curve found by Elkies.

The open questions about the rank of an elliptic
curve are central to what makes the 𝐾-rational points on
elliptic curves so hard to determine. The difficulty arises
from the failure of the local-to-global principle (or Hasse
principle) on curves of genus greater than or equal to 1
(see footnote 1). For an elliptic curve 𝐸/𝐾, one defines
the Tate–Shafarevich group X = X(𝐸/𝐾) to measure the
failure of the Hasse principle on 𝐸. In a sense,X plays the
role of the ideal class group of a number field. However,
we do not know that X(𝐸/𝐾) is always a finite group.3 If
we knew that X is always finite, then a method Fermat
inaugurated, called descent, would presumably yield an
algorithm to determine all the 𝐾-rational points on 𝐸.

In the 1960s, Birch and Swinnerton-Dyer conjectured
an analytic approach to computing the rank of an elliptic
curve. Later, their conjecture was refined in terms of the
Hasse–Weil 𝐿-function of an elliptic curve 𝐸 (over ℚ for
simplicity), which is defined by an Euler product:

𝐿(𝐸, 𝑠) = ∏
𝑝 prime

𝐿𝑝(𝐸, 𝑝−𝑠)−1,

where 𝐿𝑝(𝐸,𝑇) = 1− 𝑎𝑝𝑇+ 𝑝𝑇2 for all but finitely many
primes, 𝑎𝑝 = 𝑝+1−#𝐸(𝔽𝑝), and #𝐸(𝔽𝑝) is the number of
points on 𝐸 considered as a curve over 𝔽𝑝. Thus defined,
𝐿(𝐸, 𝑠) converges as long as Re(𝑠) > 3/2. In fact, Hasse
conjectured more: any 𝐿-function of an elliptic curve over
ℚ has an analytic continuation to the whole complex
plane. This has now been proved as a consequence of the
modularity theorem that we discuss below. The Birch and
Swinnerton-Dyer conjecture (BSD) claims that the order

An elliptic curve can
be equipped with an

Abelian group
structure.

of vanishing of
𝐿(𝐸, 𝑠) at 𝑠 = 1
is equal to 𝑅𝐸/ℚ,
the rank of 𝐸(ℚ).
In fact, the conjec-
ture also predicts
the residue at 𝑠 =
1 in terms of in-
variants of 𝐸/ℚ.
For instance, the

curve 𝐸 ∶ 𝑦2+𝑦 = 𝑥3−7𝑥+6 is of rank 3, with 𝐸(ℚ) ≅ ℤ3,
and the graph of 𝐿(𝐸, 𝑥) for 0 ≤ 𝑥 ≤ 3 is displayed in
Figure 3. The BSD conjecture is known to hold only in
certain cases of elliptic curves of rank 0 and 1, by work
of Coates and Wiles, Gross and Zagier, Kolyvagin, Rubin,
Skinner and Urban, among others. However, Bhargava,
Skinner, and Zhang have shown that BSD is true for at
least 66 percent of all elliptic curves over the rationals.

The study of elliptic curves grew in popularity in the
1980s when Hellegouarch, Frey, and Serre outlined a road
map to prove Fermat’s Last Theorem by proposing that
a certain elliptic curve cannot exist. Roughly speaking,
if 𝑝 ≥ 11 and 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝 is a nontrivial solution
of Fermat’s equation 𝑋𝑝 + 𝑌𝑝 = 𝑍𝑝, then the so-called
Frey–Hellegouarch curve 𝑦2 = 𝑥(𝑥 − 𝑎𝑝)(𝑥 + 𝑏𝑝) would
have two properties thought to be contradictory. First,
the curve would be semistable, which is a mild technical

3The finiteness of X is known only in certain cases with rank ≤ 1,
by work of Kolyvagin and Rubin.
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condition about the type of curves 𝐸/𝔽𝑝 that we get
by reducing the coefficients of E modulo 𝑝. Second,
the curve would be modular, a property we explain
in the next paragraph. The statement that the Frey–
Hellegouarch curve is semistable but not modular was
first formalized by Serre and then proved by Ribet.
With Ribet’s result, to prove Fermat’s Last Theorem, one
needed to prove “only” that all semistable elliptic curves
over ℚ are modular. This statement emerged in the
1950s and is sometimes called the modularity conjecture,
or Taniyama–Shimura–Weil conjecture.4 The modularity
conjecture relates two seemingly very distinct objects:
elliptic curves and modular forms.

Figure 3. An 𝐿-function 𝐿(𝐸, 𝑥) with a zero of order 3
at 𝑥 = 1.

A modular form is a complex-analytic function 𝑓
on the upper-half complex plane that satisfies cer-
tain symmetries. In particular, 𝑓(𝑠) admits a Fourier

Modularity fits
into a much

larger context,
together with the

Langlands
program and the
Fontaine–Mazur

conjecture.

series expansion 𝑓(𝑠) =
∑𝑛≥0 𝑎𝑛𝑞𝑛, where 𝑞 =
𝑒2𝜋𝑖𝑠, and we can attach
to the modular form 𝑓
an 𝐿-function 𝐿(𝑓, 𝑠) =
∑𝑛≥0 𝑎𝑛/𝑛𝑠. The mod-
ularity conjecture says
that every elliptic curve
𝐸 is associated to a
modular form 𝑓 such
that 𝐿(𝐸, 𝑠) = 𝐿(𝑓, 𝑠);
i.e., their 𝐿-functions
coincide. In particular,
this implies that 𝐿(𝐸, 𝑠)
has an analytic contin-
uation to ℂ, because
𝐿(𝑓, 𝑠) is known to have
one. In 1993Wiles [2] announced a proof of themodularity
conjecture in the semistable case, but a flaw was found in
the proof, which was fixed in 1995 by Taylor and Wiles. In
2001 the full conjecture was proved for all elliptic curves
over ℚ by Brueil, Conrad, Diamond, and Taylor. In 2015

4See Lang’s article in the Notices, November 1995, for a detailed
historical account of the modularity conjecture.

Freitas, Le Hung, and Siksek extended the modularity the-
orem to real quadratic fields. Modularity fits into a much
larger context, together with the Langlands program and
the Fontaine–Mazur conjecture, which was described in
Mark Kisin’s “What Is a Galois Representation?” (Notices,
June/July 2007).

The canonical starting point for a graduate student
interested in learning more about elliptic curves is Sil-
verman’s The Arithmetic of Elliptic Curves [1]. A more
elementary approach is Silverman and Tate’s Rational
Points on Elliptic Curves.
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