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This note was written to answer the question, What
is tropical geometry? That question can be interpreted
in two ways: Would you tell me something about this

Tropical
geometry
transforms

questions about
algebraic

varieties into
questions about

polyhedral
complexes.

research area? and Why
the unusual name ‘tropi-
cal geometry’? To address
the second question, trop-
ical geometry is named in
honor of Brazilian com-
puter scientist Imre Simon.
This naming is compli-
cated by the fact that he
lived in São Paolo and com-
muted across the Tropic
of Capricorn. Whether his
work is tropical depends
on whether he preferred to
do his research at home or
in the office.

The main goal of
tropical geometry is trans-
forming questions about

algebraic varieties into questions about polyhedral
complexes. A process called tropicalization attaches a
polyhedral complex to an algebraic variety. The polyhe-
dral complex, a combinatorial object, encodes some of
the geometry of the original algebraic variety. There are
other ways of constructing similar polyhedral complexes,
and the polyhedral complexes that arise can be studied
in their own right. We will discuss three approaches: the
synthetic, the valuative, and the degeneration-theoretic.

Synthetic Approach
Tropical geometry originally arose from considerations of
tropical algebra, itselfmotivatedbyquestions in computer
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Figure 1. Tropical curves, such as this tropical line
and two tropical conics, are polyhedral complexes.

science. Here, tropical geometry can be considered as alge-
braic geometry over the tropical semifield (ℝ∪{∞},⊕,⊗)
with operations given by

𝑎⊕ 𝑏 = min(𝑎, 𝑏), 𝑎 ⊗ 𝑏 = 𝑎+ 𝑏.
One can then find tropical analogues of classical math-
ematics and define tropical polynomials, tropical hyper-
surfaces, and tropical varieties. For example, a degree 2
polynomial in variables 𝑥,𝑦 would be of the form
min(𝑎20 +2𝑥,𝑎11 + 𝑥+ 𝑦,𝑎02 + 2𝑦,𝑎10 + 𝑥,𝑎01 +𝑦,𝑎00)
for constants 𝑎𝑖𝑗 ∈ ℝ∪ {∞}. The zero locus of a tropical
polynomial is defined to be the set of points where the
minimum is achieved by at least two entries. In the above
example, it would be the set of points (𝑥, 𝑦) where there
are distinct indices (𝑖1, 𝑗1), (𝑖2, 𝑗2) such that

𝑎𝑖1𝑗1 + 𝑖1𝑥 + 𝑗1𝑦 = 𝑎𝑖2𝑗2 + 𝑖2𝑥 + 𝑗2𝑦 ≤ 𝑎𝑖𝑗 + 𝑖𝑥 + 𝑗𝑦
for all pairs (𝑖, 𝑗). These objects do not look like their clas-
sical counterparts and instead are polyhedral complexes
of differing combinatorial types. For example, Figure 1
shows a tropical line and two tropical curves cut out by
degree 2 polynomials in 𝑥 and 𝑦.

Recall that a polyhedral complex in ℝ𝑛 is a union of
polyhedra (that is, sets cut out by linear equations and
inequalities) such that any set of polyhedra intersects in
a common (possibly empty) face of each member. More
is true about the polyhedral complexes that arise in this
fashion; they are tropical varieties, which are defined
to be integral, weighted, balanced polyhedral complexes.
Here integral means that their defining linear equations
and inequalities have integer coefficients;weightedmeans
that their top-dimensionalpolyhedraare assignedpositive
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A combinatorial
object encodes

some geometry of
the algebraic

variety.

integer weight (in the
above example, all
weights are 1); and bal-
anced means that the
weights around a codi-
mension 1 face satisfy
a particular balancing
relation,which in the1-
dimensional case says
that the primitive in-
teger vectors along
edges emanating from
a given vertex, multiplied by the weight of the edges, sum
to zero. This can be thought of as a zero tension condition
as in physical dynamics.

Tropical geometry’s first major result was Grigory
Mikhalkin’s proof (2005) that the number of plane curves
of degree 𝑑 and genus 𝑔 passing through 3𝑑 − 1 + 𝑔
points in general position could be computed by counting
tropical curves with multiplicity. This led to the definition
of an abstract tropical curve as a graph equipped with
additional data. Much of the early development of tropical
geometry involved finding tropical analogues of theorems
about algebraic curves and their enumerative geometry.

Valuation-Theoretic Approach
Another approach to tropical geometry, which was de-
scribed inanunpublishedmanuscript ofMikhailKapranov
from the early 1990s but dates back to work of George
Bergman (1971) and Robert Bieri and J. R. J. Groves (1984),
is to define a tropical variety as a shadow of an algebraic
variety. We will first discuss a more familiar, analytic
version of this approach involving logarithmic limit sets.
For 𝑡 > 0, consider the map Log𝑡 ∶ (ℂ∗)𝑛 → ℝ𝑛 given by

(𝑧1,… , 𝑧𝑛) ↦ (log𝑡(|𝑧1|),… , log𝑡(|𝑧𝑛|)).
The image of an algebraic subvariety 𝑋 ⊂ (ℂ∗)𝑛 is called
an amoeba. Under the Hausdorff limit, lim𝑡→∞ Log𝑡(𝑋),
it becomes a piecewise linear object called a polyhedral
fan. When one studies a family of varieties 𝑋𝑡 ⊂ (ℂ∗)𝑛
parameterized by 𝑡 and considers lim𝑡→∞ Log𝑡(𝑋𝑡), one
obtains a richer polyhedral complex.

For the algebraic approach, let 𝕂 be an algebraically
closed field equipped with a nontrivial non-Archimedean
valuation𝑣∶ 𝕂∗ → 𝐺 ⊆ ℝwhere𝐺 is an additive subgroup
of ℝ. Here 𝕂∗ = 𝕂\{0} is the set of units in 𝕂. The
valuation is said to be non-Archimedean if

𝑣(𝑥𝑦) = 𝑣(𝑥) + 𝑣(𝑦),
𝑣(𝑥 + 𝑦) ≥ min(𝑣(𝑥), 𝑣(𝑦)).

An example to keep in mind is 𝕂 = ℂ{{𝑡}}, the field of
formal Puiseux series, which is the algebraic closure of
the field of Laurent series. Here, an element 𝑥 ∈ 𝕂 can be
written as a formal power series with complex coefficients
and fractional exponents with bounded denominator:

𝑥 =
∞
∑
𝑖=𝑙

𝑐𝑖𝑡𝑖/𝑁, 𝑐𝑙 ≠ 0.

The valuation is defined by 𝑣(𝑥) = 𝑙/𝑁, the smallest
exponent with nonzero coefficient.

An algebraic torus (𝕂∗)𝑛 is the Cartesian product of
finitely many copies of 𝕂∗ and should be thought of as
analogous to (𝑆1)𝑛. A subvariety of (𝕂∗)𝑛 is the common
zero set of a system of Laurent polynomial equations in
the coordinates 𝑥1, 𝑥2,… , 𝑥𝑛. The tropicalization of 𝑋 is
defined to be Trop(𝑋) = 𝑣(𝑋), the topological closure
of the image of 𝑋 under the product of valuation maps
𝑣∶ (𝕂∗)𝑛 → ℝ𝑛. This approach does specialize to the
synthetic approach, a fact that we illustrate with an
example. Consider the subvariety 𝑋 in (𝕂∗)2 defined by
𝑥 + 𝑦 + 1 = 0. For a point (𝑥, 𝑦) to belong to 𝑋, what
must be true of its valuations? Let us express the defining
equation of 𝑋 in terms of the Puiseux series of 𝑥, 𝑦, and
1:

∞
∑
𝑖=𝑙

𝑐𝑖𝑡𝑖/𝑁 +
∞
∑
𝑖=𝑚

𝑑𝑖𝑡𝑖/𝑁 + 𝑡0 = 0.

For this equality to be satisfied, the coefficients of any
exponent must sum to zero. In particular, the coefficients
of the smallest power of 𝑡 must sum to 0, so there must
be at least two such nonzero coefficients. This tells us
that min(𝑣(𝑥), 𝑣(𝑦), 𝑣(1)) must be achieved by at least
two entries. It follows that Trop(𝑋) is contained in the
tropical hypersurface of 𝑥 ⊕ 𝑦⊕ 0 (where 0 = 𝑣(1)). It is
a theorem of Kapranov that the reverse containment is
true, in fact, for all hypersurfaces.

This valuative approach allows one to speak of tropical
varieties, not just tropical hypersurfaces. The tropical
varieties that arise are integral, weighted, balanced poly-
hedral complexes by a result of David Speyer (2005).
Moreover, they capture some of the geometry of the
original variety 𝑋 by reflecting 𝑋’s class in intersection
theory and, under suitable smoothness conditions, some
of 𝑋’s cohomology. In this sense, Trop(𝑋) is a shadow
of 𝑋. Computing tropicalizations of algebraic varieties
is an interesting problem making use of Gröbner basis
techniques.

Degeneration-Theoretic Approach
Tropical geometry is very closely related to the study
of degenerations of algebraic varieties. In the classical
situation, one may have a family of varieties 𝑌𝑡 ⊂ (ℂ∗)𝑛
depending on a parameter 𝑡 varying in a small disc 𝔻
around the origin. This arises, for instance, if one is
given an algebraic variety 𝒴 ⊂ (ℂ∗)𝑛 ×𝔻 with projection
𝑝∶ (ℂ∗)𝑛 × 𝔻 → 𝔻. The varieties 𝑌𝑡 are fibers of the
projection restricted to𝒴. One usually studies semistable
families so that 𝒴 is nonsingular, the fibers 𝑌𝑡 for 𝑡 ≠ 0
are smooth, and the central fiber 𝑌0 has very mild
(so-called normal crossing) singularities. The irreducible
components of 𝑌0 may intersect in a combinatorially
interesting fashion encoded by a polyhedral complex Γ,
called the dual complex. The central fiber 𝑌0 is called a
degeneration of the generic fiber 𝑌𝑡 for 𝑡 ≠ 0.

There is a purely algebraic analogue of the study
of families of algebraic varieties over a disc, the study
of schemes over a valuation ring. Here, the field 𝕂 is
the algebraic analogue of the field of germs of analytic
functions near the origin on a punctured disc 𝔻∗. A
variety 𝑋 over 𝕂 is analogous to a family of varieties
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Figure 2. Associated to a curve (left) is its dual graph
(right).

over the punctured disc. Under suitable conditions, one
may extend 𝑋 to a semistable scheme 𝒳 over 𝒪, the
valuation ring of 𝕂. The scheme 𝒳 is analogous to an
extension of the family over the disc. The reduction
𝑋0 of 𝒳 to the residue field k of 𝒪 is analogous to
the central fiber of the family. Under conditions on
𝑋 introduced by Jenia Tevelev, Trop(𝑋) is very closely
related to thedual complex.ThecomplexTrop(𝑋)encodes
some of the combinatorics of the components of 𝑋0. In
that sense, it is not surprising that Trop(𝑋) would
reflect geometric properties of 𝑋. There is a certain
tension between algebraic geometry and combinatorics
in tropical geometry: if the combinatorics of Trop(𝑋)
are simple, the algebraic geometry of the components is
likely to be complicated and rich; if the components of the
degeneration are simple, the combinatorics of Trop(𝑋)
are rich and capture the geometry of 𝑋.

One can try tomake tropical geometrymore intrinsic by
studying the combinatorics of degenerations of abstract
varieties 𝑋 over 𝕂. This approach has been developed
furthest in the case of curves and has led to the theory
of linear systems on graphs as pioneered by Matthew
Baker and Sergei Norine. We will work with an example
borrowed from the work of Baker to illustrate this theory.
We examine a family of curves in ℙ2 parameterized by 𝑡:
consider the family 𝒳 of quartic curves in ℙ2 ×𝔻 defined
by 𝐹((𝑋,𝑌,𝑍), 𝑡) = 0 with

𝐹((𝑋,𝑌,𝑍), 𝑡) = (𝑋2 − 2𝑌2 +𝑍2)(𝑋2 −𝑍2) + 𝑡𝑌3𝑍.
When 𝑡 ≠ 0 is small, this defines a smooth plane quartic.
When 𝑡 = 0, the curve is the union of a conic 𝐶 and
two lines ℓ1 and ℓ2. The total space of the family is
singular but can be made nonsingular by blowing up the
intersection point of the two lines. This introduces a new
component of 𝑋0, which is a rational curve 𝐸. The curve
𝑋0 has at worst nodal singularities, meaning that near the
intersection of components, the curve locally looks like
𝑥𝑦 = 0.

In Figure 2, the central fiber of the resulting family is
pictured on the left. One may form its dual graph Γ by
associating a vertex to each irreducible component of 𝑋0
and associating an edge to each nodal singularity of 𝑋0.
This gives the dual graph pictured on the right.

One can define divisors on the dual graph as formal
integer combinations of vertices of Γ. There is a notion
of specializing a divisor 𝒟 from the generic fiber 𝑋 of 𝒳
to a divisor 𝐷 on the dual graph Γ. In fact, one can work
out a rich combinatorial theory of divisors on graphs.
Here, linear equivalence of divisors is generated by chip-
firing moves on graphs, which have been studied in other
contexts. One can define the rank 𝑟Γ(𝐷) of the linear

system associated with the divisor. By a semicontinuity
argument, this rank provides an upper bound for the
dimension of the linear system on 𝑋 containing 𝐷. With
this bound, one is able to use combinatorial methods
to prove strong results in the theory of algebraic curves
as described in the survey [1]. Recent work of Dustin
Cartwright extends this theory to higher dimensions.

Research in Tropical Geometry
Research in tropical geometry is heading in several differ-
ent directions. The foundations of tropical geometry are
undergoing continual revision and are not yet settled. Ap-
plications of tropical geometry to enumerative geometry
are still being uncovered, many of them in the direction
of mirror symmetry. Tropical geometry also provides a
hands-on way of studying Berkovich spaces, a theory of
analytic geometry over complete non-Archimedean fields.
Tropical techniques are now being employed in compu-
tational algebraic geometry. There have been many new
applications of the theory of linear systems on graphs
to algebraic curves. Careful use of degeneration methods
has led to results in Diophantine geometry, a branch
of number theory. Tropical geometry also allows one to
apply geometrically motivated techniques to purely com-
binatorial objects through associated tropical varieties,
bringing powerful new techniques to combinatorics and
resolving old problems. Tropical varieties have even been
studied in their own right, as they are combinatorially
interesting objects.

Further Reading
[1] M. Baker and D. Jensen, Degeneration of linear series from

the tropical point of view and applications, Proceedings
of the Simons Symposium on Nonarchimedean Geometry,
Simons Symposia, Springer, 2016, 365–433.

[2] D. Maclagan and B. Sturmfels, Introduction to Trop-
ical Geometry, Amer. Math. Soc., Providence, RI, 2015.
MR3287221

Editor’s Note
See also “What is a tropical curve?” by Grigory Mikhalkin
in the April 2007Notices. Other related columns are “What
is an amoeba?” by Oleg Viro (September 2002) and “What
is a Gröbner basis?” by Bernd Sturmfels (November 2005).
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