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a Virtual Knot?
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Virtual knots generalize classical knots. They were introduced by L. H. Kauffman in 1999." In order to describe

virtual knots we must back up a bit.

What is a Knot?

A knot k is a circle smoothly embedded in the 3-
dimensional sphere S3. Two knots ki, k, are equivalent,
and hence regarded as the same, if there is an orientation-
preserving homeomorphism h : §° - §* such that
h(k;) = ko. A basic theorem of topology assures us
that such a homeomorphism is isotopic to the identity.
Consequently, k; and k, are the same if we can deform
k1, through a sequence of intermediate knots, into k.

The trivial knot, also called the unknot, is represented
by a simple closed circle in the plane. Any other knot
is said to be nontrivial. A collection of pairwise disjoint
knots is a link, with equivalence defined in the obvious
way.

Johann Benedict Listing, a student of Gauss, and the
Scottish physicist Peter Guthrie Tait independently began
the first sustained investigations of the subject, in the mid-
nineteenth century. Tait’s interest arose from the “vortex
atom theory” of Lord Kelvin, a fanciful theory in which
atoms are infinitesimal knots of frictionless, invisible
ather. Classifying knots then became the main goal of
knot theory. Without effective tools, it remained so until
the second decade of the last century, when penetrating
algebraic methods became available. Today there are so
many strong invariants of knots that classification is no
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Figure 1. The figure-eight knot, also known as
Listing’s knot, can be drawn with four crossings.

longer a main objective. Instead the need to understand
relationships among invariants has become paramount.

A knot generically projected on a plane, without triple
intersection or tangent points, can be viewed as a regular
4-valent plane graph. If we add a trompe l'oeil effect
at each vertex, indicating how one strand passes over
another, the resulting picture is called a knot diagram. A
diagram of the figure-eight knot appears in Figure 1.

K. Reidemeister in 1927 (and, independently, J. W.
Alexander and G. B. Briggs in 1926) showed that two
diagrams represent the same knot if and only if one can
be deformed into the other by planar isotopy and a finite
number of applications of three types of local changes
that leave diagrams unaltered outside of the prescribed
regions. The three local changes are called Reidemeister
moves. See Figure 2.

Reidemeister moves enable us to investigate knots
combinatorially. Any quantity assignable to a diagram
is a knot invariant if and only if it is unchanged by
allowed moves of the diagram. Some of the most powerful
knot invariants such as the knot group and the Jones
polynomial can be defined and shown to be invariant in
this way.

NOTICES OF THE AMS 461


mailto:reprint-permission@ams.org
http://dx.doi.org/10.1090/noti1520

THE GRADUATE STUDENT SECTION

/\— N
\/C«\/ \

" \
/- \l \\_\/

Figure 2. Pictured here are Reidemeister moves on
the knot diagrams, which leave the knots themselves
unchanged.

Virtual Knots

The combinatorial perspective inspired an entirely new
direction for knot theory in 1999. In that year L. H.
Kauffman proposed a more general type of knot, a
virtual knot, described by a decorated 4-valent graph, as
before, but with a second type of crossing, a virtual
crossing, indicated by encircling the vertex. A virtual
knot is an equivalence class of diagrams, two diagrams
being equivalent if and only if one can be deformed
into the other by planar isotopy and a finite number of
applications of extended Reidemeister moves. The latter
include the moves of Figure 2 as well as the additional

moves in Figure 3.
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Figure 3. Virtual knots admit additional Reidemeister
moves, shown here.
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Not allowed are two “forbidden moves,” passing an
arc of the diagram over or under a virtual crossing, as in
Figure 4.
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Figure 4. These “forbidden moves” do not preserve
virtual knots.

In the new parlance, a classical knot is simply a knot
that can be represented by a diagram without virtual
crossings. (We complete the lexicon by calling a crossing
that is not virtual a classical crossing.) Virtual crossings
can always be introduced into a diagram and then later
removed using extended Reidemeister moves. However, a
theorem of M. Gourssarov, M. Polyak, and O. Viro assures
us that if two classical knots are equivalent as virtual
knots, then they are the same classical knots. Happily,
virtual knot theory is an extension of the classical theory.

Kauffman’s motivation for defining virtual knots came
from Gauss’s idea for encoding classical knots. A Gauss
code for a classical knot diagram is obtained in the
following way. First, number the crossings, say 1,...,m.
Then beginning at crossing 1, and moving along the
diagram in a direction, record the crossings as they are
encountered until arriving back at the starting point. In
this way each number is recorded twice. A simple example
appears in Figure 5.

(1212)

Figure 5. The virtual knot shown here realizes the
Gauss code (1212).

Kauffman’s inspiration came from the observation
that if we wish to achieve an arbitrary permutation of
1,1,..., m, m, then it is necessary, but also sufficient, that
we introduce some virtual, unlabeled crossings into our
diagram.

Virtual knots and links can in fact be regarded as Gauss
codes (with extra symbols encoding crossing information)
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modulo a suitable equivalence relation. Again knot theory
becomes combinatorial!

Invariants of classical knots that can be defined com-
binatorially can often be defined for virtual knots. This
is true of one of the most important classical knot in-
variants, the knot group of k, denoted here by 7T (k). To
define it, consider any diagram for k. Each maximal con-
nected component, or arc, of the diagram corresponds
to a generator, and each classical crossing determines a
relation. We ignore virtual crossings. When the diagram
has no virtual crossings, the presentation that we get
this way is the well-known Wirtinger presentation of the
fundamental group 1 (S3\k). This is illustrated in Figure
6 for the figure-eight knot. In this case (k) is infinite
cyclic if and only if k is trivial.

a

Figure 6. Assigning generators to the arcs of the
diagram as shown, we obtain a presentation of the
group of the figure-eight knot,

(k) = (a,b,c,d | ac = da,ba = db,ca = bc,dc = bd).

The group of a classical knot is a strong invariant.
However, there are nontrivial virtual knots with infinite
cyclic groups. One such knot, commonly called Kishino’s
knot, appears in Figure 7. Applying the second forbidden
move of Figure 4 to a diagram obviously does not affect
the group. Since using the move along with the allowed
virtual knot moves enables us to turn Kishino’s knot into
the unknot, the reader can check easily that the group
of the knot is infinite cyclic. Fortunately, other invariants
can show that Kishino’s knot is nontrivial.
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Figure 7. Kishino’s knot, depicted here, is a nontrivial
virtual knot with the same knot group as the trivial
knot.

Pick up a diagram for a virtual knot k and turn it
over. (For this it might be helpful to imagine the diagram
made of rigid material.) We obtain a diagram of another
virtual knot k*. If k is classical, then k and k* are the
same. However, in general, k* can be different. In fact
their groups can be non-isomorphic. While virtual knot
groups have been characterized, both algebraically and
topologically, no one has yet characterized the possible
pairs (1t (k), Tt (k™)).
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The Jones polynomial is a powerful invariant of clas-
sical knots. Discovered by V. Jones in 1984, it sparked
new interest in combinatorial knot-theoretic methods. It
is an open question whether a nontrivial classical knot
can have Jones polynomial equal to 1.

Using Kauffman’s bracket polynomial formulation, the
Jones polynomial can be defined for virtual knots. Kauff-
man discovered a method for constructing nontrivial
virtual knots with Jones polynomial equal to 1. Could
such a knot be shown to be classical, thereby answering
the open question?

Why Virtual Knots?

As no evidence of Kelvin’'s ather was found, the vortex
atom theory dissipated, allowing knot theory to step
out from the fog. Henri Poincaré saw knot theory as
an important paradigm of the codimension-2 placement
problem, understanding how a manifold can embed in
another manifold with two extra dimensions. The status
of the subject climbed even higher in the early 1960s,
when W. B. R. Lickorish and A. H. Wallace proved that every
closed, orientable connected 3-manifold can be obtained
from a link in the 3-sphere by a simple procedure called
“spherical modification” or “surgery.”

What then is the significance of virtual knots? Rather
than living in the 3-sphere, virtual knots or links can be
regarded as simple closed curves embedded in thickened
surfaces S X I modulo a suitable equivalence relation.
From this point of view the classical crossings arise from
projecting onto S while the virtual crossings come from
projecting S onto the plane.

The main idea is due to N. Kamada, expanded upon by
J. S. Carter, S. Kamada, and M. Saito. Neither the genus
of the surface nor the embedding is, in general, unique.
However, G. Kuperberg showed that when the knot or
link is represented by an embedding in a surface of
smallest possible genus, then the embedding is unique
up to isotopy. Of course, classical knots and links are
represented uniquely in the thickened sphere. From this
perspective, virtual knot theory might seem a bit less
mysterious.

Mathematicians have played with knots for a relatively
short period of time. It is possible that one day we will
understand that these tangled ropes represent deep and
important relations, a vision that so far has eluded us.
Relaxing our axioms, as virtual knot theory demands,
might just bring that day closer. In the meantime, we will
play and enjoy!

Further Reading

1. L. H. KAUFEMAN, Introduction to virtual knot theory, J. Knot
Theory Ramifications 21 (2012), no. 13, 1240007, 37 pp.

2. V. 0. MANTUROV, Virtual Knots: the State of the Art, Series on
Knots and Everything: Volume 51, World Scientific, Singapore,
2012.
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