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a Generalised

Mean-Curvature Flow?

Editor's Note: The Graduate Student section welcomes
submissions that, like the present “WHAT IS...?”
column, are written by students. See “For Authors”
on the Notices website,[www.ams.org/notices/
[noticesauthors.

To untie a shoelace by pulling both ends of the string,
shrinking the bunny ears until they disappear, gives great
intellectual pleasure. Mathematically, we unknotted an
unknot by decreasing the length of the curve contained
in the knot. This procedure turns out to be a rather
effective way to simplify geometries. It is one of the
reasons why geometers like Richard Hamilton study the
so-called curve-shortening flow, where an initial curve is
continuously deformed so that its length decreases over
time.

The way to do this is
to move or flow the curve
normal to itself at arate pro-
portional to its curvature.
There is a similar flow as in
Figure 1 to reduce the area
of a (d — 1)-dimensional
surface in R?, at a rate
proportional to the mean
curvature, the mean of the
curvatures of 1-dimensional slices by orthogonal planes.

Apart from shortening curves, the mean-curvature flow
enjoys other nice properties, such as locality, since the
motion of a point depends only on an infinitesimal neigh-
bourhood, and rigid-motion invariance, since “length” is
invariant under rigid-motions. Other properties are more
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Figure 1. The surface of a dumbbell develops a
singularity before turning into two disconnected
spherical shapes.

subtle. If you know that the mean curvature is the Lapla-
cian of the function that measures distances from points
to the manifold, then you can see that the motion is driven
by a parabolic equation. This parabolicity gives rise to
the inclusion principle, which says that if we deform two
domains U C V by letting their respective boundaries
follow the mean-curvature flow, then these domains re-
main ordered. This is a consequence of the comparison
principle for parabolic equations. It is also a consequence
of geometry: If V failed to contain U at some time, then
there would be a critical moment when U is still inside V
but their boundaries touch at a certain point. Doodle a bit
with curves, and you see that in this situation, to reduce
“length,” the boundaries are instantly pulled away from
each other. Conclusion: U remains inside V.

All these nice properties do not make the mean-
curvature flow perfect. One major flaw is that it is not well
defined globally in time. After convex surfaces shrink into
points, the flowis nolonger defined. But this example does
not capture the worst behaviour, because the object itself
disappears after the critical point. Think of a dumbbell, as
in Figure 1. If the plates are too big compared to the neck,
the dumbbell turns into two smaller plates connected by
a one-dimensional “string.” Again the flow ceases to be
well defined afterwards.

Butwhat we have called a flaw is actually something that
makes the mean-curvature flow analytically interesting.
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We canlook for generalised/weak versions of the flow that
continue the motion after the critical time. This search
for generalised mean-curvature flows has become one of
the central themes in analysis in the past few decades
and leads to a lot of exciting mathematics.

A manifold is the zero set of the function that measures
distances between any point and the manifold. This
distance function satisfies a parabolic equation in the
mean-curvature flow. Therefore, one natural way to get a
generalised mean-curvature flow is to study generalised
solutions to such equations, and then define their zero
level sets to be solutions to the generalised flow. This so-
called level-set method, as described in the December 2016
Notices cover story by Colding and Minicozzi, reduces the
notion of a weak geometric flow to the notion of a weak
solution to parabolic equations. Luckily, the viscosity
solution provides exactly what we need. In fact, much
of the theory of viscosity solutions is inspired by this
approach to a generalised mean-curvature flow.

Another approach takes
advantage of the inclusion
principle. Suppose our mani-
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fold is the boundary of some 1
domain U. Then the inclu- g enel’allSed
sion principle dictates that mean-
any domain initially contain-

ing U continues to do so in curvature

the future. Although U might
be a very rough set where the ﬂOWS leads to a

smooth mean-curvature flow )
does not exist, we can always lOt Of eéxcl Hng
find nice sets containing U. m ath em atl CS

Starting from these nice sets
we do have flows, and we
might simply define a generalised mean-curvature flow
of U to be the intersection of all flows starting from
these nice sets. This method of minimal barriers might
remind the reader of the method of Perron, whereby
one constructs solutions to elliptic equations as least
supersolutions.

A third approach, which goes back to the curve-
shortening property, begins by defining a weak notion of
the length of curves or the area of surfaces. The hope
is that, using this generalised length/area, we would be
able to consider the flow for much rougher objects. Such
generalised length/area is provided by the theory of sets
of finite perimeter from geometric measure theory. At
each instant of time, we look for a set of finite perimeter
that most efficiently reduces this generalised length/area
and define this set to be the solution to the generalised
flow. This gives rise to the notion of flat flows.

A related approach follows from the observation that
the length/area can be seen as the limit of the Ginzburg-
Landau energy functional when a certain parameter €
goes to 0. For each positive €, we have a globally well-
defined gradient flow for this energy. We simply define
our generalised mean-curvature flow as the limit as € goes
to zero of this gradient flow. This is called the phase field
approach.
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The literature on generalised mean-curvature flows is
particularly rich, containing many methods beyond the
scope of a two-page article. To earn the label “generalised
mean-curvature,” however, a flow needs to satisfy several
requirements: firstly, it should be globally defined; sec-
ondly, it should be consistent with smooth flows as long
as the latter exist; and lastly, it should inherit certain key
features of the smooth flows.

These naive-looking requirements sometimes lead to
challenging problems that have inspired a great deal
of research. Because generalised mean-curvature flows
provide a paradigm for the study of all kinds of geometric
flows, results in this area are of especially wide interest.
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