THE GRADUATE STUDENT SECTION

a Varifold?

The Editors

A varifold is one definition of a generalized m-dimensional surface in say \mathbb{R}^n . The full class of varifolds is a very general class of measures. To encode information about both position and tangent direction, a varifold is defined as a measure on the cross product of \mathbb{R}^n with the space of possible tangent planes.

To understand how to view an m-dimensional surface in \mathbb{R}^n as a measure, you need to know that there is a nice m-dimensional "Hausdorff" measure \mathbb{H}^m on \mathbb{R}^n . It assigns to every smooth m-dimensional submanifold its standard m-dimensional area, but it is defined on a much wider class of sets, including of course all closed sets. Given a nice m-dimensional surface S, consider the associated measure

(1)
$$\mu_{S}(A) = H^{m}(S \cap A).$$

By definition the surface S determines the measure μ_S , but it also goes the other way: the measure μ_S determines the nice surface S, at least up to sets of measure 0.

To directly encode information about position and tangent plane, a varifold is defined as a measure on the Cartesian product of \mathbb{R}^n with the set of all possible tangent planes. For an integral varifold, the tangent planes are coordinated with the surface. In a general varifold, the tangent planes are independent. Such a varifold can model an infinitesimally corrugated diagonal slice of a crystal which favors horizontal and vertical directions, having both horizontal and vertical tangent planes, each with probability one-half, as in Figure 1.

As a space of measures, the space of varifolds has a nice topology and nice compactness properties. Most important are the integral varifolds, which correspond to smooth submanifolds and infinite sums of such. There's also a deep compactness theorem for integral varifolds, but it needs a bound not only on total measure but also on curvature and boundary, to avoid nonintegral varifolds

Figure 1. If you cut an edge off a cubical crystal, the exposed surface forms tiny steps, well modeled by a varifold.

in the limit, perhaps as in Figure 1, where the encoded tangent planes are not the geometric ones.

For more about varifolds and current applications, see "The Concept of a Varifold" in this issue of *Notices* (page 1148).

Photo Credit

Figure 1 drawn by J. Bredt, from F. Morgan's *Geometric Measure Theory*, courtesy of Frank Morgan.

For permission to reprint this article, please contact: $\label{eq:contact} \texttt{reprint-permission@ams.org}.$

DOI: http://dx.doi.org/10.1090/noti1585