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Talithia Williams

Williams is a host of PBS’s new NOVA Wonders series,
premiering this spring, Tuesdays at 10 pm.

Mathematics for theMasses (AMS-MAA-SIAM 
Hrabowski-Gates-Tapia-McBayLecture)
In recent months, we’ve witnessed Americans grapple
with the significance of science, technology, engineering,
and mathematics (STEM) through events ranging from
the Paris Agreement to the nationwide March for Science,
where people marched to defend the role of science in
society. In the wake of a renewed excitement for STEM,
I’m thrilled to be joining the Public Broadcasting System
(PBS) family as one of the hosts of a new NOVA series
called NOVA Wonders, premiering this spring. NOVA is
the most-watched prime-time science series on television,
reaching an average of five million viewers weekly.

NOVA Wonders is a six-part series that will journey to
the frontiers of science, where researchers are tackling
some of the most intriguing questions about life and the
cosmos. My goal in hosting the show is to open individuals
to the power of mathematics and data to pursue answers
to questions in a clear and purposeful way. Each hour
explores a different big question, from the mysteries of
astrophysics to the challenges of inventing technologies
that could rival the abilities of the human mind. During
this talk, I plan to share with you an early clip from NOVA
Wonders, which I have the pleasure of hosting along with
neurobiologist André Fenton and computer scientist Rana
El-Kaliouby. I’ll also discuss ways that we can take our
mathematics to the masses and share techniques that

Talithia Williams is associate dean for Research and Experiential
Learning and associate professor of mathematics at Harvey Mudd
College. Her email address is twilliams@hmc.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1616

have been successful in my environment. We all have a
responsibility to inspire a new generation in STEM and
nurture the dreams of future mathematical leaders.

Image Credits
Photo from NOVA Wonders ©2017 WGBH.
Author headshot ©Harvey Mudd College.

ABOUT THE AUTHOR

Talithia Williams researches the
spatial and temporal structure of
data and environmental applica-
tions. She has partnered with the
World Health Organization on a
cataract surgical rate model for
Africa. Her TED talk, “Own Your
Body’s Data,” has over a million
views. She is a guest Notices editor
for the upcoming February issue
for Black History Month.

Talithia Williams
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Figure 1. A network model for diabetics shows three
distinct types, one heavily correlated with cancer.

Gunnar Carlsson
Topological Modeling of Complex Data
In the talk, we will be discussing the modeling of complex
data sets by networks. Here are a couple of examples
of applications of this idea. The first was a model for a
data set of type 2 diabetics constructed by a group at
the Mt. Sinai School of Medicine. The data set included
genomic data as well as information from electronic
medical records. Figure 1 shows a layout of the network
that was obtained.

You can see that the network contains three large
groups connected by “thin wires.” The conclusion the Mt.
Sinai researchers were able to draw from this is that type
2 diabetes, rather than being a single disease, is actually
made up of three distinct types, and they found that
one of these groups was heavily correlated with cancer.
The finding that there are three distinct diseases will
clearly have implications for treatment of the disease and
constitute a contribution to “precision medicine.”

A second example comes from the laboratory of David
Schneider, a microbiologist at Stanford University. He
studies the progression of infectious diseases. He has
constructed a number of data sets using both physiolog-
ical as well as genomic measurements on the subjects.
Figure 2 shows an image of a collection of networkmodels

Gunnar Carlsson is professor of mathematics at Stanford Univer-
sity. His email address is carlsson@stanford.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1618

he constructed for mice and humans infected by flu and
malaria.

You will notice that the models are both loops. This
reflects the fact that they represent a phenomenon that
begins at the healthy state, proceeds through gradual
development of the disease until the immune response
becomes strong, and then returns to the healthy state.

Figure 2. Mouse and human disease network models
each form a loop through disease and recovery.

These models provide a time-independent model for
the actual state of the subject. It is important to have
such a model since (a) the progression of disease occurs
at different rates for different subjects and (b) we don’t
generally have knowledge of the time the infection oc-
curred. This should also be viewed as a contribution to
precision medicine.

In the lecture we will discuss these and numerous other
examples.

Image Credits
Figure 1 courtesy of “From identification of type 2 diabetes sub-

groups through topological analysis of patient similarity,”
L. Li, W-Y. Cheng , B. Glicksberg, O. Gottesman, R. Tamler,
R. Chen, E. Bottinger, and J. Dudley Science Translational
Medicine 28 Oct 2015: Vol. 7, Issue 311, pp. 311ra174.
DOI:10.1126/scitranslmed.aaa9364.

Figure 2 courtesy of From Tracking Resilience to Infections by
Mapping Disease Space, B.Y. Torres, J.H.M. Oliveira, Tate A.
Thomas, P. Rath, K. Cumnock, and D.S. Schneider, PLoS Biol.
14(4): e1002436. DOI:10.1371/journal.pbio.1002436.

Author photo courtesy of Gunnar Carlsson.

Gunnar Carlsson

ABOUT THE AUTHOR

Gunnar Carlsson spent most of his
career working in the pure aspects
of topology, but has turned to ap-
plications of the subject in the last
fifteen years.
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Jill C. Pipher
Nonsmooth Boundary Value Problems (AWM–
AMS Noether Lecture)
The regularity properties of solutions to linear PDEs in
domains in ℝ𝑛 depend on the structure of the equation,
the degree of smoothness of the coefficients of the
equation, and of the boundary of the domain. Quantifying
this dependence is a classical problem, and modern
techniques can answer some of these questions with
remarkable precision. For both physical and theoretical
reasons, it is important to consider partial differential
equations with nonsmooth coefficients. We’ll discuss how
some classical tools in harmonic and complex analysis
have played a central role in answering these questions.

In two papers, in 1958 and in 1962, L. Carleson gave a
new solution to the problem of interpolation of bounded
analytic functions and solved a related problem about
the spectrum of bounded holomorphic functions in the
disk (the “corona” theorem). The interpolation problem is
about finding a bounded analytic function that takes on
prescribed values𝑤𝑗 at prescribed locations 𝑧𝑗. Carleson’s
dual formulation of the interpolation problem led him to
the following question:

Let 𝑑𝜇 be a measure in the unit disk. Suppose 𝐺 is an
analytic function in the unit disk with the norm, for 𝑝 ≥ 1,

‖𝐺‖𝑝 = lim
𝑟→1

( 1
2𝜋 ∫

𝜋

−𝜋
|𝐺(𝑟𝑒𝑖𝜃|𝑝𝑑𝜃)

1/𝑝
.

Then, under what conditions on 𝑑𝜇 do we have the
following inequality:

∫|𝐺(𝑧)|𝑝𝑑𝜇(𝑧) ≤ 𝐶‖𝐺‖𝑝
𝑝

Carleson’s 1958 paper answered this question for certain
point masses, and his 1962 paper gave the general
solution. Measures with this property became known
as Carleson measures and found their way into many
different areas of analysis, including operator theory, the
Caldéron-Zygmund theory of singularity integrals, and
geometric measure theory, to name a few. The main
thrust of this lecture is the crucial role such measures
have played in the development of the theory of elliptic
and parabolic equations.

Indeed, in exactly the same timeframe of 1958–1962,
there were some groundbreaking developments in the
theory of divergence form elliptic and parabolic equa-
tions, known as the De Giorgi–Nash–Moser theory. The
objects of study here are solutions to elliptic equations or
parabolic equations with nonsmooth coefficients, broad

Jill C. Pipher is Elisha Benjamin Andrews Professor of Mathe-
matics, Brown University. Her email address is Jill_Pipher
@brown.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1620

generalizations of two classical operators, Laplace’s equa-
tion and the heat equation. Nash’s 1958 paper begins
by describing his motivation for the consideration of
nonsmooth coefficients. He wanted to understand the be-
havior of solutions to the nonlinear parabolic equations
of flow for a heat-conducting fluid. De Giorgi was led to
the same problem of regularity of solutions to elliptic
equations with nonsmoooth coefficients in an effort to
resolve Hilbert’s nineteenth problem, which asks if “the
solutions of regular problems in the calculus of variations
[are] always necessarily analytic.”

The elliptic equations considered by De Giorgi and Nash
are in divergence form: 𝐿 = div𝐴(𝑥)∇, where the matrix
𝐴(𝑥) has bounded measurable coefficients 𝑎𝑖,𝑗(𝑥) and is
strongly elliptic. The ellipticity condition means that the
spectrum of eigenvalues of 𝐴(𝑥) lies between two fixed
positive parameters. Observe that when 𝐴 is the identity
matrix, 𝐿 is just the classical Laplacian, whose solutions
are the harmonic functions.

What does it mean to have a solution to such an
equation, div𝐴(𝑥)∇𝑢 = 0, when we can’t differentiate the
coefficients 𝑎𝑖,𝑗(𝑥)? Putting this aside for the moment, we
can instead assume that the coefficients𝑎𝑖,𝑗(𝑥) are smooth
and ask what estimates on solutions can be obtained
that are independent of any quantitative measure of that
smoothness. De Giorgi and Nash proved independently
that solutions to such divergence form elliptic equations
possess a degree of continuity in the interior of the
domain that can be measured in terms of the ellipticity
parameters alone. This degree (Hölder) of continuity is
best possible in such generality. This contrasts sharply
with harmonic functions, which are real analytic by virtue
of solving Laplace’s equation.

In 1961 Moser took a different approach to proving
continuity of solutions via a powerful iterative technique.
His proof relied on a property of functions of bounded
mean oscillation (BMO) that had just been discovered
by John and Nirenberg. (In a striking coincidence, their
seminal paper on this subject was published in the same
issueof theCPAM journal asMoser’s paper.) InMoser’s use
of the John-Nirenberg theory of BMO functions, onefinds a
surprising connection to Carleson’s measures, for it turns
out, as C. Fefferman showed ten years later, that BMO
functions and Carleson measures are intimately related:
the harmonic extension of a bounded or BMO function
on ℝ𝑛−1 gives rise to an expression that is a Carleson
measure in the upper half-space ℝ𝑛

+. This discovery about
harmonic functions has found far-reaching extensions in
the elliptic theory.

I hope to give the flavor of some results and open
problems in this subject at the interface of harmonic
analysis and PDE and describe some joint work in recent
years with M. Dindos, S. Hofmann, C. Kenig, S. Mayboroda,
S. Petermichl, D. Rule, T. Toro, and others.
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Image Credit
Author photo courtesy of Brown University.

ABOUT THE AUTHOR

Jill C. Pipher was formerly presi-
dent of the Association for Women
in Mathematics and is founding di-
rector of the Institute for Computa-
tional and Experimental Research
in Mathematics. She is currently
the American Mathematical Soci-
ety president-elect. Jill C. Pipher

Ruth Charney
Searching for Hyperbolicity
As students, we first encounter groups as algebraic
objects, but groups can also be viewed as symmetries of
geometric objects. This viewpoint gives rise to powerful
tools for studying infinite groups. The work of Max Dehn
in the early 1900s on groups acting on the hyperbolic
plane was an early indication of this phenomenon. Dehn’s
ideas were vastly generalized in the 1980s by Cannon
and Gromov to a large class of groups, known as Gromov
hyperbolic groups. In recent years there has been an
effort to push these ideas even further. If a group fails
to be Gromov hyperbolic, might it still display some
hyperbolic behavior? Might some of the techniques used
in hyperbolic geometry still apply?

This talk will begin with an introduction to some basic
ideas in geometric group theory, including Gromov’s
notion of hyperbolicity, and conclude with a discussion of
recent work on finding and encoding hyperbolic behavior
in more general groups. A version of this talk was given
at the AWM Research Symposium 2017, and a more
extended abstract can be found in the “Lecture Sampler”
in the April 2017 Notices.1

Image Credit
Author photo courtesy of Michael Lovett.

Ruth Charney

ABOUT THE AUTHOR

Ruth Charney’s research focuses
on the interplay between groups
and geometry. She has also
worked extensively with profes-
sional organizations, serving as
vice-president and trustee of AMS
and as president of AWM.

Ruth Charney is Theodore and Evelyn Berenson Professor of Math-
ematics at Brandeis University. Her email address is charney@
brandeis.edu.
1www.ams.org/publications/journals/notices/201704
/rnoti-p341.pdf

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1623
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Federico Ardila
Algebraic Structures on Polytopes

AUTHOR’S NOTE. My talk will discuss the algebraic
and combinatorial structure of a beautiful family of
polytopes. It is based on joint work with Marcelo
Aguiar. It will be accessible to undergraduates and
will not assume any previous knowledge of these
topics.

Two Classical Problems: Inverting Power Series
Multiplicative Inversion
Let us consider two power series𝐴(𝑥)=1+∑𝑛≥1𝑎𝑛 𝑥𝑛

𝑛! and
𝐵(𝑥)= 1+∑𝑛≥1𝑏𝑛 𝑥𝑛

𝑛! that are multiplicative inverses; i.e.,
𝐴(𝑥)𝐵(𝑥) = 1. The first few coefficients of 𝐵(𝑥) = 1/𝐴(𝑥)
are

𝑏1 = −𝑎1,
𝑏2 = −𝑎2 + 2𝑎2

1,
𝑏3 = −𝑎3 + 6𝑎2𝑎1 − 6𝑎3

1,
𝑏4 = −𝑎4 + 8𝑎3𝑎1 + 6𝑎2

2 − 36𝑎2𝑎2
1 + 24𝑎4

1.

Compositional Inversion
Consider two power series 𝐶(𝑥) = 𝑥 +∑𝑛≥2 𝑐𝑛−1𝑥𝑛, and
𝐷(𝑥) = 𝑥 +∑𝑛≥2 𝑑𝑛−1𝑥𝑛 that are compositional inverses;
i.e., 𝐶(𝐷(𝑥)) = 𝑥. The first few coefficients of 𝐷(𝑥) =
𝐶(𝑥)⟨−1⟩ are

𝑑1 = −𝑐1,
𝑑2 = −𝑐2 + 2𝑐2

1 ,
𝑑3 = −𝑐3 + 5𝑐2𝑐1 − 5𝑐3

1 ,
𝑑4 = −𝑐4 + 6𝑐3𝑐1 + 3𝑐2

2 − 21𝑐2𝑐2
1 + 14𝑐4

1 .
It is natural to ask: What do these coefficients count? Two
families of polytopes hold the answers.

Figure 1. The permutahedra 𝜋1,𝜋2,𝜋3,𝜋4 whose face
structures tell us how to compute the multiplicative
inverse of a series.

Federico Ardila is professor of mathematics, San Francisco State
University, and Simons Professor, Mathematical Sciences Research
Institute. His email address is federico@sfsu.edu.

Supported by NSF CAREER grant DMS-0956178 and Combina-
torics grants DMS-0801075, DMS-1440140, and DMS-1600609.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1621

The permutahedron 𝜋𝑛 (see Figure 1) is the polytope in
ℝ𝑛 whose vertices are the 𝑛! permutations of {1, 2,… ,𝑛},
regarded as vectors. Every face of a permutahedron is a
product of permutahedra of lower dimensions.

The face structure of permutahedra tells us how to
compute 𝐵(𝑥) = 1/𝐴(𝑥). For example, the formula for 𝑏4
shown above is determined by the faces of 𝜋4:
• 1 truncated octahedron 𝜋4,
• 8 hexagons 𝜋3 ×𝜋1 and 6 squares 𝜋2 ×𝜋2,
• 36 segments 𝜋2 ×𝜋1 ×𝜋1, and
• 24 points 𝜋1 ×𝜋1 ×𝜋1 ×𝜋1.
The signs are given by the dimensions of the faces.

Figure 2. The associahedra 𝔞1, 𝔞2, 𝔞3, 𝔞4 whose face
structures tell us how to compute the compositional
inverse of a series.

The associahedron 𝔞𝑛 (see Figure 2) is a polytope in
ℝ𝑛 whose vertices correspond to the 𝐶𝑛 = 1

𝑛+1(2𝑛𝑛 ) as-
sociations of a product 𝑥1 ⋯𝑥𝑛 into binary products.
For example, when 𝑛 = 5, one such association is
(𝑥1𝑥2)((𝑥3𝑥4)𝑥5). Every face of an associahedron is a
product of associahedra of smaller dimensions.

The face structure of permutahedra tells us how to
compute 𝐷(𝑥) = 𝐶(𝑥)⟨−1⟩. For instance, the formula for
𝑑4 shown above comes from the faces of 𝔞4:
• 1 three-dimensional associahedron 𝔞4,
• 6 pentagons 𝔞3 × 𝔞1 and 3 squares 𝔞2 × 𝔞2,
• 21 segments 𝔞2 × 𝔞1 × 𝔞1, and
• 14 points 𝔞1 × 𝔞1 × 𝔞1 × 𝔞1.
Again, the signs come from the face dimensions.

We discovered these results unexpectedly when study-
ing a more general family of polytopes.

Hopf Monoids and Generalized Permutahedra
Edmonds, Stanley, and others taught us that to study
combinatorial objects, it is often helpful to build poly-
hedral models for them. Generalized permutahedra (or
equivalently submodular functions) are a particularly
useful family of polyhedra. They are deformations of
the permutahedron, obtained by moving the faces while
preserving their directions. Two important families are
the permutahedra and associahedra, but there are many
more. Figure 3 shows a few three-dimensional examples.

Joni and Rota, Joyal, Stanley, and others showed that to
study combinatorial objects, it is often helpful to endow
them with algebraic structures. In their book Monoidal
Functors, Species and Hopf Algebras (2010), Aguiar and
Mahajan provide a particularly useful framework: Hopf
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Figure 3. Five generalized permutahedra.

monoids in species. This framework applies to families
of combinatorial objects having natural operations of
merging two disjoint objects into one and breaking an
object into two disjoint parts, subject to various axioms.

Many families of combinatorial objects carry such
polyhedral and algebraic structures: graphs, matroids,
posets, set partitions, and simplicial complexes, to name
just a few. The main idea of this project is to bring
together these two points of view:
Theorem 1. Generalized permutahedra form a Hopf
monoid in species GP. In fact, they are the universal
family of polyhedra with this algebraic structure. The
Hopf monoid GP contains or projects to the Hopf monoids
G,M,P, Π, SC of graphs, matroids, posets, set partitions,
and simplicial complexes.

Combinatorial Hopf Monoids and Antipodes
A key component of a Hopf monoid is its antipode map
s, which is analogous to the inverse map in a group.
The antipode is given by a very large alternating sum,
generally involving lots of cancellation. A fundamental
and often difficult question is to compute this antipode.
Figure 4 shows the antipode of a graph and of a poset.

( ( + 2 +  + 2 4 _s = _

Figure 4. The antipode of a graph and of a poset.

These formulas result from simplifying alternating
sums of 13 and 75 terms, respectively. How can we
systematically explain the extensive cancellation that is
taking place?

This is a rather subtle question. For instance, although
most of the Hopf algebraic structures G,M,P, Π, SC have
been known for decades, optimal formulas for their
antipodes were not known until very recently.

Fortunately, generalized permutahedra provide a geo-
metric setting where the cancellation may be completely
understood topologically. This allows us to obtain the
optimal formula for the antipode of generalized permu-
tahedra.
Theorem 2. The antipode of the Hopf monoid GP is given
by the following cancellation-free and grouping-free for-
mula: If ℘ is a generalized permutahedron in ℝ𝑛, then

s(℘) = ∑
𝔮 face of ℘

(−1)𝑛−dim 𝔮 𝔮.

This automatically yields the optimal formulas for the an-
tipodes of G,M,P, Π, and SC.

Inverting Formal Power Series, Revisited
Oncewediscovered these results,we asked:What happens
when we apply the general theory of the Hopf monoid
𝐺𝑃 to the special families of polytopes 𝜋1,𝜋2,𝜋3,… and
𝔞1, 𝔞2, 𝔞3,…? The answer was very surprising to me: The-
orem 2 implies that the multiplicative and compositional
inverses of power series are given by the alternating
sum of the faces of permutahedra and associahedra, as
explained above.

Image Credits
Figures courtesy of Federico Ardila.
Author photo courtesy of May-Li Khoe.

Federico Ardila
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Federico Ardila works in combi-
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forty thesis students in the US and
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Erica Walker
Hidden in Plain Sight: Mathematics Teaching
and Learning through a Storytelling Lens
Our stories about mathematical excellence are too often
hidden. The recent movie Hidden Figures, surround-
ing Katherine Johnson and her colleagues for their
work at NASA, is the kind of story about mathemat-
ics that can inform us how to make mathematics
learning experiences—in and out of school—more di-
verse, rewarding, engaging, transformative, rigorous, and
commonplace. Such stories can help develop cadres
of young people with strong and positive mathematics
identities who are excited about mathematics; who see
themselves and are seen as talented, knowledgeable do-
ers and users of mathematics; and who are leaders of
robust learning communities. Our work as mathemati-
cians and educators must include uncovering the hidden
and making known the unknown. How can we use narra-
tives of excellence to address the many leaky junctures
within the school mathematics pipeline: more negative
attitudes towards math the longer students are in school;
disparities in course-taking critical for college access and
completion; fewer and fewer students interested in pur-
suing mathematics related careers? And how can we learn
from the use of narratives in other disciplines to promote
mathematics engagement and competence in the public
sphere? My research suggests that there is much to be
learned from the stories that mathematicians tell about
the people and places that were critical to their mathemat-
ics development. And these stories can inspire teachers
and students and generate public interest in mathematics
and mathematicians. The narratives and themes shared
in this talk will reveal successful strategies using hidden
stories in the service of the human and mathematical
development of all.

Erica Walker is professor of mathematics education at Teachers
College, Columbia University. Her email address is ewalker@tc
.edu.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1615

Image Credit
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neker: Black Mathematicians and
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is fond of finding mathematics in
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Dana Randall
Emergent Phenomena in Random Structures
and Algorithms
Monte Carlo methods have become ubiquitous across
science and engineering to model dynamics and explore
large sets of configurations. The idea is to perform a
random walk among the allowable configurations so that
even though only a very small part of the space is
visited, samples will be drawn from close to a desirable
distribution, enabling statistical inferences. Over the last
twenty-five years there have been tremendous advances
in the design and analysis of Markov chains for this
purpose, building on insights from physics, discrete
probability, and theoretical computer science. The main
objectives include designing provably efficient sampling
algorithms, finding computational problems amenable to
this approach, and developing new mathematical tools
for bounding convergence times for these stochastic
processes.

One of the striking discoveries has been the realization
that many natural Markov chains undergo a phase transi-
tion, whereby they abruptly change from being efficient
(and usable) to being inefficient (and thereby impractical
for large problems) as some parameter of the system is
varied. Figure 1 shows an example in which the particles
align only above a critical density. Another example is the
following chain that samples from the set of independent
sets of a graph, known in the statistical physics commu-
nity as the hard-core lattice gas model. We are given a
graph 𝐺 and a parameter 𝜆 > 0, known as the activity
(or fugacity). The state space Ω is the set of independent
sets of 𝐺 and our goal is to sample from the Gibbs (or
Boltzmann) distribution

𝜋(𝐼) = 𝜆|𝐼|/𝑍,
where 𝐼 ∈ Ω is an independent set, |𝐼| is its size, and
𝑍 = ∑𝐽∈Ω 𝜆|𝐽| is the normalizing constant known as the
partition function. When 𝜆 > 1 we are favoring dense
independent sets, and when 𝜆 < 1 we are favoring sparse
ones. Local dynamics can be defined so that we can move
between pairs of configurations with Hamming distance
one, i.e., independent sets that differ by the addition
or deletion of a single vertex, or we can stay where
we are. The celebrated Metropolis algorithm tells us the
probabilitieswithwhich to implement these transitions so
that iterating the moves for sufficiently long will generate
samples from close to the target distribution 𝜋. Starting
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Figure 1. A discrete model for programmable active
matter where particles align only above a critical
high density.

at any configuration 𝜎 ∈ Ω, say the empty independent
set (with no vertices), we repeat the following: choose a
vertex 𝑣 at random; if 𝑣 is in the current independent set,
remove it with probability min(1, 𝜆−1)/2; if it is not in
the independent set, add it with probability min(1, 𝜆)/2 if
doing so does not violate the independence requirement;
in all other cases, keep the independent set unchanged. It
is simple to show that this chain connects the state space
and converges to the unique stationary distribution 𝜋,
so our goal is to determine whether it converges quickly
enough to be practical.

It turns out that for small values of 𝜆, the Metropolis
chain on independent sets converges quickly to stationar-
ity and provides an efficient way to sample, while for large
values of 𝜆 it is prohibitively slow. To see why, imagine
the underlying graph 𝐺 is an 𝑛 × 𝑛 region of ℤ2. Dense
independent sets dominate the stationary distribution 𝜋
when 𝜆 is large, and it will take exponential time (in 𝑛)
to move from an independent set that lies mostly on the
odd sublattice to one that is mostly even.

This type of dichotomy is well known in the statistical
physics community, wheremanymodels have been shown
to abruptly transition from a disordered state to a pre-
dominantly ordered one, characterized by some emergent
phenomenon. Physicists observe phase transitions when
determining whether there is a unique limiting Gibbs
measure on the infinite lattice, known as a Gibbs state. For
the hard-core model on ℤ2, it is believed that there exists
a critical value 𝜆𝑐 such that for 𝜆 < 𝜆𝑐 there is a unique
Gibbs state, while for 𝜆 > 𝜆𝑐 there are multiple Gibbs
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Figure 2. Randall working with former PhD students
Amanda Pascoe Streib and Sarah Miracle.

states. This has been verified for small and large values
of 𝜆 bounded away from the conjectured critical point
𝜆𝑐 ≈ 3.79 in both the computational and the physics
settings [1], [2].

We will explore how phase transitions in random struc-
tures and algorithms can provide valuable insights in
three contexts. First, they allow us to understand the
efficacy and limitations of certain classes of sampling
algorithms, potentially leading to faster alternative ap-
proaches. Second, they reveal statistical properties of
stationary distributions, giving insight into various inter-
acting models from across the sciences. Examples include
colloids or binary mixtures of molecules in suspension;
segregation models, where individuals are more likely to
move when they are dissatisfied with their local demo-
graphics; and interacting particle systems from statistical
physics. Last, we can harness emergent phenomena due
to phase transitions as a new algorithmic tool in order to
coordinate behavior in various asynchronous distributed
systems. Examples include models of programmable ac-
tive matter and swarm robotics. We will see how these
three research threads are closely interrelated, informing
one another in surprising ways.
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André Neves
Minimal Surfaces, Volume Spectrum, and
Morse Index
A recurrent question in mathematics consists in finding
critical points for a given functional defined on some
space. Typical questions ask to
(i) characterize the most stable critical points, i.e., those

that for all but a small number of perturbations still
persist;

(ii) count the number of critical points;
(iii) in case there are infinitely many critical points, study

their asymptotic behavior as they become increasingly
more unstable.

To give a concrete example, one can consider the space
of all closed hypersurfaces in a Riemannian𝑛+1-manifold
𝑀 and the functional that computes the area of these
hypersurfaces. Such spaces are well studied in geometric
measure theory, a field pioneered by Federer and Fleming
in the 1960s. The critical points in this case are called
minimal surfaces and are ubiquitous not only in geometry
but in may other branches of mathematics as well.

For this particular case, there have been new and
exciting developments regarding the questions outlined
above, namely:

(i) jointly with Fernando Marqués, the most stable
minimal surfaces in the round 3-sphere were classified
and used to solve the Willmore Conjecture;

(ii) infinitelymanyminimal surfaces Σ𝑘 have been found
for a large class of Riemannian manifolds [3], [5] (those
with positive Ricci curvature), and their area plus their
degrees of instability have been shown to be increasingly
large [4];

(iii) the area of these infinitely many minimal surfaces
obey a Weyl asymptotic law [2]. More precisely, the
sequence area(Σ𝑘)

𝑘1/(𝑛+1) converges, as 𝑘 tends to infinity, to a
universal constant (depending only on 𝑛) multiplied by
(Vol𝑀)𝑛/(𝑛+1).

We end this brief introduction by noting that the
sequence area(Σ𝑘) is called the volume spectrum, and
a better understanding of its properties would provide
answers to other open problems in geometry. For instance,
Irie, Marqués, and myself [1], used the Weyl Law to show
that for a genericmetric, not only are there infinitelymany
minimal hypersurfaces, but they are dense. In particular
this answered a long-standing conjecture of Yau.
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Ronald E. Mickens
Nonstandard Finite Difference Schemes
Prelude
Nonstandard finite difference (NSFD) schemes1 are an
alternative methodology for constructing discretizations
of differential equations for the purpose of calculating
numerical solutions. This technique arose from earlier
attempts to formulate for classical mechanics a structure
based on discrete time rather than the assumption of a
continuous time-independent variable [1]. This formalism
is consistent with the fact that most differential equations
are models for realizable physical phenomena, and the
data on these systems are obtained at discrete times.
However, since these differential equations cannot be
solved in terms of a finite combination of elementary
functions, there is a fundamental need to determine
numerical approximations to their solutions.

Standard methods based on finite difference discretiza-
tions are generally based on mathematical considerations
of consistency, convergence, and stability. These issues
arise to help in the prevention of numerical instabilities
(NI), i.e., the existence of solutions to the finite difference
equations which do not correspond to any solutions of
the differential equations.

The NSFDmethodology is a “physical” based procedure,
in the sense that it incorporates into the discretiza-
tions many of the important features of the differential
equations and/or their solutions.

Exact Schemes
The genesis of our NSFD methodology is based on the
realization of the existence of exact finite difference repre-
sentations for certain classes of differential equations. To
see this, consider the scalar ordinary differential equation

(1) 𝑑𝑥
𝑑𝑡 = 𝑓(𝑥, 𝑡, 𝜆), 𝑥(𝑡0) = 𝑥0,

where 𝑓(⋯) has properties such that a unique solution
exists and 𝜆 denotes the set of parameters characterizing
the system modeled. Let 𝐹 denote this solution of Eq. (1),
i.e.,

(2) 𝑥(𝑡) = 𝐹(𝑥0, 𝑡0, 𝑡, 𝜆).
Now let the following be a finite difference discretization
of Eq. (1) etc.:

(3) 𝑥𝑘+1 = 𝐺(𝑥0, 𝑘, ℎ, 𝜆),
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where ℎ = Δ𝑡, 𝑡𝑘 = ℎ𝑘, 𝑥𝑘 = 𝑥(𝑡𝑘). The expression in Eq. (3)
is an exact finite difference scheme if

(4) 𝑥𝑘 = 𝑥(𝑡𝑘), ℎ > 0.

For this to occur, we must have

(5) 𝐺(𝑥0, 𝑘, ℎ, 𝜆) = 𝐹(𝑥𝑘, 𝑡𝑘, 𝑡𝑘+1, 𝜆);

i.e., the exact finite difference scheme for Eq. (1) is

(6) 𝑥𝑘+1 = 𝐹(𝑥𝑘, 𝑡𝑘, 𝑡𝑘+1, 𝜆).

Our work on the construction of the NSFD methodology
was motivated by Eq. (6); i.e., if the general solution to
Eq. (1) is known, then from it, its exact finite difference
scheme can be constructed.

Examples of Exact Scheme
The following three elementary equations and their exact
schemes clearly illustrate the nonstandard features of
these constructions in comparison with the standard
discretizations:

𝑑𝑥
𝑑𝑡 = 𝜆1𝑥 − 𝜆2𝑥2 → 𝑥𝑘+1 − 𝑥𝑘

(𝑒𝜆1ℎ − 1)/𝜆1
= 𝜆1𝑥𝑘 −𝜆2𝑥𝑘+1𝑥𝑘,

𝑑2𝑥
𝑑𝑡2 +Ω2𝑥 = 0 → 𝑥𝑘+1 − 2𝑥𝑘 + 𝑥𝑘−1

( 4
Ω2 )[sin(Ωℎ

2 )]
2 +Ω2𝑥𝑘 = 0,

𝑑2𝑥
𝑑𝑡2 = 𝜆𝑑𝑥

𝑑𝑡 → 𝑥𝑘+1 − 2𝑥𝑘 + 𝑥𝑘−1
(𝑒𝜆ℎ − 1)ℎ/𝜆 = 𝜆(𝑥𝑘 − 𝑥𝑘−1

ℎ ) .

NSFD Methodology
In the early 1970s we began to analytically derive exact
discretization schemes for hundreds of both linear and
nonlinear differential equations. From analyses of these
results, the general rules for the NSFD methodology
emerged. The two most significant rules are: (i) the
requirement of more complex mathematical structures
for the discrete representations of derivatives and (ii) the
nonlocal representation of functions.

In more detail, we have

(7) 𝑑𝑥
𝑑𝑡 → 𝑥𝑘+1 − 𝑥𝑘

𝜙 , 𝜙 = ℎ+𝑂(ℎ2),

where𝜙 is calledadenominator functionand, ingeneral, is
not the simple ℎ used in most of the standard procedures.
For particular classes of differential equations, there
exists a procedure for calculating𝜙. Note that𝜙 depends
not only on the step-size, ℎ = Δ𝑡, but also on one or more
parameters appearing in the differential equations.

The nonlocal representation of functions means that
these terms have, in general, discretizations spread over
more than one grid point. The following are some
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examples of these possibilities:

𝑥 = 2𝑥− 𝑥 → 2𝑥𝑘 − 𝑥𝑘+1, 1st-order ODE,

(8a)

𝑥2 →
⎧
⎨⎩

𝑥𝑘+1𝑥𝑘, 1st-order ODE,

( 𝑥𝑘+1+𝑥𝑘+𝑥𝑘−1
3 ) 𝑥𝑘, 2nd-order ODE,

(8b)

𝑥3 → (𝑥𝑘+1 + 𝑥𝑘−1
2 )𝑥2

𝑘, 2nd-order ODE.(8c)

The two major techniques to implement the NSFD
methodology as applied to particular differential equa-
tions are (a) the principle of dynamic consistency (PDC)
and (b) the method of partial equations (MPE).

PDC centers on incorporating some property satisfied
by the differential equations and/or their solutions into
the NSFD scheme. Such properties may include a pos-
itivity condition, special solutions such as fixed-points,
particular asymptotic properties, etc.

MPE breaks a differential equation into three or more
parts of subequations, determines the exact finite differ-
ence scheme for each subequation, and then combines
them into an overall consistent, single discretization for
the original differential equation.

Examples of NSFD Schemes
The initial value problem

(9) 𝑑𝑥
𝑑𝑡 = −𝜆√𝑥, 𝑥(0) = 𝑥0 > 0

can be discretized via the NSFD scheme
(10)
𝑥𝑘+1 − 𝑥𝑘

ℎ =−𝜆(𝑥𝑘+1

√𝑥𝑘
) or 𝑥𝑘+1 − 𝑥𝑘

ℎ =−𝜆(√
𝑥𝑘+1 +√𝑥𝑘

2 ) .

Similarly, the equation for a simple combustion model
(11) 𝑢𝑡 = 𝑢𝑥𝑥 +𝑢2(1 − 𝑢), 0 ≤ 𝑢(𝑥, 0) ≤ 1,
has an NSFD scheme
𝑢𝑘+1
𝑚 −𝑢𝑘

𝑚
Δ𝑡 = (𝑢𝑘

𝑚+1)
2 + (𝑢𝑘

𝑚−1)
2 −(𝑢𝑘

𝑚+1 +𝑢𝑘
𝑚−1

2 )𝑢𝑘+1
𝑚

−[(𝑢𝑘
𝑚+1)2 + (𝑢𝑘

𝑚−1)2
2 ]𝑢𝑘+1

𝑚 + 𝑢𝑘
𝑚+1 − 2𝑢𝑘

𝑚 +𝑢𝑘
𝑚−1

(Δ𝑥)2 ,

where 𝑡𝑘 = (Δ𝑡)𝑘) 𝑥𝑚 = (Δ𝑥)𝑚, and 𝑢𝑘
𝑚 ≈ 𝑢(𝑥𝑚, 𝑡𝑘).

Comments
The NSFD methodology has been applied to a broad
range of differential equations modeling a diverse set of
physical phenomena which include:
• interacting populations,
• nonlinear heat transport,
• impulsive systems,
• delay equations,
• equations having fractional derivatives,
• computational electromagnetics,
• singular perturbation problems, and

• simulation of robotic systems.
A review paper summarizing such applications is the
recent publication by Patidar [3].

An important insight coming from an analysis of the
NSFD methdology is that a proper or valid discretization
of a differential equation involves a deep understanding
of the whole equation. This is in opposition to standard
discretization methods which are based on constructing
discrete models of the individual terms appearing in the
differential equation and then adding them together to
form the final full discretization. One consequence of this
fact is that black-box, “plug-in algorithms,” which are im-
plemented for standard numerical integration techniques,
do not exist for the NSFD methodology.

We welcome you to come to our talk, where a more
thorough and deeper discussion of the above issues will
be given. This will also allow you to ask interesting
and thoughtful questions related to the construction and
use of the NSFD philosophy to discretize differential
equations.
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