| Kepler's assertions were possibly prompted by correspondence beginning in the year 1606 between him and the remarkable English mathematician Thomas Harriot. And Harriot's interest was perhaps prompted by a question his employer, Sir Walter Raleigh, had asked him much earlier about how to count the cannon balls in stacks on a ship. (Such were applied mathematics and the military-industrial complex in the XVI and XVII century.) Now Thue's and Hales's theorems have little to do with real world packings in a finite region. Optimal packings of finite regions are ridiculously difficult to ascertain rigourously, even in the simplest cases. Thue's and Hales' theorems are concerned instead with ideal packings throughout all of the plane and space. Hales' proof is one of the most complicated yet required by any theorem, in any branch of mathematics, and I will say little about it here. But Hales observed that, by combining in this small dimension ideas of Fejes-Toth and C. A. Rogers, one could arrive at an extremely elementary proof of Thue's theorem. This note will follow Hales' suggested argument for the 2D conjecture, filling in a few minor gaps here and there, and relying almost exlusively on illustrations and a few animations to explain the reasoning. | |