catscan2

## 3. A numerical simulation: the reconstruction

In a finite model like ours, the Radon Transform assigns to each line the sum of the densities it encounters in the object being scanned. The first step in reconstructing the object is to calculate the Dual of the Radon Transform. The Dual Transform goes from a function of lines to a function of points. In our model, it will assign to each square in the grid the sum of the numbers carried by each of the lines through that square.

Since each grid square is crossed by exactly one line fromeach family, we can organize the calculation, in our example,by tabulating the numbers family by family, and then adding upthe tables. These tables are precisely the arrays given on theprevious page. Here each of the tablesis labelled by the slope of the corresponding familty of lines; asbefore, one of those lines is picked put in red.

  horizontal X stands for 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0_0_0_0 0 0 0_0_0_0 0 0 0 8 8 8|8 8 8 8|8 8|8 8 8 8|8 8 8 8 8 8|8 8_8_8|8 8|8_8_8 8|8 8 8 4 4 4|4 4|4 4 4 4 4 4|4 4|4 4 4 4 4 4|4 4|4 4 4 4 4 4|4 4|4 4 4 4 4 4|4 4|4_4_4_4_4_4|4 4|4 4 4 X X X|X X X X X X X X X X|X X X X X X|X_X_X_X_X_X_X_X_X_X|X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  slope = 1/2 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 3 0 0 0 0_0_1_1 2 2 2_2_2_2 3 3 2 0 0 0|1 1 2 2|2 2|2 2 3 3|2 2 3 0 1 1|2 2_2_2|2 2|3_3_2 2|3 3 3 1 2 2|2 2|2 2 3 3 2 2|3 3|3 3 3 2 2 2|2 2|3 3 2 2 3 3|3 3|3 3 2 2 2 2|3 3|2_2_3_3_3_3|3 3|2 2 1 2 3 3|2 2 3 3 3 3 3 3|2 2|1 1 0 3 2 2|3_3_3_3_3_3_2_2_1_1|0 0 0 2 3 3 3 3 3 3 2 2 1 1 0 0 0 0 0 3 3 3 3 3 2 2 1 1 0 0 0 0 0 0 0 3 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0  slope = 1 0 0 0 0 0 0 1 2 3 4 3 2 3 4 4 4 0 0 0 0 0 1 2 3 4 3 2 3 4 4 4 4 0 0 0 0_1_2_3 4 3 2_3_4_4 4 4 4 0 0 0|1 2 3 4|3 2|3 4 4 4|4 4 4 0 0 1|2 3_4_3|2 3|4_4_4 4|4 4 3 0 1 2|3 4|3 2 3 4 4 4|4 4|4 3 2 1 2 3|4 3|2 3 4 4 4 4|4 4|3 2 1 2 3 4|3 2|3_4_4_4_4_4|4 3|2 1 0 3 4 3|2 3 4 4 4 4 4 4 3 2|1 0 0 4 3 2|3_4_4_4_4_4_4_3_2_1|0 0 0 3 2 3 4 4 4 4 4 4 3 2 1 0 0 0 0 2 3 4 4 4 4 4 4 3 2 1 0 0 0 0 0 3 4 4 4 4 4 4 3 2 1 0 0 0 0 0 0   slope = 2 0 0 0 0 0 1 2 3 2 1 1 2 2 2 3 2 0 0 0 0 1 2 3 3 1 1 2 2 2 3 3 2 0 0 0 0_1_2_3 2 1 1_2_2_2 3 2 1 0 0 0|1 2 3 3|1 1|2 2 2 3|3 2 1 0 0 0|1 2_3_2|1 1|2_2_2 3|2 1 0 0 0 1|2 3|3 1 1 2 2 2|3 2|1 0 0 0 0 1|2 3|2 1 1 2 2 2|3 2|1 0 0 0 1 2|3 3|1_1_2_2_2_3|3 2|1 0 0 0 1 2|3 2 1 1 2 2 2 3 2 1|0 0 0 1 2 3|3_1_1_2_2_2_3_3_2_1|0 0 0 1 2 3 2 1 1 2 2 2 3 2 1 0 0 0 0 2 3 3 1 1 2 2 2 3 3 2 1 0 0 0 0 2 3 2 1 1 2 2 2 3 2 1 0 0 0 0 0  vertical 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7_7_4_4 2 2 4_4_7_7 0 0 0 0 0 0|7 7 4 4|2 2|4 4 7 7|0 0 0 0 0 0|7 7_4_4|2 2|4_4_7 7|0 0 0 0 0 0|7 7|4 4 2 2 4 4|7 7|0 0 0 0 0 0|7 7|4 4 2 2 4 4|7 7|0 0 0 0 0 0|7 7|4_4_2_2_4_4|7 7|0 0 0 0 0 0|7 7 4 4 2 2 4 4 7 7|0 0 0 0 0 0|7_7_4_4_2_2_4_4_7_7|0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0 0 0 0 7 7 4 4 2 2 4 4 7 7 0 0 0  slope = -2 2 3 2 2 2 1 1 2 3 2 1 0 0 0 0 0 2 3 3 2 2 2 1 1 3 3 2 1 0 0 0 0 1 2 3 2_2_2_1 1 2 3_2_1_0 0 0 0 1 2 3|3 2 2 2|1 1|3 3 2 1|0 0 0 0 1 2|3 2_2_2|1 1|2_3_2 1|0 0 0 0 1 2|3 3|2 2 2 1 1 3|3 2|1 0 0 0 0 1|2 3|2 2 2 1 1 2|3 2|1 0 0 0 0 1|2 3|3_2_2_2_1_1|3 3|2 1 0 0 0 0|1 2 3 2 2 2 1 1 2 3|2 1 0 0 0 0|1_2_3_3_2_2_2_1_1_3|3 2 1 0 0 0 0 1 2 3 2 2 2 1 1 2 3 2 1 0 0 0 0 1 2 3 3 2 2 2 1 1 3 3 2 0 0 0 0 0 1 2 3 2 2 2 1 1 2 3 2   slope = -1 4 4 4 3 2 3 4 3 2 1 0 0 0 0 0 0 4 4 4 4 3 2 3 4 3 2 1 0 0 0 0 0 4 4 4 4_4_3_2 3 4 3_2_1_0 0 0 0 4 4 4|4 4 4 3|2 3|4 3 2 1|0 0 0 3 4 4|4 4_4_4|3 2|3_4_3 2|1 0 0 2 3 4|4 4|4 4 4 3 2 3|4 3|2 1 0 1 2 3|4 4|4 4 4 4 3 2|3 4|3 2 1 0 1 2|3 4|4_4_4_4_4_3|2 3|4 3 2 0 0 1|2 3 4 4 4 4 4 4 3 2|3 4 3 0 0 0|1_2_3_4_4_4_4_4_4_3|2 3 4 0 0 0 0 1 2 3 4 4 4 4 4 4 3 2 3 0 0 0 0 0 1 2 3 4 4 4 4 4 4 3 2 0 0 0 0 0 0 1 2 3 4 4 4 4 4 4 3  slope = -1/2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0 3 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 2 3 3 2_2_2_2 2 2 1_1_0_0 0 0 0 3 2 2|3 3 2 2|2 2|2 2 1 1|0 0 0 3 3 3|2 2_3_3|2 2|2_2_2 2|1 1 0 3 3 3|3 3|2 2 3 3 2 2|2 2|2 2 1 2 3 3|3 3|3 3 2 2 3 3|2 2|2 2 2 1 2 2|3 3|3_3_3_3_2_2|3 3|2 2 2 0 1 1|2 2 3 3 3 3 3 3 2 2|3 3 2 0 0 0|1_1_2_2_3_3_3_3_3_3|2 2 3 0 0 0 0 0 1 1 2 2 3 3 3 3 3 3 2 0 0 0 0 0 0 0 1 1 2 2 3 3 3 3 3 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 3

When these eight tables are added to each other, the result is as follows. It is shown graphically (after rescaling) on the right.

  8 9 8 14 13 10 13 12 12 13 10 13 14 8 9 8 9 9 9 15 15 13 15 15 15 15 13 15 15 9 9 9 9 9 9 15 15 13 15 15 15 15 13 15 15 9 9 9 16 16 17 28 29 28 28 21 21 28 28 29 28 17 16 16 14 17 19 29 30 30 28 21 21 28 30 30 29 19 17 14 10 14 18 28 30 24 21 22 22 21 24 30 27 17 13 10 10 13 17 28 29 24 24 21 21 24 24 29 28 17 13 10 9 13 17 28 29 24 24 24 24 24 24 29 28 17 13 9 15 19 20 29 31 32 31 30 30 31 32 31 29 20 19 15 18 17 17 29 30 30 32 30 30 32 30 30 29 17 17 18 6 7 9 16 17 17 20 18 18 20 17 17 16 9 7 6 7 9 10 15 16 15 17 16 16 17 15 16 15 10 9 7 8 10 9 14 14 12 14 12 12 14 12 14 14 9 10 8

There are mathematical algorithms that allow the exactreconstruction of a 2-dimensional object (or, more generally, a function)from its Radon transform. These are called inversion formulas'' andcan be found, for example, in Sigurdur Helgason's The Radon Transform,Second edition, Birkhäuser, Boston 1999 or Gerald Folland'sIntroduction to Partial Differential Equations, Princeton UniversityPress, Princeton NJ 1976. Both these books are based on graduate courses.

Welcome to the
Feature Column!

These web essays are designed for those who have already discovered the joys of mathematics as well as for those who may be uncomfortable with mathematics.