Cubes
Posted January 2004.
1. Introduction
Headlines have been made recently because cosmologists have been proposing the notion that physical space might involve 10 or more dimensions. This need for using higher dimensional space grows out of the relatively recent development of string theory, a subject on the border between physics and mathematics. Just as we were getting more comfortable with how to think about 4dimensional spacetime, we are faced with a new challenge. Conceptualizing higher dimensional spaces or objects in them does not come naturally to most people. Perhaps this explains why the study of higher dimensional spaces is surprisingly recent. Higher dimensional spaces are intriguing to mathematicians because many of the properties of objects that one takes for granted in two and three dimensions are not shared by the analogous objects in higher dimensions. It becomes fascinating to compare and contrast what happens in two and three dimensions with what happens in n dimensions. One way of constructing a bridge to higher dimensional space is to take something familiar in 3space, such as a cube (or sphere), construct the analogue of the cube in higher dimensions, sometimes called hypercubes, and see what properties these higher dimensional cubes have.
Joseph Malkevitch
York College (CUNY)
Email: malkevitch@york.cuny.edu
 Introduction
 Some history
 The 3dimensional cube
 Combinatorial perspectives on cubes
 A recursive way of constructing cubes
 Cube puzzles
 Symmetries of the cube
 The SharirZiegler cube
 References

Welcome to the
Feature Column!
These web essays are designed for those who have already discovered the joys of mathematics as well as for those who may be uncomfortable with mathematics.
Read more . . .
Feature Column at a glance
