Knots and Their Polynomials-9 ## Knots and Their Polynomials

## What happens if we change orientation?

Let us focus on one crossing in an oriented knot diagram:

If we reverse the orientation and rotate the diagram 180 degrees, that crossing appears exactly as it did before. So reversing the orientation in a diagram and then applying the skein relation to a crossing is the same as rotating the original diagram 180degrees, applying the skein relation, rotating the products ofthe relation another 180 degrees, and then reversing the orientation.Since repeated application of the skein relation eventually reducesall the diagrams to unknots for which the Jones polynomial does not depend on orientation, it follows thatthe result of the entire calculation does not depend on theorientation of the diagram and it is appropriate to write

[*t*]=-*t*^{4} +*t*^{3} + *t*.

On to the next knot page.

Back to the previous knot page.

Back to the first knot page.

Welcome to the
Feature Column!

These web essays are designed for those who have already discovered the joys of mathematics as well as for those who may be uncomfortable with mathematics.

Read more . . .

Feature Column at a glance