
Pizza Toss. World pizza champion Tony Gemigniani demonstrates his pizza-tossing form. In a pizza
toss, the angular momentum vector is very close to the normal vector. Thus the pizza never turns over,
and always lands “heads”. (Photo courtesy of Tony F. Gemigniani, President, World Pizza Champions,
Inc.)
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The Fifty-one Percent Solution

F
or centuries, coins have been an icon of randomness.
Who hasn’t flipped a coin to decide between two equally
appealing alternatives—which restaurant to go to, which

road to take? Especially when the choice doesn’t matter too
much, tossing a coin beats thinking.

But sometimes, even important choices are left to the
caprice of a coin. In 1845, two settlers in the Oregon Territory,
Asa Lovejoy and Francis Pettygrove, founded a new town on the
banks of the Willamette River. Lovejoy wanted to name it after
his birthplace, Boston, but Pettygrove preferred to name it
after his own hometown—Portland, Maine. A coin toss seemed
like the fairest way to settle the dispute. The penny landed in
Pettygrove’s favor, and that is why the largest city in Oregon is

Persi Diaconis and Susan
Holmes.

now called Portland, instead of Boston.
The implicit assumption behind coin flips has always been

that that they are fair—in other words, that heads and tails
have an equal chance of occurring. However, a team of three
mathematicians has now proved that this assumption is incor-
rect. Any coin that is tossed vigorously and high, and caught
in midair (rather than bouncing on the ground) has about a
51 percent chance of landing with the same face up that it
started with. Thus, if you catch a glimpse of the coin before it is

Figure 1. A stroboscopic photo of a coin toss over a period of one second. Between the toss and the
first landing, the coin made two full revolutions (or four half-revolutions), and thus the upward face
was alternately heads-tails-heads-tails-heads. Thus, it landed in the same orientation that it started, a
result that, according to new research, happens about 51 percent of the time. (Photo courtesy of Andrew
Davidhazy, Rochester Institute of Technology.)
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tossed and see heads up, you should call heads; on the other
hand, if you see the tails side up, you should call tails. This
will give you a 51 percent chance of predicting the outcome
correctly.

Persi Diaconis and Susan Holmes of Stanford University,
together with Richard Montgomery of the University of Cali-
fornia at Santa Cruz, published their discovery in SIAM Review
in 2007, although it was originally announced in 2004. Ac-
cording to Diaconis, who has given public lectures on the
topic numerous times, the result is a difficult one for most
non-mathematicians to grasp. The coin’s bias has nothing to
do with whether it is weighted more on one side or the other,
nor with any asymmetry in its shape. In fact, their analysis
assumes that the coin is perfectly symmetrical. The coin’s bias
lies not in its shape, but in its motion—the dynamics of a rigid,
rotating object.

From a physicist’s point of view, a coin’s motion is com-
pletely deterministic. If you know the initial orientation,
velocity, and angular velocity of the coin, you can predict its
future flight perfectly. Diaconis, in fact, has built a coin-tossing
machine that illustrates this fact (see Figure 2). The machine
tosses heads with spooky consistency. You press a lever, it
launches a coin into a collecting cup, and the coin will come up
heads every single time. There’s no chance involved.

Figure 2. Persi Diaconis and his colleagues have built a coin tosser that throws heads 100 percent of
the time. A coin’s flight is perfectly deterministic—it is only our lack of machine-like motor control that
makes it appear random. (Photo courtesy of Susan Holmes.)
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If a machine can produce heads 100 percent of the time, why
If amachinecan

produceheads100
percentof the time,why

dohumanshavesuch
blind faith in thecoin’s

randomness? Inasense,
it isnot thecoin’s

randomness that isat
issue,butourown

clumsiness.

do humans have such blind faith in the coin’s randomness? In
a sense, it is not the coin’s randomness that is at issue, but our
own clumsiness. To produce heads all the time, you need ex-
tremely precise control over the coin’s initial conditions, such
as the strength of the toss and the rotation rate imparted to the
coin. Humans do not normally have such fine motor control.
Even so, there are some ways that humans can, either inten-
tionally or unintentionally, bias their coin tosses.

First, if you toss the coin in the same way that a pizza maker
tosses his pizza dough (see Pizza Toss, page 34)—setting it in
motion around its normal axis instead of its diameter—then
the coin will never flip over, and you will get heads 100 percent
of the time (assuming the coin starts with heads up). Magicians
have perfected a trick based on the “pizza toss.” They realized
that they could add a little wobble, but not too much. The casual
viewer cannot tell the difference between the wobbly “pizza
toss” and a real coin flip, and the magician will still get heads
100 percent of the time.

A second form of bias occurs if you give the coin a very
wimpy toss, so that it rotates only a half-turn before landing.
The coin will always land with the opposite face pointing up,
and so a sequence of “wimpy tosses” will go heads-tails-heads-
tails forever. Even though the percentage of heads is exactly 50
percent, these tosses are far from random.

Diaconis once received a class project, called “The Search
for Randomness,” that fell into this second trap. A teacher had
asked his students to flip a coin 300 times each, thus generating
a table of 10,000 supposedly random coin flips, which he sent
to Diaconis. Alas, Diaconis says, “The results were very pat-
terned. The reason was that the students got bored.” (Wouldn’t
you, if you were flipping a coin for a full class period?) The
more bored the students got, the wimpier their flips were, and
the more frequently the telltale pattern heads-tails-heads-tails
started to show up.

Both of these exceptions turn out to be very important
for the mathematics of coin-flipping because they are extreme
cases.The first exception shows that it makesa difference what
axis the coin rotates about. The second shows the importance
of making sure the coin spins a reasonably large number of
times before it is caught. By trickery or by simple disinterest, a
human can easily manage a biased coin flip. But the question
Diaconis wanted to know was: What happens if an ordinary
human honestly tries to achieve a random and unbiased flip?
Can he do it?

Clearly, the flip should rotate the coin about its diameter,
and it should be vigorous enough to ensure a fairly large num-
ber of revolutions. Under those two conditions, Joe Keller, an
applied mathematician at Stanford, showed in 1986 that the
probability of heads does indeed approach 50 percent. How-
ever, this was a somewhat idealized result because Keller as-
sumed that the number of revolutions approaches infinity. Di-
aconis’ student Eduardo Engel followed up on Keller’s work by
studying what would happen under more realistic conditions—
a coin that rotates between 36 and 40 times per second, for
about half a second (to be precise, between .44 and .56 sec-
onds). Engel, who is now at Yale University, showed that the
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probability of heads under these circumstances (assuming the
coin starts with heads up) lies between 0.444 and 0.556. En-
gel’s result was already quite sophisticated, requiring careful
estimates of integrals over the space of allowable initial condi-
tions. Neither he nor Keller discovered any indication that coin
tosses are biased.

However, there is a second simplifying assumption in both
Keller’s and Engel’s work. They assumed that the flip sets the
coin spinning exactly around its diameter (i.e., the axis of rota-
tion lies exactly in the plane of the coin). Even if the coin-flipper
is trying to give the coin an honest flip, it is unrealistic to expect
such perfection. What happens if the coin rotates about an axis
that is neither perpendicular to the coin as in the “pizza toss,”
nor exactly in the plane of the coin as in the “Keller toss,” but
instead points off in some oblique direction? That is exactly

K

n
M

R

Figure 3. The three relevant vec-
tors for determining how a coin
will land are the normal vector
(n), the angular momentum vector
M, and the upward vector K. The
vector M remains stationary, and
n precesses around it in a cone.
Thus, the angle between M and n
remains constant (ψ). The coin will
turn over only if the angle between
n and K exceeds 90 degrees at
some time. In this sketch, because
ψ is small, the coin will never turn
over—this is a “pizza toss”. (Figure
courtesy of Susan Holmes.)

when the problem gets interesting.
In2003,DiaconisvisitedMontgomery inSanta Cruz, andsaw

on the wall of his office a poster depicting how a falling cat ro-
tates itself to land on its feet. Suddenly he knew he had found
the right person to ask about the rotation of a falling coin.

Coins are actually simpler than cats because they are rigid
objects, andalsobecause theyhave circular symmetry.Cats, ac-
cording toMontgomery, are bestviewedasa systemof tworigid
objects (the cat’s front and rear) with a flexible link between
them. The flexible link—the cat’s muscles—gives it control over
its landing orientation.

The coin, on the other hand, has no such control. Its mo-
tion is completely determined from the moment it is tossed to
the moment it is caught. The motion of a “free rigid object,” as
physicists call it, has been understood ever since Leonhard Eu-
ler in the eighteenth century. Although, the description of the
motion is quite simple, it is perhaps not as familiar as it should
be.

From the point of view of a physicist, the key parameter
for describing the coin’s motion is its angular momentum—or
what we have loosely referred to as the “axis of rotation” above.
To the untrained observer, the coin’s behavior looks like a com-
plicated combination of spinning, tumbling, and wobbling, but
to a physicist, all of these kinds of motion can be summed up
in one vector, the angular momentum. Moreover, the angular
momentum vector remains unchanged for the entire time that
the coin is in the air.

What matters most for the outcome of the coin toss, though,
is not the orientation of the angular momentum, but the ori-
entation of the coin’s normal vector. (This is the unit vector
pointing perpendicularly to the coin, in the “heads” direction,
as shown in Figure 3.) If the coin is caught with the normal vec-
tor pointing anywhere in the upper hemisphere, it will be inter-
preted as a “heads” flip. If the normal vector points towards the
lower hemisphere, the flip will be recorded as “tails.”

The normal vector and the angular momentum vector are
different, but they are related in an exceptionally simple way.
The angle between them, denoted ψ, remains constant. This
means that the normal vector precesses around the fixed angu-
lar momentum vector, forming a cone with an opening angle of
ψ radians. Alternatively, when the trajectory of the unit normal
vector is plotted on a sphere, the result is a circle of radius ψ
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whose center is the angular momentum vector (normalized to
have length one).

From this point of view, the “pizza flip” and the “Keller flip”
are particularly simple cases. In the “pizza flip,” the angular
momentum vector and the normal vector coincide. The angle
between them is 0. Because the angular momentum is constant,
and the normal vector moves in a “circle of radius 0” around it,
the normal vector is also constant. If the coin starts out heads
(i.e., with normal vector (0,0,1)) then the normal vector will
continue to point in the same direction, and the coin will always
land heads.

In the “Keller flip,” on the other hand, the angular momen-
tum vector lies in the plane of the coin, making an angle of 90◦

or π/2 radians with the normal vector. Hence the normal vec-
tor precesses around a circle of radius π/2—in other words, a
great circle on the unit sphere. If we assume that it starts point-
ing in the direction (1,0,0), then it will rotate at a constant rate
from the north pole to the south pole and back. Half of the time
the normal vector will be in the upper hemisphere, and half of
the time it will be in the lower hemisphere. In a rough sense, this
explains why the coin has a 50 percent chance of landing heads
and a 50 percent chance of landing tails (as Keller proved).

Figure4. Ingeneral, thenormal vectorwill describeacircle cen-
tered at M while the coin is in the air. If the coin starts perfectly
horizontal (so that n is perfectly vertical), then n will inevitably
spend more time in the upper hemisphere than the lower hemi-
sphere. If the coin is caught at a random time, it will therefore
have a greater than 50 percent probability of being caught with
n in the upper hemisphere. (Figure courtesy of Susan Holmes.)

In a real flip, the normal vector will precess in a circle of
radiusψ radians, a “small circle” rather than a great circle (See
Figure 4). If the coin is tossed from a heads-up position, then
this small circle passes through the point (1,0,0). If ψ is less
than π/4 radians, then in fact the entire small circle lies in
the upper hemisphere. This means that the coin never actually
turns over; it will land heads with 100% probability. This is why
magiciansdo not have to execute a perfect “pizza toss” in order
to ensure the coin lands heads; there is in fact considerable
room for error. A coin tossed withψ close to π/4 will precess
so vigorously that the eye is easily deceived into thinking that
it is tumbling, and yet it will always land heads.
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If ψ lies between π/4 and π/2, then the normal vector
Asbeautifulas it is, this
analysisdidnotallow
themathematicians to
makeapreciseestimate
of theamountofbias ina
human-tossedcoin
. . . Toobtaina
quantitativeestimate,
therefore, the
mathematicianshad to
studyempiricallyhow
humansactuallyflip
coins.Andthatwasnot
nearlyaseasyas it
sounds.

will sometimes enter the lower hemisphere. Thus there will
be a nonzero chance of the coin landing tails. However, in all
cases the normal vector will spend more time in the upper
hemisphere than in the lower hemisphere, and therefore the
probability of heads will always exceed 50 percent. Although
this is a somewhat informal argument, Diaconis, Holmes and
Montgomery formalized it in the same way that Keller did, by
taking a limit as the time of flight goes to infinity. The proba-
bility of heads (assuming that the coin starts with heads up)
is

p(ψ,φ) = 1

2
+ 1

π
sin−1(cotψ cotφ),

whereφ is the (fixed) angle that the angular momentum vector
makes with the vertical. If the inverse sine is undefined, as is the
case whenψ is small, then the probability of heads is simply 1.

As beautiful as it is, this analysis did not allow the mathe-
maticians to make a precise estimate of the amount of bias in a
human-tossed coin. That depends on how closeψ is toπ/2 (i.e.,
how closely the coin flipper can approximate a perfect “Keller
flip”). To obtain a quantitative estimate, therefore, the math-
ematicians had to study empirically how humans actually flip
coins. And that was not nearly as easy as it sounds.

“When Joe [Keller] had written his paper, I wanted an answer
to the question of how many times the coin turns,” Diaconis
says. “At that time, I found out that there was only one slow-
motion camera at Stanford, which was owned by the football
team. In order to use it, I would have to pay the operator some-
thing like $2800 for a two-hour session. I wanted to know the
answer, but I didn’t want to know it that badly!”

A decade and a half later, after they had talked with Mont-
gomery, Diaconis and Holmes again tried to videotape real coin
flips. But an ordinary video camera is far too slow: it shoots
60 frames per second. Because a typical coin makes at least 20
full revolutions per second, a frame-by-frame data set is far too
coarse to tell what it is actually doing. “You’d like to have up
to 800 frames per second,” Diaconis says. They tried to over-
come the problem by using eight videocameras at once, but
the logistics proved to be too difficult. “I was in despair,” Di-
aconis says. But this time, he found out that Abbas El Gamal,
of Stanford’s electrical engineering department, had an ultra-
slow-motion camera. Unlike the football team, El Gamal was
happy to have his camera used for coin-flipping research. Prob-
lem solved!

In reality, that was only the beginning. From the physical
point of view, it wasn’t so easy to flip a coin in such a way that
the camera could record its flight successfully. The camera was
stationary, so the flip had to pass directly in front of the camera
lens. And the camera would only record for about a quarter of
a second, so the flip had to be synchronized very closely to the
start of filming. Out of 50 attempts, only 27 gave useful results.

Then there were mathematical challenges, some with very
ingenious solutions. First was the problem of simply finding
the coin in each of the images. With 27 videos of 100 frames
each, it would be impractical to draw the outline of the coin on
each frame by hand. Moreover, the human eye and hand are not
objective enough. Holmes tried out several different statistical
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learning algorithms to find one that would be able to pick out
the coin pixels from the background pixels; she then used stan-
dard statistical techniques to find the ellipse that most closely
matched the edge of the coin. Finally, she could use this ellipse
to determine which way the normal vector was pointing at each
instant.

At this point, a surprise awaited her. When plotted on
a sphere, the normal vectors did not lie along a circle (the
circle of precession), as theory said they were supposed to.
Instead, they just made a formless blob. (See Figure 5.) “It was
devastating the first time we saw the data,” Holmes recalls.

Finally, Holmes figured out what the problem was. The
two-dimensional photographic image of the coin does not
completely determine its orientation in space. For any given
ellipse, there are four possible orientations of the coin that
would produce that ellipse: the nearer edge of the coin could
be either above or below the farther side, and the top face
could either be heads or tails. If you know the coin’s history,
you can tell which orientation is correct because the coin won’t
suddenly jump from one orientation to another. But teaching
the computer to make this determination automatically took
a little bit of work. Finally Holmes was able to unscramble the
data enough to get a satisfactory approximation of a circle.
Once the circle had been determined, it was easy to find the
angular momentum vector (the center of the circle) and the
parameterψ (the angular radius of the circle).
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Figure 5. At first, the photographic data seemed to show the
normal vectors traveling in a strange, jerky pattern—not in a
circle as Figure 4 would predict. However, the researchers even-
tually figured out that the problem lay in the ambiguity of a 2-
dimensional photographic image. The normal to the coin could
be pointing in any of four directions in 3-space, and their au-
tomated image analysis program was picking the wrong ones.
(Figure courtesy of Susan Holmes.)

As it turned out, for some of the tosses there was an indepen-
dent way to check the computation ofψ. It’s an intriguing, and
not obvious, physical fact that each time the coin’s normal vec-
tor precesses exactly one time about the angular momentum
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vector, the coin also rotates a fixed amount (in a coin-centered
Theaverageprobability
was0.508,which they
roundedupto0.51, and
thiswas thebasis for
their claimthat real
coinshavea51percent
chanceof landingwith
thesamesideupthat
theybeganwith.

coordinate frame) about the normal vector. Figure 6 shows a
nice example: the coin was imaged three times facing in the
same direction. (The images were separated by 20 frames, and
therefore by 1/30 of a second). Between each pair of frames,
the letter “T” in the center of the coin has rotated through an
equal angle. This angle of rotation, ∆A, is related to ψ by the
following equation:

∆A = −(1− I1/I3)2π cos(ψ),

where I1 and I3 represent the moments of inertia of the coin
about its diameter and normal, respectively. For a very thin
coin, the ratio I1/I3 is 1

2 , but for a U.S. half dollar, the ratio is
about 0.513.

The effect is well known to quantum physicists, who call it
the Berry phase after Michael Berry, who (re-)discovered it in
1984. It can arise whenever the wave parameters of an oscil-
lating system are changed slowly and then returned to their
original values. The system will appear to have returned to its
original state, but it will have accumulated a phase difference
that can be detected (in the quantum physics applications) by
using an interferometer. Curiously, Montgomery had just writ-
ten a book with a chapter devoted to Berry phases—another
way in which he turned out to be just the right man for the
project.

The Berry phase gave Diaconis, Holmes, and Montgomery
an independent way of computing the angle ψ, and thereby
validating that their image analysis algorithm was working cor-
rectly.With their computationofψ andthe angularmomentum
vector, they could use Diaconis’ formula for p(ψ,φ) to com-
pute the probability of heads on each of the 27 flips that they
had recorded. (Note that the actual outcome of the flips was
immaterial—it was the probability that they wanted.) The aver-
age probability was 0.508, which they rounded up to 0.51, and
this was the basis for their claim that real coins have a 51 per-
cent chance of landing with the same side up that they began
with.

The result comes with a number of caveats, none of which
alter the basic conclusion that coin tosses are biased. First, it is
exceedingly important to catch the coin in midair, and not let
it hit the ground. Once it hits the ground, other factors—such
as the shape or weight distribution of the coin—start playing
a role. Magicians have learned how to shave the edge of a coin
so that if you spin it on a table (rather than tossing it in the air)
the coin will always come up heads. Although letting the coin
bounce may be acceptable for a perfectly symmetric coin, it is
too easy to tamper with the coin and change the probabilities.

Also, the 51 percent probability is only an ideal estimate,
when the coin is allowed to fly for a long time. Real coin flips
tend to last only a half second or so. The finite-time-of-flight
effect means that the actual probability of heads falls in a range
of values (just as Engel’s analysis of Keller flips gave the proba-
bility a range of values). However, the range will be centered on
51 percent, not on 50 percent.

Third—and this is the point that worries Diaconis the
most—it’s still unclear just how representative their 27 tosses
were of what happens in a real coin toss. Because it was so
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hard to synchronize the tosses with the high-tech camera, the
tosses were probably performed more carefully and perhaps
less vigorously than real coin tosses. Thus it is quite possible
that the real bias in favor of the starting position is more than
51 percent, and indeed quite a bit more. This became apparent
in a “low-tech” experiment that Diaconis performed, attaching
a ribbon to the coin so that he could count how many times it
flipped over. (The number of flips is the same as the number
of twists in the ribbon when the coin is caught.) In 4 out of
100 tosses, the coin never flipped at all—Diaconis had unin-
tentionally performed a “pizza flip.” In 3 out of 100 tosses, the
coin flipped only once. Thus a significant number of real-world
coin flips may be executed unintentionally in a way that makes
them far from random.

Figure 6. In this trial, the tosser happened to flip the coin at very close to 30 revolutions per second.
Thus, with a high-speed camera that photographed the coin 600 times per second, the coin was nearly in
the same orientation every 20 frames. Notice that while the coin has made a complete revolution, it has
precessed around its normal axis by less than a full revolution. In fact, the amount of precession, called
the Berry phase, provides an independent way to measure the angle ψ mentioned in Figure 3. (Figure
courtesy of Susan Holmes.)

Montgomery’s wife Judith, a school math teacher, has sug-
gested holding a “great California flip-off” to see if real-world
coin flips actually do have the predicted amount of bias. It will
take a lot of flips, though. To verify experimentally that the
probabilityofheads isnot 50percentbut51percent, one would
need a random sample of about a quarter-million flips. Given
the difficulty of even obtaining a sample of 10,000 flips (re-
member the bored math students?), Diaconis is not optimistic
about the chances of pulling off such a massive experiment.
“The idea of performing quality control on that data puts me
off,” he says.

For all three researchers, the coin-flipping work has led in
unexpected directions, some of them much more serious than
the original problem. To Montgomery, it’s a great teaching
example for a course in differential geometry. The rotations
of the coin correspond to elements of the Lie group SO(3),
which can be associated to points on a hypersphere (that is, a
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three-dimensional sphere in four-dimensional space). Differ-
Inspirationforbig
thingscan indeedcome
fromhumblesources,
eventhecommonflipof
acoinoradinnerplate.

ent shapes or weightings of the coin correspond to different
ways of measuring distance on the hypersphere, and the com-
plicated dance of the coin always represents the shortest path
through this three-dimensional space.

For Diaconis, a sequence of coin flips is an analogue for
a much more complicated process—namely, the folding of a
protein. The coin exhibits a very simple kind of dependence
between its successive states—namely, it has a 51 percent
chance of staying in the same state it was in (heads or tails), and
a 49 percent chance that it will switch to the opposite state. Yet
determining this dependence from first principles was not at
all easy. A protein molecule has many more configurations or
states; it’s not just a simple dichotomy of “heads” and “tails.”
The challenge is to simplify the description of the molecule
so that the number of states is manageable, the states are still
physically meaningful, and one can compute the probability
of moving from one state to another. “The coins were a direct
motivation for our work on protein folding,” Diaconis says.

Finally, for Holmes, the “baby problem” of automatically de-
tecting a coin in a photograph has led to a new interest in im-
age analysis. She is currently working with a software package
called Gemident, to train computers to recognize cancer and
immune cells in an image of a lymph node (Figure 7). “In the
beginning, everyone counted these cells by hand, and it wasn’t
an objective method,” she says. The automated detection algo-
rithm makes it possible to do quantitative statistical analysis of
the images—for example, determining where the cancer cells
lie in relation to the immune cells (such as T-cells and B-cells).

“The value [of the coin-flipping project] for me was that it
showed me it was doable, that you can work with immense com-
puter files like these,” Holmes says. “Now I’m able to say to the
biologists, ‘You shouldn’t do this by hand, because I can teach
the computer to do it.”’

Perhaps they will follow in the footsteps of Richard Feyn-
man, the physicist who first worked out the theory of quantum
electrodynamics—andwho said that his theory was inspired by
watching a dinner plate that was tossed into the air. In Surely
You’re Joking, Mr. Feynman, the Nobel laureate recalls, “The
[Feynman] diagrams and the whole business that I got the No-
bel Prize for came from that piddling around with the wobbling
plate.” Inspiration for big things can indeed come from humble
sources, even the common flip of a coin or a dinner plate.
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Figure 7. Since the group’s coin experiments, Holmes has
worked on other projects involving automated image analysis.
Here, she has “taught” a computer to recognize cancerous cells
(indicated by green dots) in a microscopic image of a lymph node.
(Figure courtesy of Susan Holmes.)
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