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Concepts and Categories in Perspective

SAUNDERS MAC LANE

In the fall of 1933, I joined the American Mathematical Society; that
December I attended my first AMS meeting in Cambridge, Massachusetts.
At the meetings then there was usually one session of 10-minute papers at a
time. Everybody (almost) attended the sessions. J. D. Tamarkin, J. R. Kline,
George D. Birkhoff, and other senior members sat in the first row and often
offered comments on the papers presented.

I then held a one-year Sterling Research Fellowship at Yale University,
where I was working on my own on questions of mathematical logic and, un-
der the direction of Qystein Ore (Sterling Professor of Mathematics at Yale),
on questions of algebraic number theory, having to do with the explicit cal-
culation of the prime ideal decomposition of a rational prime in a given
algebraic number field. Thus then and now I was interested both in concep-
tual (logical) and computational (algebraic) issues. But my results on prime
ideal composition [1936] were not yet ready; I needed a job for the next year,
so I announced and gave a 10-minute paper on logic, entitled “Abbreviated
proofs in logic calculus” [1934]. (References to the bibliography are by author
and year.) As soon as my 10 minutes were over and the chairman had asked
for questions, Qystein Ore rose and spent the next 10 minutes denouncing
my work. Mathematical logic (and even more, philosophical considerations)
did not in his view belong in meetings of the AMS, and he made this point
very clearly. It was not really at my expense, since George Birkhoff and other
Harvard professors were in the audience, and voted a few months later to
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offer me for the following year an appointment as Benjamin Peirce Instructor
at Harvard (I accepted with alacrity). The paper on logic which I had then
presented was later published [1935] and soon forgotten; it was not profound
and may well have deserved Ore’s criticism. My research on algebra pros-
pered, especially under the stimulus of giving a graduate course at Harvard
on van der Waerden’s Moderne Algebra. 1 relate this story to emphasize the
then and now continuing role of the American Mathematical Society in pro-
viding a forum in which beginning mathematicians can find a hearing. The
story also suggests that algebra (and related branches of mathematics) has
two opposite aspects: Calculations and Conceptions, both of which matter.
In my own research work, both have been present: calculations in the study
of Eilenberg-Mac Lane spaces (Eilenberg-Mac Lane [1986]) and conceptions
in the work with Eilenberg in unveiling the notions of category, functor, and
natural transformation. This essay will aim to summarize some of the high
points in the development of the conceptual approach in the last 60 years of
American mathematics, with particular attention to category theory and my
own part in this development; it is thus history from the partial viewpoint of
a participant.

1. MATHEMATICAL LoOGIC

Initially, Aristotelean logic belonged to Philosophy departments, and not
to Mathematics. The discovery of Boolean algebra in the 19th century did
not change this situation in any substantial way. There were papers by
B. A. Bernstein and E. V. Huntington in the 1920s and 1930s giving al-
ternative systems of axioms for Boolean algebra, but they were of no real
consequence. The first substantial connection of Boolean algebra with the
mainstream of mathematics came in 1936-37 with Marshall Stone’s repre-
sentation theorem for Boolean algebras, and their identification with Boolean
rings (Stone [1936]).

The publication of Principia Mathem:atica, by Whitehead and Russell, (in
1910-13) was a landmark; it showed in pedantic detail how one could in prin-
ciple derive all of mathematics from a single system of axioms —axioms for
logic and type theory, plus an axiom of infinity. Russell apparently thought
that it proved that mathematics is a branch of logic, but it is now generally
considered that this assertion fails, in part because of the necessity of using
that axiom of infinity. The paradoxes, such as the Russell paradox of the set
of all sets not members of themselves, were avoided by the use of type theory,
but type theory (then and now) seems cumbersome and formal. It is inter-
esting to note that Russell’s first publication of type theory came in the same
year (1908) as Zermelo’s first publication of axioms for set theory. At first,
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type theory seemed more prominent, but with the improvements in set ax-
iomatics by Skolem and Fraenkel in the 1920s type theory gradually lost out
to Zermelo-Fraenkel set theory as the foundation of choice for mathematics.

Nevertheless, Principia Mathematica (P.M.) was a massive and impres-
sively monumental attempt to give a conceptual organization for mathemat-
ics: Godel’s famous incompleteness theory of 1931 in its title refers to “Prin-
cipia Mathematica und verwandter Systeme.” Hilbert and others cleared up
its ambiguities by insisting that a formal system of logic had both axioms
and rules of inference (not clearly separated in P.M.); this made it clear that
there was (and despite Lakatos, still is) a precise definition of “proof.” Car-
nap built on P.M. in his Logische Aufbau der Welt, and it was influential
in the Vienna circle (logical positivism). On a much smaller scale, I recall
that in 1927 I discovered a copy of P.M. in a dusty library at Yale Univer-
sity. I found this massive book fascinating, and I soon proposed to Professor
Wallace A. Wilson that I take a junior honors course to read P.M.

But P.M,, though it was famous and influential, fell flat with most mathe-
maticians. It did not get new mathematical results; it was unbearably clumsy;
it did not help them understand what a rigorous proof really was, because
they had already learned that from Weierstrass or from his pupils. And most
mathematicians were just not interested in the conceptual organization of
mathematics. I was, but I bought only volume I of P.M. and never got more
than half way through it. And Professor Wilson told me to study Hausdorff’s
Mengenlehre [1914] instead of P.M. From Hausdorff, I learned to calculate
with ordinal numbers.

Despite the disinterest in logic, it is fortunate that Oswald Veblen at Prince-
ton saw that there was a future in mathematical logic; he supported the ap-
pointment of Alonzo Church in the Department of Mathematics at Prince-
ton; in turn Church had Ph.D. students such as S. C. Kleene and Barkley
Rosser; with their work, the presence of logicians in American Mathematics
departments really began.

But in the early 1930s most departments of mathematics (except Princeton
and Gottingen) felt that logic was not part of their business. It was this
attitude that led to the formation of the Association for Symbolic Logic, to
cover both mathematical and philosophical logic, and to the publication of
the Journal of Symbolic Logic. Under the remarkable (and knowledgeable)
editorial guidance of Alonzo Church this provided a vehicle for publications
in logic. It is surely the first scholarly American journal specializing in a
subfield of mathematics. (There are now, in may view, too many such.)

This development of a separate society and separate journal was a visible
mark of the separation of mathematical logic from the mainstream of Amer-
ican mathematics. Many aspects of this separation have continued to this
day — as I have argued elsewhere, in a polemical article on The Health of
Mathematics [MR 86b#00006].
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NotEg: The present article will involve many minor references to the lit-
erature; to simplify matters, they will not be included in the Bibliography
(restricted to major items) but will be made as references to Mathematical
Reviews (MR) in the style above. In early volumes of MR, reviews were not
numbered and reference will be made to the page on which citation appears,
e.g., MR 14-525.

2. INCOMPLETENESS

Hilbert had quite early [1904] set himself the task of proving the consis-
tency of mathematics. The plan for such a demonstration required a careful
analysis of the nature of proof and a clear specification of a form of logic
—the first order predicate calculus; this was essentially accomplished in the
Hilbert-Ackermann book [1928]. The explicit formulation there of the prob-
lem of completeness came to the attention of Kurt Godel in Vienna; in his
thesis he proved the completeness of the first order predicate calculus, and
then soon [1931] went on to prove his famous incompleteness theorem. I
do not believe that at that time I understood its importance. I was studying
logic and mathematics in Gottingen, 1931-33. There I listened to Hilbert’s
lectures (then on general cultural subjects) and knew the logicians around
Hilbert: I talked extensively with Paul Bernays and with Gerhard Gentzen;
I knew Arnold Schmidt (then an assistant to Hilbert) and Kurt Schitte. At
that time the Hilbert school seemed to hold that Godel’s demonstration that
systems like P.M. could not prove their own consistency could be evaded by
Hilbert’s program, which aimed to get consistency by “finite” methods — and
was flexible as to what “finite” might mean. (See Hilbert-Bernays [1968].)

In 1933-34, when visiting Princeton, I met Godel; I imagine that I must
have studied his famous paper by that time. In Princeton, von Neumann,
Church, Kleene, and Rosser clearly understood the importance of the in-
completeness theorem. In retrospect, it is now clear that Godel should have
received one of the Fields medals in 1936; he did not. Subsequently, he
was elected in 1955 to membership in the National Academy of Sciences, on
nomination by the Council of the Academy. That is not the normal route;
in my own experience all other mathematicians who are members have been
elected upon nomination by the section of mathematics, NAS. These obser-
vations indicate that the significance of Godel’s contributions was at first not
fully understood or appreciated by the mathematical community.

This is not now the case. Much later, in 1975, when I was a member of
the National Science Board, I explained to the Board that Godel was perhaps
the greatest logician since Aristotle. The Board then made recommendations
to the appointments office of the President, and Godel was awarded the Na-
tional Medal of Science. Because of his health he was unable to attend the
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subsequent ceremonies in the White House. I acted as his representative,
and the next day [ went to Princeton to bring Godel the medal and President
Ford’s greetings to him.

Godel’s incompleteness theorem made use of recursive functions; from
this basis Kleene [MR 14-525] and others developed the general study of
recursion. There were also decisive contributions from Emil Post. He had
previously developed his Post systems, but he taught at the City College of
New York and he was somewhat isolated. In 1942 I was a member of the AMS
committee to invite speakers for Eastern Sectional Meetings; I recommended
Post. His resulting hour talk led to the publication of his [1944] paper, which
formulated Post’s problem, and so had a major influence on the development
of recursion theory. This is just one illustration of the influence of the invited
hour talks of the AMS in making important mathematical work accessible.

From this point recursion theory grew rapidly, and was extensively gener-
alized, chiefly in technical and computational directions (perhaps) in keeping
with a desire by logicians to solve hard mathematical problems. Since the
development is technical, it falls outside the restriction of this essay to con-
ceptual developments.

However, a major such conceptual development was the formulation of
Church’s thesis and the important result asserting the equivalence of three
definitions of computable functions: recursive functions, A-computable func-
tions, and functions computable by a Turing machine. This development
has had little connection with category theory until recently (Lambok-Scott
[1986]).

3. AXIOMATICS

David Hilbert’s 1899 book Grundlagen der Geometrie was influential (also
in an English translation, though in 1928 I personally read it first in the 6th
German edition). Euclidean geometry was definitely and rigorously reduced
to five sets of axioms, and it was clear that other subjects would so reduce —
as was soon exhibited in the axiomatic theory of fields, carried out in 1910
by Steinitz (MR 12-238) so as to include p-adic fields as well as number and
function fields and fields of characteristic a prime. The axioms for vector
spaces were known (at least over the reals) to Grassmann and to Peano,
but their work was little noticed. The decisive change came when Hermann
Weyl, in presenting relativity theory in [1918], needed affine spaces and so
needed vector spaces — and therefore stated the axioms explicitly. As a
graduate student in Chicago, 1930-31, I had carefully learned that a vector
was an n-tuple and a vector space a suitable set of n-tuples. When I came to
Gottingen in the fall of 1931 I was finally enlightened, in a seminar conducted
by Hermann Weyl himself, to discover the axiomatic treatment of vector
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spaces. I hold that these axioms (then and now) belong in the undergraduate
curriculum.

The development of Banach space theory in the 1920s by S. Banach [1922]
and N. Wiener also exhibits a use of axiomatic ideas. F. Riesz had known
that useful properties of functions could be derived from a small list of such
properties, but it was only after the first world war that these were consciously
called axioms; thus functional analysis originated in part in a conceptual
thrust.

4. MODERN ALGEBRA

As a student at Erlangen, Emmy Noether had written a thesis in invariant
theory — a subject then full of elaborate calculations. But her interest soon
shifted to more conceptual issues. She came to Gottingen after World War
II as an assistant to Hilbert. She was immediately active in pressing the
idea that suitable axioms could be used effectively to understand better the
manipulations of algebra (cf. Mac Lane [1981, 1982]). She cultivated students
and friends, and soon had a massive influence on the direction and character
of algebra in Germany — through others such as Max Deuring, Hans Fitting,
Wolfgang Krull, Heinrich Grell, Werner Schmiedler, F. K. Schmidt, Oswald
Teichmuller, and Ernst Witt.

Emil Artin also had a major influence on abstract algebra. He had studied
at Leipzig with Gustav Herglotz. Herglotz (later Professor at Gottingen, from
1930) had a remarkably polished lecturing style. His courses ranged over the
whole of classical pure and applied mathematics; they aimed to display the
essential features of each subject — as I vividly recall from his lectures in
Gottingen on Lie groups and on geometrical optics: The main facts came on
a central blackboard, the computations were put on the side.

This style was modified in Artin’s magnificent lectures, given with dynamic
impatience, leaving the (probably false) impression that Artin at the black-
board was again thinking everything through from first principles, so as to
really understand why things were so. I failed to understand his brilliant lec-
tures (1932) on class field theory in Gottingen. But I recall well his two hour
colloquium lecture (1937-38) in which he set forth his now more conceptual
understanding of Galois theory — later presented in his book with Milgram
[MR 4-66], and also reflected in the treatment of Galois theory in Birkhoff-
Mac Lane’s Survey of Modern Algebra (1941). B. L. van der Waerden wished
to use these ideas and ideals from abstract algebra to reorganize algebraic ge-
ometry (the Italian version was not rigorous, and hard to understand outside
Italy). From Noether’s and Artin’s lectures came van der Waerden’s magnifi-
cent two-volume book Moderne Algebra — wonderfully clear, and written in
a simple German which made it easy for all to read. It was a strikingly suc-
cessful presentation of the conceptual view of algebra. I suggest that this book
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may well be the single most influential mathematics text in pure mathematics
in the 20th Century — as a book which clearly established a new and fruitful
direction of teaching and research. When I ask for other books of compara-
ble influence, I think also of the Gibbs-Wilson vector analysis [1901], which
clearly has had the effect of standardizing the notation for vectors, vector
products, scalar products and the like in all of American theoretical physics.
That book also had conceptual aspects, later neglected by the physicists, such
as a discussion of dyads which gives a clear (and abstract) definition of the
tensor product of two three-dimensional vector spaces. Other decisive books
are Banach’s Linear Operators [1932] and Hausdorff’s Mengenlehre [1914].

Modern algebra was a good discovery for me, when I learned about it in
the academic years 1929-30 from lectures of @ystein Ore on group theory
and on Galois theory. At his suggestion, I bought and studied carefully the
two volume text [1929] by Otto Haupt on abstract algebra. It gave an abstract,
clear but complicated exposition, as in the case of Galois theory; it is a book
which lost out as soon as van der Waerden’s text appeared. This experience
indicates again the outstanding importance of a crystal-clear presentation.

This study of abstract algebra and of the Steinitz axiomatic theory of fields
so excited my interest that I wrote a master’s thesis (University of Chicago
[1931]) in this direction. Since fields (and rings) had two binary operations, I
thought that there should be a similar abstract treatment of systems with three
binary operations: addition, multiplication and exponentiation. This led me
to study a clumsy sort of universal algebra, for several sets with several binary
operations. At best my efforts were of no consequence whatever; perhaps I
was trying to discover universal algebra. I proved only that such a structure
(with its axioms) could be translated along a one-one correspondence. This
meager result indicates that just doing something abstractly may well not
give the right level of generalization. At that time, I did learn a great deal
about axiomatic methods from Professor E. H. Moore (then in his last year of
teaching at Chicago). I was much impressed by his dictum that “The existence
of analogies between central features of various theories implies the existence
of a general theory which underlies the particular theories and unifies them
with respect to these central features” (Moore’s 1905 Colloquium lectures).
This dictum is valuable in both directions: it describes conditions which
make it useful to introduce axiomatically a new concept — and it indicates
that such new concepts are not likely to be effective when they do not have
a variety of possible applications. Parts of the mathematical literature are
littered with such failed abstractions.

5. HILBERT SPACE

The effectiveness of axiomatic treatment is well illustrated by the develop-
ment of the axiomatic treatment of Hilbert space (cf. the book by M. H. Stone
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[1932]). In his study of integral equations, David Hilbert had used the space
I2, consisting of all sequences {z,} of complex numbers with 3 |z,|> < oo
— of course with the corresponding inner product. Then in the later 1920s
came the exciting discovery that such spaces could be used to understand
quantum mechanics. To carry this out, J. von Neumann in 1927 introduced
the axiomatic description of a Hilbert space, and used it in his work on quan-
tum mechanics. There is a story of the time he came to Gottingen in 1929
to lecture on these ideas. The lecture started “A Hilbert space is a linear
vector space over the complex numbers, complete in the convergence defined
by an inner product (a product (g, b) of two vectors a, b) and separable.” At
the end of the lecture, David Hilbert (by custom sitting in the first row of
the lecture hall of the Mathematische Gesellschaft), who was then evidently
thinking about his definition and not about the axiomatic description, is said
to have asked, “Dr. von Neumann, ich méchte gern wissen, was ist dann
eigentlich ein Hilbertscher Raum?”

Two of von Neumann’s papers on this topic had been accepted in the
Mathematische Annalen, a journal of Springer Verlag. Marshall Stone had
seen the manuscripts, and urged von Neumann to observe that his treatment
of linear operators T on a Hilbert space could be much more effective if he
were to use the notion of an adjoint 7* to the linear transformation 77 —
one for which the now familiar equation

(1) (Ta, b) = (a, T*b)

would hold for all suitable a and 5. Von Neumann saw the point immediately,
as was his wont, and wished to withdraw the papers before publication. They
were already set up in type; Springer finally agreed to cancel them on the
condition that von Neumann write for them a book on the subject — which
he soon did [1932] (see [MR 5-165] or [MR 16-654]).

This story (told to me by Marshall Stone) illustrates the important con-
ceptual advance represented by the definition of adjoint operator. Stone (a
student of George D. Birkhoff) had been studying linear differential equa-
tions, and so knew the idea of an adjoint differential operator used there,
hence was well able to see how to transfer this adjoint notion to the context
of Hilbert space. Subsequently, when I had read the older rather convoluted
descriptions of adjoint differential equations, I have found these descrip-
tions hard to understand; the conceptual formulation (1) above represents a
marked advance. I have written elsewhere [1970] that it is a step toward the
subsequent description of a functor G right adjoint to a functor F, in terms
of a natural isomorphism

hom(Fa, b) = hom(a, Gb)

between hom-sets in suitable categories. But as we will see this general con-
cept did not appear until 1957! This observation illustrates the way in which
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new and important concepts develop in stages, slowly, and usually at the
hands of a succession of people, as in the case Hilbert-von Neumann-Stone.

6. UNIVERSAL ALGEBRA

Modern algebra for the Noether school dealt with the axiomatic treatment
of properties of familiar objects: groups, rings, modules, and fields. This con-
ceptual approach might be described as a way of getting deeper understanding
of known special results by deriving them from suitable general axioms. A
sample case is the decomposition of ideals into primary ideals in a commu-
tative ring with ACC, a result containing both a decomposition theorem for
algebraic manifolds (polynomial ideal rings) and the ideal decomposition in
rings of algebraic integers (Noether [1921]). The very success of this approach
inevitably suggested similar study of many more types of algebraic systems.
(My own abortive 1931 master’s thesis goes to show that this idea was “in
the air”.) The suggestion was brilliantly realized by Garrett Birkhoff’s 1933
paper, where he introduced general algebras. The type of such an algebra is
given by a list of the arities of its operations (unary, binary, ternary, etc.);
all the algebras of a given type which satisfy specified equations (between
composite operations) form a variety; Birkhoff’s theorem states that such a
variety may also be characterized by closure under quotient, subalgebra and
(possibly infinite) products. This result was an important step in showing that
there are indeed theorems about general classes of algebras. It represents a
natural development of the German idea of modern algebra, and is the start-
ing point of the whole field of “universal” algebra and its relation to model
theory. Its currently active relation to combinatorics (as with Steiner triple
systems, quasigroups and the like) is, however, far removed from conceptual
issues.

7. LATTICE THEORY

The subalgebras of any given abstract algebra form a lattice: A partially
ordered set with largest and smallest elements and with greatest lower and
least upper bound for any two of its elements. This concept arises inevitably
from the study of universal algebra; it was described in almost simultaneous
papers by Garrett Birkhoff and @ystein Ore in 1935. It turned out that the
same concept had been introduced by Dedekind in 1900, under the name
“dual group”. His version had apparently been lost to view, but was noted
later by Ore, when he served as one of the editors of Dedekind’s collected
works. Ore spoke not of a “lattice” but of a “structure,” clearly conveying
the idea that the collection of subobjects (say, of all subgroups of a group)
depicted algebraic structure. Birkhoff evidently had the same view, since
that 1935 paper of his is entitled “On the structure of abstract algebras.”
Independently, Karl Menger and collaborators [1931, 1935, 1936] observed
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that projective n-space could be described by the lattice of its projective sub-
spaces. In the ensuing five years, lattice theory was an active and fashionable
subject, as for example in John von Neumann’s 1937 Colloquium lectures.on
continuous geometries [MR 22#10931], which extended the projective space
lattice to cases with continuous dimension function, with decisive examples
drawn from rings of operators on a Hilbert space. Thus there was a real
impression that lattice theory was the indicated way of describing structure,
both algebraic and analytic.

Subsequently, this view was modified. On the one hand, the impact of
the second world war with its emphasis on applications cut back on the en-
thusiasm for lattice theory. Then Suzuki [MR 12-586] studied the extent to
which a finite group G is determined by the lattice of its subgroups and so
documented the limitation of this approach. It also became clear that sub-
groups alone do not account for properties of homomorphisms or quotient
groups. Lattice theory continued as a branch of algebra, with a number of
sharp results, but it was no longer viewed as the preferred way to describe
algebraic structure.

8. HOMOMORPHISM

Emmy Noether’s lectures emphasized the importance of homomorphisms
onto quotient groups or quotient rings, and the corresponding role of her
so-called first and second isomorphism theorems for such quotients. At that
time, a homomorphism in algebra always meant a surjective homomorphism
(a mapping onto). Now homomorphisms also arise for homology groups
of spaces; in such cases they are not necessarily onto — the familiar map
x — e2mx of the real line to the circle is onto the circle, but the induced
homomorphism in homology is not onto. Moreover, the homotopy classifi-
cation of maps f between given spaces X and Y was a central topological
question, as in Brouwer’s classification of maps S” — S” by their degree (for
n = 1, by their winding number). The problems of topology forced on us the
consideration of homomorphisms (and other maps) which are not necessarily
surjective or injective.

At first the vivid arrow notation f: X — Y for a map was not available,
and homomorphisms of homology groups (or rings) were always expressed
in terms of the corresponding quotient group or rings. Thus the familiar
long exact sequence of the homotopy groups of a fibration was originally
described in terms of subgroups and quotient groups; this is the style used by
all three discoveries of the sequence and of the covering homotopy theorem
(Hurewicz-Steenrod [MR 2-323], Ehresmann-Feldbau [MR 3-58], Eckmann
[MR 3-317]). The occurrence of exact sequences of homology groups (though
not the name “exact”) was first noted by W. Hurewicz in 1941; the idea was
vigorously exploited by Eilenberg and Steenrod in their axiomatic homology
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theory [MR 14-398] (announced 1945), and it was they who chose the name
“exact.” The name stuck.

The practice of using an arrow to represent a map f: X — Y arose at
almost the same time. I have not been able to determine who first introduced
this convenient notation; it may well have appeared first on the blackboard,
perhaps in lectures by Hurewicz and it is used in the Hurewicz-Steenrod
paper, submitted November 1940 [MR 2-323]. At almost this time others
used a notation for a map with the same intent as the arrow. The first joint
Eilenberg-Mac Lane paper [1942] uses arrows and a few commuting diagrams,
but does not use exact sequences — though the main result of that paper
is the universal coefficient theorem for cohomology, now always expressed
as a short exact sequence. This paper also used the now-standard notation
hom(H, G) for the set of homomorphisms of H into G (that may not be the
first such usage). Observe that the use of these notational devices preceded
the definition of a category; I suggest that this precedence was a necessary first
step. I suggest also that abstract algebra, lattice theory, and universal algebra
were also necessary precursors for category theory; it is at any rate clear that
I personally was familiar with all three of these subjects before taking part in
the discovery of categories. Such cumulative developments are, in my view,
a frequent phenomenon in conceptual mathematics.

9. CATEGORIES

The initial discovery of categories came directly from a problem of calcu-
lation in topology. For a prime p, the p-adic solenoid X is the intersection
N T; of an infinite sequence of solid tori 7;, where 7;,; winds p times around
inside 7;. In 1937, Borsuk and Eilenberg asked for the homotopy classes of
all continuous mappings (S3—X) — S2. In 1939, Eilenberg showed that those
classes could be represented as the elements of a suitable 1-dimensional co-
homology group H'!(S? — X, Z). By using regular cycles, Steenrod [1940]
partially computed some of these groups. Mac Lane, starting from computa-
tional questions in class-field theory (cf. Mac Lane [1988]) had independently
(unpublished) computed the group Ext(Z*, Z) of abelian group extensions of
Z by the (discrete) dual Z* of Z. Eilenberg then saw a connection to Steen-
rod’s questions; then Eilenberg and Mac Lane jointly found that this group
of group extensions is isomorphic to H!(S3—ZX, Z) and that this result comes
from the (now familiar) short exact sequence

0 — Ext(H,-(K).G) £, H"(K G) = Hom(H,(K).G) - 0

(the universal coefficient theorem for cohomology) which “determines” the
cohomology groups of a chain complex K in terms of its integral homol-
ogy groups H, and H,_,. Actually, to handle Steenrod’s regular cycles it
was necessary to take a limit of such sequences over an infinite sequence of
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maps f: K — K’ of complexes; for this it was necessary in turn to know
what happens to this short exact sequence under the action of such a chain
transformation f. This leads to the diagram

0 — Ext(H,— (K’ G)) LA H"(K',G) = Hom(H,(K'),G) — 0
(2) rl ol rl

0 — Ext(H,_(K).,G) 2 H'KG) = Hom(H,(K).G) — 0
where « is the operator which evaluates each G-cocycle on homology classes
of K, and where the vertical maps are (as was then said) the maps “induced”
by f. What this means is that, for G fixed, H"(—, G) is a functor of K;
this functor turns each chain complex into an abelian group, the cohomol-
ogy H"(K,G), and also turns each map K — K’ of chain complexes into
the “induced” map f™* of cohomology groups. Moreover, if g: K/ — K" is
another such chain transformation, the induced map for the composite go f
is the composite f*g*. In the then new language, this means that H"(—, G)
is a (contravariant) functor, turning complexes into abelian groups and maps
of complexes into homomorphisms of groups, and this in such a way as to
preserve (better, invert) composition — and also to preserve identities. Thus
the geometric situation forces the consideration of a functor, and at the same
time compels one to introduce the category (of chain complexes) on which
this functor is defined. (The covariant functor H,(—) is also involved here.)

This is not all; in order to take the necessary limits, one needs to know that
both square diagrams in (2) are commutative; i.e.; f*a = of*, and similarly
with B. This property of o (and of ) means that « is what is called a natural
transformation between functors (or, for the French, who rename things to
suit their own culture, a morphism of functors).

For the purposes of that first paper [MR 4-88], Eilenberg and Mac Lane
defined only the induced maps (like f*) and the notion “natural homomor-
phism”. But, given the conceptual background which I have been describ-
ing, we took the next following step of defining category and functor in our
next joint paper [1945] which we entitled simply “General theory of natural
equivalences” — although it really began with categories and functors. It
was perhaps a rash step to introduce so quickly such a sweeping generality —
an evident piece of what was soon to be called “general abstract nonsense.”
One of our good friends (an admirer of Eilenberg) read the paper and told us
privately that he thought that the paper was without any content. Eilenberg
took care to see to it that the editor of the Transactions sent the manuscript
to a young referee (perhaps one who might be gently bullied). The paper was
accepted by the Transactions; 1 have sometimes wondered what could have
happened had the same paper been submitted by a couple of wholly unknown
authors. At any rate, we did think that it was good, and that it provided a
handy language to be used by topologists and others, and that it also offered
a conceptual view of parts of mathematics, in some way analogous to Felix
Klein’s “Erlanger Program”. We did not then regard it as a field for further
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research efforts, but just as a language and an orientation — a limitation
which we followed for a dozen years or so, till the advent of adjoint functors.

A category is not an algebraic system in the sense of Birkhoff’s universal
algebra, because the primitive operation of composition g o f is defined only
when the domain of g is the codomain of f; indeed, it is this circumstance
that forces the arrows in a category to have both source and target specified.
Actually, this is already forced by the topological situation, since the effect
of a map for homology depends vitally on the target of f. But I note that the
algebra of composition in this sense had already appeared in the studies of the
German algebraist H. Brandt [1925], whose work on composition of quadratic
forms had forced him to consider groupoids (categories in which every arrow
is invertible). Incidentally, Brandt is one of the German algebraists who
thought that Emmy Noether’s view of algebra was too abstract!

Subsequently, Charles Ehresmann’s extensive study of the foundations of
differential geometry led him to consider groupoids of local isomorphisms
transporting geometric structure from one coordinate patch to another; in
time this led him to an extensive study of categories, often in an idiosyn-
cratic notation. His example indicates that the discovery of categories was
inevitable — if not forced by problems in algebraic topology, it would have
been forced by problems in differential geometry.

The use of categories as a language is well illustrated by the development
of axiomatic homology theory. About 1940, the multiplicity of homology
theories (simplicial, singular, Cech, Vietoris, Alexander,...) seemed confus-
ing. Then Eilenberg and Steenrod introduced their axioms, including the
central one asserting that homology is a functor on (a category of) topologi-
cal spaces to abelian groups. This could have been stated without the words
or language “functor” and “category,” but Steenrod in conversation empha-
sized the importance of these concepts. He said that the Eilenberg-Mac Lane
paper on categories had a more significant impact on him than any other
research paper; other papers contributed results, while this paper changed his
way of thinking. Thus, the use of categories formulates the way in which
algebraic topology pictures geometric situations by algebraic relations, and
in this way has repeatedly appeared in the study of various extraordinary
homology theories and in current research on algebraic K-theory.

The initial uses of category theory in computer science (for automata, i.e.,
machines, minimal realization is left adjoint to behavior) were not so sweep-
ing, though currently categorical techniques appear in the study of data types,
of polymorphic types, and, more generally, of the semantics of programming
languages.
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10. AcycLic MODELS

This topic represents another shift from computation to concept. In al-
gebraic topology, many necessary comparisons appear to require elaborate
formulas backwards and forwards, as in the passage from simplicial singu-
lar homology to cubical and as in that from simplicial products to tensor
products of chain complexes (the Eilenberg-Zilber theorem). It then turned
out that representable functors and the categorical language allowed one to
get these comparisons (and many others, bar to W in K (=, n)) without any
explicit formulas, by the methods of Acyclic Models (Eilenberg-Mac Lane
[1953, MR 14-670]) which was in effect a “general nonsense” version of an
earlier geometric method of “acyclic carriers” — the basic concept is that one
triangulates spaces because the resulting pieces (the simplices) are themselves
acyclic — they have (reduced) homology zero, so that the fashion in which
the simplices are connected together gives all the homology.

One of these explicit comparisons (of the simplicial 7 construction) to
the (tensor-product like) bar construction arises in very elaborate calcula-
tions of the homology of Eilenberg-Mac Lane spaces K(n, n) (those spaces
with just one nonvanishing homotopy group 7, = =n.) These calculations
involve repeated manipulation of iterated faces F; and degeneracies D; of
singular simplices, so Eilenberg-Mac Lane codified these identities (for com-
posites F;D;) and called the result an F-D complex: I thought we were just
organizing algebraic calculations. Instead, we were introducing simplicial sets
and groups, now described not by identities but as contravariant functors to
sets from a certain small category A of model simplices. Today the category
of simplicial sets is for many purposes a replacement for (and for homotopy
types, equivalent to) the category of spaces. Grothendieck, in a massive un-
published manuscript [1985], has pushed for other alternative categories to
simplicial sets; the fact remains that what started as a tool for computation
has been categorized to become a different approach to the concept of space
— notably useful in the application of algebraic K-theory to the study of
topological manifolds.

11. BOURBAKI

In the period 1930-60, almost all new French mathematicians had studied
at the Ecole Normale Supérieure in Paris; when the students there wanted to
start a riot, the cry went up for “Bourbaki” (who had been an unsuccessful
French general in the Franco-Prussian war). Legend has it that in the 1930s
several young mathematical normaliens wandered through Montmartre and
observed a bearded clochard at the table of a café, mumbling into his ab-
sinthe “compact space, measure, integration.” They sat at his feet, followed
his many insights, and went on to publish a many-volume treatise which or-
ganized mathematics, starting from the most general down to the particular.
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They were deliberately carrying further the modern algebra approach of the
German school; they were also revolting against certain mathematical trends
then dominant in Paris: careless details in proofs and a predominant empha-
sis on the theory of one complex variable. The resulting Bourbaki treatise
(which paid no heed to applied mathematics and never did get so far as to
treat one complex variable) was systematic, austere and clear. It started from
a definite conceptual background, and had a widespread influence. Here are
two examples. Before Bourbaki, a topological space was “compact” if every
infinite sequence of points had a convergent subsequence, and “bicompact”
if every open cover had a finite subcover. Bourbaki noted that it was the
second concept which had sweep and general force; they changed the names:
“bicompact” to “compact”; “compact” to “sequentially compact” — and this
change was universally adopted (a rare event!). Second, their ideas penetrated
the whole mathematical community. I vividly remember a visit in 1950 to
Ole Miss (The University of Mississippi), where I was served a rich diet of
channel catfish and Bourbaki’s concepts.

Bourbaki dealt with mathematical structure, and in one of his very first
volumes [1939; MR 3-55] gave a cumbersome definition of a mathematical
structure in terms of what he called an “echelle d’ensembles”; though he did
not say so, this is close to the notion of a type theory in the sense of Bertrand
Russell, and has the same cumbersome characteristics. By now cartesian
closed categories provide a different possible formulation of types (in which
the objects of the category are the types); this is presented for example in
Lambek-Scott [1986]. Early in the 1950s some members of Bourbaki, seeing
the promise of category theory, may have considered the possibility of using
it as a context for the description of mathematical structure. It was about this
time (1954) that I was invited to attend one of Bourbaki’s private meetings
— not the Bourbaki seminar, but a meeting where draft volumes are torn
apart and redesigned. Bourbaki did not then or later admit categories to
their volumes; perhaps my command of the French language was inadequate
to the task of persuasion. Subsequently, Eilenberg was for a period a regular
member of Bourbaki.

Debate at Bourbaki meetings could be vigorous. For example, in one such
meeting (about 1952) a text on homological algebra was under consideration.
Cartan observed that it repeated three times the phrase “kernel equal image”
and proposed the use there of the exact sequence terminology. A. Weil ob-
jected violently, apparently on the grounds that just saying “exact sequence”
did not convey an understanding as to why that kernel was exactly this image.
In the event, the exact sequence terminology won — not just in Bourbaki,
but everywhere, probably because it gives such an effective capsule summary.

Bourbaki emphasized that his emphatic use of abstraction and general-
ization was not as a technique of research, but as an effective way of orga-
nizing and presenting mathematics. As carried out, several of his volumes
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were notably influential; for instance his “Topologie Générale” (Livre III), his
“Intégration” (Livre VI) and in particular his “Algebra multilinéaire (Livre
II, Chapter III). In subsequent years, Bourbaki was more interested in further
carrying his method to other parts of mathematics, and so was less concerned
with underlying questions such as the use of categorical or other conceptual
approaches. Here, as elsewhere in the history of mathematics, conceptual
advances involve several successive steps, usually subsequent steps by new
authors.

The Bourbaki organization of pure mathematics is clearly a further ad-
vance on earlier conceptual developments (e.g., modern algebra). It is a
remarkable success — perhaps not on the level of Euclid’s elements, but far
surpassing the efforts of that great German organizer Felix Klein (e.g., in
the Encyclopddie der Mathematik). A whole generation of graduate students
of mathematics were trained to think like Bourbaki. His seminar in Paris
presents new results of research; it is a major accolade when a topic is pre-
sented there. It may well be that an anonymous group effort in organization
like Bourbaki is possible only in a country which is highly centralized (as in
Paris) and in which school children are exposed early on to extensive philo-
sophical discussion.

12. ABELIAN CATEGORIES

The next step in the development of category theory was the introduc-
tion of categories with structure. About 1947, I noticed that the Eilenberg-
Steenrod axiomatic homology theory concerned functors from a category of
topological spaces to various categories with an “additive” structure — cate-
gories of abelian groups, or of R-modules for various rings R. I consequently
set about to describe axiomatically these abelian categories; in doing this I also
formulated explicitly the definition of products and coproducts (= sum) by
universal mapping properties. The resulting description of abelian categories
laid too much emphasis on duality, as in the duality between sum and prod-
uct. In module categories there is a distinguished class of monomorphism
(the inclusion of submodules); I endeavored to force the duality by introduc-
ing a distinguished class of epimorphisms (e.g. maps to quotient modules). I
failed to note that in “reality” there is no such distinguished class of epimor-
phisms. To put it in more current terminology: category theory describes
certain structures such as products and cokernels, but only up to isomor-
phism, and that is all that matters. In the event, my initial [1950] description
of abelian categories was clumsy. I soon had the opportunity to present this
description in an invited hour lecture at an AMS meeting. I felt that the ideas
involved were important, but the lecture evoked no response at all; for ex-
ample the Mathematical Reviews produced a belated one-line statement [MR
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14-133]: “This paper is an expanded version of an earlier note [MR 10-9].”
I was discouraged from pursuing these ideas further.

But abelian categories were there, so the idea did not die. David Buchs-
baum, in a thesis stimulated by Eilenberg [1955; MR 17-579], developed a
smoother axiomatic description. Then Grothendieck [1957; MR 21#1328]
made the crucial geometric observation that sheaves of abelian groups or of
modules on a space form an abelian category, and proceeded to describe a
more specific structure (his AB5). His important discovery was clearly in-
dependent of any prior work on abelian categories: He came to Chicago in
the spring of 1955 and lectured on this subject; as I heard his lecture, it was
amply clear that he had no knowledge of earlier work by Mac Lane or Buchs-
baum. This may illustrate the fact that there can be multiple discoveries of
a concept, and that the discovery which matters most is that which ties the
concept to other parts of mathematics — in this case to sheaf cohomology.

Buchsbaum emphasized the use of abelian categories as the range of ax-
jomatic homology functors, while Grothendieck emphasized their use in ho-
mological algebra. Here and below we do not intend to cover the subsequent
development of homological algebra or the use there of abelian categories,
even though these developments were closely related to those in general cat-
egory theory.

One may note that the influential 1958 book by Godement, on algebraic
topology and the theory of sheaves [MR 21#1583] mentions both simplicial
sets and abelian categories, but does not make systematic use of these con-
cepts in that general form. New ideas are incorporated in the literature only
gradually — if at all.

13. ALGEBRAIC GEOMETRY

Algebraic geometry as developed in the early German and the Italian
schools was rich in geometric insights but deficient in techniques for rigorous
proof. The need for an underpinning of algebraic geometry had played a large
role in Emmy Noether’s ring theory (polynomial rings) and in extensive re-
search by van der Waerden on ideal theory, by W. Krull on valuation theory,
and by Zariski on the resolution of singularities and related matters. André
Weil wrote a monumental and influential treatise [MR 9-303] on intersection
theory in which he reformulated the notion of an algebraic variety. In my
own examination of this treatise I did notice a number of points where cate-
gorical concepts might be fruitful (I did not develop this observation). There
were also important contributions by Serre [MR 16-953] and by Chevalley
[MR 21#7202].

The decisive next step was taken by Grothendieck. To attack certain con-
jectures of André Weil, he proposed a massive reformulation of all of al-
gebraic geometry; we will note here only two aspects of this reformulation
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which involve categorical concepts. One aspect was a drastic change in the
description of an algebraic variety V. Classically such a ' was the locus in
affine or better in projective space of a finite number of polynomial equa-
tions; in more invariant terms, of the ideal generated by these polynomials.
Weil had shown the importance of replacing projective varieties by pasting
together several affine pieces. Grothendieck instead shifted the basic notion
to that of a scheme, initially described as a suitable topological space carry-
ing a sheaf of local rings. Finally, in the hands of Gabriel and Demazure
(Groups Algébriques [MR 46#1800]) a scheme was defined in simple concep-
tual terms as a functor from commutative rings to sets; again the categorical
formulation made for simplicity, and in this case helped expedite the sheaf
concept.

The notion of a sheaf on a space X developed gradually (see Gray’s histor-
ical article [1979]), starting in part from analysis in one or several complex
variables. On the one hand, one may consider the set G, of germs of func-
tions (analytic or continuous, as the case may be) at each point x € X; the
totality of these germs then forms a space [[ G, with a suitable continuous
map p onto X; such a “local homeomorphism” is a sheaf over X. On the
other hand, one may consider for each open set U of X the set F(U) of all an-
alytic or of all continuous functions defined on U. Then F is a contravariant
functor to sets from a category of open subsets of X. When this functor has a
patching property (e.g., a continuous function can be patched together from
matching pieces) it is a sheaf. The typical sheaves in analysis are functors to
the category of abelian groups or of modules, but for conceptual purposes it
suffices to consider sheaves of sets. Serre and others had emphasized the use
of sheaves in algebraic geometry, and Grothendieck then used them heavily
in his study of the cohomology of his schemes. He observed that the cate-
gory of sheaves on a space X (or, more generally, on what he called a site)
carried the essential information about the topology (and the cohomology)
of that space or site. He therefore called such a category a “topos.” These
ideas were presented in a famous 1962 Harvard seminar of M. Artin and
in Grothendieck’s Seminaire “Géométrie Algébrique du Bois Marie” — SGA
IV, for 1963/64. These seminar notes were later extensively revised and hard
to get. (In 1966, I managed to get a copy, but with difficulty). There was
a second mimeographed edition in 1969 and then — finally fully public —
in a Springer Lecture Notes (Artin [1972]). Its presentation involved a great
deal of category theory, and soon included a theorem of Giraud characteriz-
ing those categories which are topoi (toposes). It was observed that a topos
inherits most of the familiar properties of the category of small sets. (This
by Verdier in lectures, 1965, and in a copy of Exposé IV in the 1969 edition
of SGA 1V, by Grothendieck and Verdier, identical with the 1972 edition.
(Page 3 there has the famous statement “the authors of the present seminar
consider that the object of topology is the study of toposes and not just of
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topological spaces”.) This is the origin of topos theory, a decisive aspect of
category theory.

The remarkable and extensive influence of Grothendieck in algebraic ge-
ometry does not fall under my subject here. His use of categories is subordi-
nate to his geometric insights, but I note that here (as in the case of algebraic
topology and the discovery of categories) geometric questions led inevitably
to categorical developments.

14. ADJOINT FUNCTORS

The notion of a universal construction was developed in stages, well before
its formulation in terms of adjoint functors. The description of a construc-
tion as “universal” would naturally be used first in cases where a set-theoretic
version of the construction is not quite natural. Thus Eilenberg-Mac Lane
[1945; Thms. 21.1 and 21.2] described direct and inverse limits over directed
sets in terms of a version of universality (such limits had appeared first with
Cech homology). In [1948], Samuel described universal constructions, while
representable functors were used by Bourbaki about 1948. As noted, Mac
Lane in [1948, 1950] showed that the familiar cartesian product could be
described in terms of universal properties of its projections.

Kan [1958] took the major step of defining adjoint functors. He then for-
mulated all the related ideas: unit and counit of an adjunction, existence
theorems for Kan extensions and tensor product as left adjoint to hom, plus
numerous examples from topology. At the same time, he used these adjoints
extensively in his study of simplicial sets. At the time I was startled and im-
pressed with his discovery. It represented a major conceptual advance which
others from Bourbaki to Samuel to Mac Lane had missed. Kan made this
major discovery while he was visiting Columbia University, and Eilenberg
suggested the name “adjoint” to Kan. There is evidence that the discovery
of adjoint functors was inevitable; other people would have found them.

This discovery soon blossomed. Peter Freyd’s basic existence theorem
for adjoint functors (the “adjoint functor theorem”) appeared in [1963 MR
34#1371] and in his book [1964]. Adjoints had arrived. (There are further
historical comments in Mac Lane [1971; p. 76 and p. 103].)

15. SETs WITHOUT ELEMENTS

As an undergraduate at Indiana University, F. W. Lawvere had studied
continuum mechanics with Clifford Truesdell and Walter Noll; when he gave
some lectures in Truesdell’s course on functional analysis, he learned some
category theory and had occassion to rediscover for himself the notions of
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adjoint functor and reflective subcategory. He then moved to Columbia Uni-
versity. There he learned more category theory from Samuel Eilenberg, Al-
brecht Dold, and Peter Freyd, and then conceived the idea of giving a direct
axiomatic description of the category of all categories. In particular, he pro-
posed to do set theory without using the elements of a set. His attempt to
explain this idea to Eilenberg did not succeed; I happened to be spending a
semester in New York (at the Rockefeller University), so Sammy asked me
to listen to Lawvere’s idea. I did listen, and at the end I told him “Bill, you
can’t do that. Elements are absolutely essential to set theory.” After that
year, Lawvere went to California.

I was wrong about Lawvere’s idea. In an axiomatic foundation, it is possi-
ble to replace the primitive notion “element of™ (a set) by the primitive notion
“composition of functions” (between sets); this amounts to an axiomatic de-
scription of the category of sets. Lawvere did achieve a complete formulation
of this idea in his 1963 Columbia thesis, and refined the idea while giving
courses at Reed College, 1963-64. By that time I finally understood that
it was indeed possible to state axioms (in the first order predicate calculus
but not using elements) for the category of sets; I redeemed my earlier lack
of understanding by communicating Lawvere’s presentation of this idea to
the Proceedings of the National Academy of Sciences [1964]. This paper es-
tablished the startling fact that it is possible to give a formal foundation of
mathematics different from the standard foundations by axiomatic set theory
and by type theory. Since that time this approach has been further improved;
one can now describe the elementary theory of the category of sets (ETCS) as
the theory of a well pointed (elementary) topos E. Then E has a terminal ob-
Jject 1 and the “elements” of an object X of E appear as the arrows x: 1 — X.
The equivalence of this theory to a weak form of Zermelo set theory is known
(e.g., Johnstone [1977] or Hatcher [1982]). Moreover, an elementary topos is
a cartesian closed category, and the latter concept is closely connected with
the typed A-calculus, while topos theory may be regarded as a version of in-
tuitionistic type theory (Lambek-Scott [1986]). The A-calculus, developed by
Church and others in the 1930s, can be described informally as “doing logic
without variables™; however, it had little or no connection with the initial
developments of elementary topos theory (“doing sets without elements”). J.
Lambek and D. Scott were among the first to emphasize the interconnection
of these ideas. Also doing set theory without elements does involve much use
of commutative diagrams — some rather large and even cumbersome. It is
striking that the so-called Mitchell-Benabou language has introduced the idea
of using letters in the language which act “as if” they were elements. This
effective approach is described, for example, in Boileau-Joyal [1981].

The difficulty of understanding that there can be a set theory without el-
ements seems to persist in some quarters. For example, Feferman [1977] in
responding to a paper of mine, writes “when explaining the general notion
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of structure and of particular kinds of structure such as groups, rings, cat-
egories, etc., we implicitly presume as understood the idea of operation and
collection” (his italics). This observation fails to make a clear distinction
between the prior informal preaxiomatic understanding of notions such as
«collection” and their formal presentation, for example in an axiomatization
in the first order predicate calculus. More especially, it fails to note that in
the elementary theory of the category of sets the objects axiomatize the no-
tion “collection” and the arrows the notion “operation.” Feferman goes on
to discuss the “operation of cartesian product over collections”. It might be
that he has failed to notice that a finite cartesian product can be axiomatized
by universal properties of its projections — and that this gives a more in-
trinsic understanding of cartesian products in many categories than the usual
(artificial) set-theoretic definition of ordered pair. (The categorical treatment
of infinite cartesian products requires reference to a slice category, in a more
elaborate construction which may well not have then been known to Fefer-
man.) These remarks are not intended as a criticism of Feferman; he is a
logician who has indeed examined category theory and made contributions
(the use of reflection) to the problem of explaining large constructions such
as functor categories. The point rather is that for anyone brought up in the
tradition of set theory, it may be very difficult to imagine the viability of
alternative approaches which do not take as basic the notion of “set with
elements.” Also, the pre-formal notion of “collection” may not be well repre-
sented by Zermelo-Fraenkel set theory, where the elements of a set are again
sets, so that one is dealing with sets of sets of sets, etc. Understanding new
conceptual approaches is notoriously hard.

16. THE CONCEPT OF SET

The discussion of “sets without elements” might well be supplemented by
a brief consideration of the earlier origins of the mathematical concept of
a set. There seem to be two (related) origins: the notion of a “collection”
and the more sweeping notion of “arbitrary” set. By a collection I mean here
a collection of some of the elements of an already given totality. Thus the
congruence class 3 modulo 11 is the collection of all integers x with x =3
(mod 11), a function on the reals to the reals is a collection of pairs of real
numbers; a real number is a Dedekind cut; that is, a suitable collection of
rational numbers; a rational number is a congruence class (collection) of pairs
of integers, and a natural number is an equivalence class of finite sets, where
“equivalence” means cardinal equivalence. This notion of collection is the
one which appears in Boolean algebra — the algebra of all collections taken
from a given universe. Point-set topology dealt originally with point-sets
which were usually collections of points from a given Euclidean space.
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The wider notion of an arbitrary set came to general attention in the work
of Georg Cantor, in his treatment of arbitrary infinities, with the definition
of a (possibly) infinite cardinal number as an equivalence class of (arbitrary)
sets, and of an ordinal number as an ordinal equivalence class of well-ordered
sets. This general idea appears also in the work of G. Frege and of Bertrand
Russell, who spoke of “classes” and not “sets” and who formulated the fa-
mous paradox of the class of all classes not members of themselves. Then
Zermelo’s ingenious proof that every set could be well ordered revealed the
need to consider the axiom of choice and led him to his axiom system for
sets, which also served to avoid the Russell paradox. Hausdorf®s famous
book “set theory” (first edition, 1914) dealt with naive set theory, though
Hausdorff clearly stated that he knew the Zermelo axioms. These axioms for
set theory were subsequently improved by Skolem [1922], Fraenkel [1922],
von Neumann [1928] and Bernays [1942, MR 2-210]). But I read the his-
torical record to show that mathematicians generally, up until about 1935,
did not regard axiomatic set theory as the foundation of mathematics, but
only as a way of explaining Cantor’s infinities and of founding the ordinal
numbers. At the same time, they thought of collections (in the sense above)
as a naive set theory, not requiring any foundations.

At that period, the “foundation” of mathematics was concerned primarily
with the rigorous treatment of the calculus. This required expert manipula-
tion of limits by ¢ — § arguments, in the tradition of Weierstrass, plus proof
of basic facts like the mean-value theorem from a definition of real num-
bers. The standard presentation of this approach was formulated by that
vigorous advocate of rigor in proofs, Edmund Landau, in his notable leaflet
“Foundations of Analysis (The calculation with whole, rational, irrational,
and complex numbers, a complement to the texts on differential and integral
calculus),” first published in 1930; cf. [MR 12-397] for the English transla-
tion. There he started from the Peano postulates for the natural numbers
and built up the other number systems in the well-known way by equivalence
classes and (eventually) Dedekind cuts.

A Dedekind cut is described (loc. cit. p. 43) as a suitable “Menge” of
natural numbers. Here the words “Menge” (in Definition 28 for a cut) and
“Klasse” (of equivalent fractions, p. 20) appear just like that, with no def-
inition and no apology for the absence of a definition. In the introduction,
Landau on page x thanks von Neumann for help — and at this time (1928)
von Neumann had already formulated his version of axiomatic set theory.

In other words, Landau built up the reals just from the Peano axioms,
presented in his famous austere “Landau style” Axiom, Definition, Satz, Be-
weis. 1 recall attending his lectures (in Goéttingen) and admiring this style
and its absolute precision. I also recall that in later years I often explained
to other mathematicians that one could not really get the real numbers just
from Peano postulates — one also needed assumptions about sets.



CONCEPTS AND CATEGORIES IN PERSPECTIVE 345

In Gottingen in those days (1931-33) Hermann Weyl did not hold much
use for set theory: he repeatedly said that set theory “involved too much
sand”. Then Hermann Weyl was perhaps inclined to intuitionism. But the
famous two-volume book by Hilbert-Bernays Foundations of Mathematics
[1934] in its second edition (1968 and 1970) mentions the word “set” only
in a wholly incidental way.

On the other hand, we have the current firm belief that ZFC (the Zermelo-
Fraenkel axioms with choice) is the foundation of mathematics. I have been
unable to determine just when the belief became generally accepted. Was it
with Gédel’s proof of the consistency of the Continuum Hypothesis (1940;
MR 2-66)? Or with Nicholas Bourbaki’s brilliant lecture (actually delivered
by A. Weil) to the Association for Symbolic Logic on “Foundations of Math-
ematics for the Working Mathematician” (1949; MR 11-73). Or was it the
gradual appreciation of the scholarly quality of Paul Bernays’ system of ax-
iomatic set theory (completed 1943; MR 5-198). At any rate, by the time of
the ascendency of the “new math” in the schools (beginning at 1960), the cen-
tral role of axiomatic set theory was generally accepted, only to be promptly
challenged by Lawvere in 1964.

I conclude that the ZFC axiomatics is a remarkable conceptual triumph,
but that the axiom system is far too strong for the task of explaining the
role of the elementary notion of a “collection.” It is also curious that most
mathematicians can readily recite (and use) the Peano axioms for the natural
numbers, but would be hard put to it to list all the axioms of ZFC. It is,
however, well-known that these axioms do not suffice to settle the continuum
hypothesis, in view of Paul Cohen’s proof of its independence (1963; MR
28#1118 and MR 28#2962). But we will soon explain that this independence
can be viewed not just as a fact about models of sets, but also as an aspect
of sheaf theory for toposes.

17. RESEARCH ON CATEGORIES

Initially, Eilenberg and Mac Lane had written what they thought would
perhaps be the only necessary research paper on categories — for the rest,
categories and functors would provide a useful language for mathematicians.
Then, as noted above in §11, the study of abelian categories became a sub-
stantial subject of research, especially in connection with homological algebra.
This observation is well exemplified by a famous 1962 thesis of Pierre Gabriel
“Des Catégories Abéliennes” [MR 38#1144] (Not reviewed till 1969!). In ad-
dition, there was a trickle of research papers on general category theory, with
some notable items, such as the discovery of adjoint functors (see §14 above).

Another important step came when Peter Freyd, in his 1960 Princeton
thesis, showed that there could be substantial theorems about categories by
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proving his Adjoint functor theorems, which gives conditions for the exis-
tence of adjoint functors.

Then in 1963 it suddenly became clear that general category theory (not
just abelian categories or applications of categories) was a viable field of
mathematical research. It is difficult to understand why so many instances of
this development came in just this one year. Some of the major such items
in 1963 are:

(i) SGA 1V, from the Institut des Hautes Etudes Scientifiques, first ap-
peared in 1963-64 in a mimeograph edition with 7 Fascicules. The first fas-
cicule has the title “Cohomologie étale des schémas,” edited by M. Artin,
A. Grothendieck, and J. L. Verdier, while the remaining fascicules 2-7,
under the title “Schémas en groupes,” are edited by M. Demazure and A.
Grothendieck. There was a second mimeographed edition in 1969, edited by
Artin, Grothendieck and Verdier, in which the title was deliberately changed
to “Théorie des topos et cohomologie étale des schémas” to emphasize the
importance of the language of (Grothendieck) topologies and toposes.

(i) Lawvere’s imaginative thesis at Columbia University, 1963, (see MR
28#2143) contained his categorical description of algebraic theories, his pro-
posal to treat sets without elements and a number of other ideas. I was
stunned when I first saw it; in the spring of 1963, Sammy and I happened
to get on the same airplane from Washington to New York. He handed me
the just completed thesis, told me that I was the reader, and went to sleep. 1
didn’t.

(iii) Peter Freyd’s first public presentation of his adjoint functor theorem
was at a model-theory conference in Berkeley in 1963 [MR 34#1371]. This
focused attention on adjoints.

(iv) Ehresmann’s big paper on “Catégories Structurées” (in modern terms,
on internal categories such as topological categories = category objects in the
category Top of topological spaces) appeared in 1963 [MR 33#5694].

(v) Mac Lane’s first coherence theorem (all canonical diagrams commute
in a symmetrical monoidal category) was published in 1963 [MR 30#1160],
to be sure in an obscure place.

(vi) Mac Lane, as the 1963 Colloquium lecturer for the American Mathe-
matical Society, chose to lecture on Categorical Algebra.

Had I been invited to give Colloquium lectures a year or two earlier, I
would have chosen to lecture on homological algebra or an aspect of alge-
braic topology; I would hardly have ventured to give four one-hour lectures
on category theory. But by 1963 I had been stimulated by the enthusiasm of
the group of young people at Columbia around Eilenberg (H. Applegate, M.
Barr, H. Bass, J. Beck, D. Buchsbaum, P. Freyd, J. Gray, A. Heller, F. W.
Lawvere, F. E. J. Linton, B. Mitchell, M. Tierney) and I saw that category
theory involved substantial research prospects. My 1963 Colloquium lectures
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emphasized the equivalence between universal arrows and adjoints, and their
effective use in the description of limits and of abelian categories. Other top-
ics included the bar resolution regarded as an adjoint, symmetric monoidal
categories and their use to describe higher homotopies, as well as topics in
homological algebra. The subsequent article [MR 30#2053] was considerably
expanded, so does not exactly reflect the content of the lectures. It is clear
that at that time my interests in category theory were closely tied to the use
of categories in topology and in homological algebra.

It is remarkable that 1963 presented so many developments in category
theory, coming from several quite different sources. Possibilities were in the
air, because it was at about this time that many mathematicians started to
do research in category theory. In the period 1962-67, I estimate that about
60 people started; I document this with a table of “first” research papers
in category theory by various authors, arranged (but only approximately) by
“schools”; papers primarily in homological algebra and most research an-
nouncements are omitted. Many of the papers in this long list are not now
of importance, but the list is intended to illustrate the sudden way in which
new developments can take off, with widespread participation.

The school in the USSR was led by A. Kuros, who had worked in group
theory:
A. G. Kuros§ 1960 Direct decompositions in algebraic categories,
MR 21#3365,
M. S. Calenko 1960 On the foundations of the theory of categories,
MR 26#2480,
A. H. Livsic 1960 Direct decompositions with indecomposable compo-
nents in algebraic categories, MR 22#2658a
D. B. Fuks 1962 On the homotopy theory of functors in the category of
topological spaces, MR 25#572
E. G. Sul'geifer 1960 On the general theory of radicals in categories,
MR 27#2451
A. V. Roiter 1963 On a category of representations, MR 28#3072
A. S. Svarc 1963 Functors in categories of Banach spaces, MR 27#4046
H. N. Inasaridze 1963 On the theory of extensions in categories,
MR 28#3074
O. N. Golovin 1963 Multi-identity relations in groups and operations de-
fined by them on the class of all groups, MR 28#3103
V. V. Kuznecov 1964 Duality of functors in the category of sets with a
distinguished point, MR 32#2456

The school of Grothendieck, in categorical aspects, first came to attention
in Harvard lecture notes (1962) by M. Artin on “Grothendieck topologies.”
Then

J. Giraud 1963 Grothendieck topologies on a category, MR 33#1343
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I. Bucur 1964 Fonctions définies sur le spectre d’une catégorie et théories
de décompositions, MR 32#5705

N. Popescu 1964 (with P. Gabriel) Caractérisation des catégories abéliennes
avec générateurs et limites inductives exactes, MR 29#3518

J.E.Roos 1964 Sur la distributivité des foncteurs }in par rapport aux m
dans les catégories des faisceaux (topos), MR 32#5714

P.-A. Grillet 1965 Homomorphismes principaux de tas et de groupoides,
MR 35#2989

A. G. Radu 1966 Quelques observations sur les sites, MR 37#272

A. Solian 1966 Faisceaux sur un groupe abélien, MR 36#245

An especially influential book appeared in 1967:
P. Gabriel and M. Zisman: Calculus of Fractions and Homotopy Theory,
MR 35#1019

The American School:
John Isbell 1960 Adequate subcategories, MR 31#230
John Gray 1962 Category-valued sheaves, MR 26#170
J.-M. Maranda 1962 Some remarks on limits in categories, MR 29#135

A. Heller 1962
On the cat f sh R 26#1887
K. A. Rowe 1962 } n the category of sheaves, MR 26#188

F. W. Lawvere 1963 Thesis (as already cited), MR 28#2143

P. Freyd 1963 The theories of functors and models (already cited),
MR 34#1371

O. Wyler 1963 Ein Isomorphiesatz, MR 26#6096

G. M. Kelly 1964 On the radical of a category, MR 30#1157

B. Mitchell 1964 The full embedding theorem, MR 29#4783

.I;TLB]::; :ggg } Acyclic models and triples, MR 39#6955

J.Beck 1965 Triples, Algebras and Cohomology (unpublished thesis 1967)

W. Burgess 1965 The meaning of mono and epi in some familiar cate-
gories, MR 33#161

J.F.Kennison 1965 Reflective functors in general topology and elsewhere,
MR 30#4812

F.E. J. Linton 1965 Autonomous categories and duality of functors,
MR 31#4821

J. Lambek 1966 Completions of categories, MR 35#228

J. A. Goguen 1967 L-fuzzy sets, MR 36#7435

J. L. MacDonald 1967 Relative functor representability, MR 36#5189

I. S. Pressman 1967 Functors whose domain is a category of morphisms,
MR 35#4279

Finally one must mention an influential paper not really belonging to this

school:
D. G. Quillen 1967 Homotopical algebra, MR 36#6480



CONCEPTS AND CATEGORIES IN PERSPECTIVE 349

The Ehresmann school in France was totally separate from the Grothen-

dieck school:

J. Bénabou 1963 Catégories avec multiplication, MR 26#6225

M. Hasse 1963 Uber die Erzeugung von Kategorien aus Halbgruppen,
MR 28#152

G. Joubert 1965 Extensions de foncteurs ordonnés et applications,
MR 33#1344

D. Leborgne 1966 Le foncteur Hom non abélien, MR 33#1345

L. Coppey 1967 Existence et construction de sommes finies dans une
catégorie d’applications inductives entre classes locales complétes et
dans la catégorie des applications “continues” entre paratopologies,
MR 37#268

There were later many more members of this school.

Other categorists in France:

A. Preller 1966 Une catégorie duale de la catégorie des anneaux idempo-
tents, MR 33#169

R. Pupier 1965 Sur les catégories complétes, MR 33#170

The low countries (Belgium, The Netherlands; hardly a “school”, but just

individuals):

P. Dedecker 1964 Sull’hessiano di taluni polinomi (determinanti, pfaffi-
ani, discriminanti, risultanti, hessiani), MR 31#2239

F. Oort 1964 Yoneda extensions in abelian categories, MR 29#140

R. Lavendhomme 1965 La notion d’idéal dans la théorie des catégories,
MR 31#3479

P. C. Baayen 1964 Universal morphisms, MR 30#3044

J. Mersch 1964 Structures quotients, MR 31#2298

P. Antoine 1966 FEtude élémentaire des catégories d’ensembles structurés,
MR 34#220

The Swiss school:

B. Eckmann 1961 } Group-like structures in general categories. 1. Mul-
P. Hilton 1961 tiplications and comultiplications, MR 25#108

F. Hofmann 1960 Uber eine die Kategorie der Gruppen umfassende Kat-
egorie, MR 24#A1300

P. Huber 1961 Homotopy theory in general categories, MR 27#187

A. Frei 1965 Freie Gruppen und freie Objekte, MR 32#5708

H. Kleisli 1965 Every standard construction is induced by a pair of ad-
joint functors, MR 31#1289

M. André 1966 Categories of functors and adjoint functors, MR 33#5693

German categorists (hardly a “school”):
D. Puppe 1962 Korrespondenzen in abelschen Kategorien, MR 25#5095
J. Sonner 1962 On the formal definition of categories, MR 26#2483
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B. Pareigis 1964 Cohomology of groups in arbitrary categories,
MR 32#136

W. Felscher 1965 Adjungierte Funktoren und primitive Klassen,
MR 33#2701

H. Brinkmann 1966 Lecture notes, Kategorien und Funktoren,
MR 33#7388 (with D. Puppe)

D. Pumpliin 1967 Das Tensorprodukt als universelles Problem,
MR 35#2942

H. Herrlich 1967 On the concept of reflections in general topology,
MR 44#2210

Eastern Europe (Czechoslovakia, D. D. R., Poland)

V. Sediva-Trnkovda 1962 On the theory of categories, MR 26#3637

Z. Semadeni 1963 Free and direct objects, MR 25#5020

K. Drbohlav 1963 Concerning representations of small categories,
MR 29#3520

H.-J. Hoehnke 1963 Einige Bemerkungen zur Einbettbarkeit von Kate-
gorien in Gruppoide, MR 27#3736

M. Husek 1964 S-categories, MR 30#4234

A. Pultr 1964 Concerning universal categories, MR 30#3906

Z. Hedrlin 1965 } On the representation of small categories,
A. Pultr 1965 MR 30#3123

L. Bukovsky et al. 1965 On topological representation of semigroups and
small categories, MR 33#160

A. Sulifiski 1966 The Brown-McCoy radical in categories, MR 34#1378

L. Budach 1967 Quotientenfunktoren und Erweiterungstheorie,
MR 36#3852

M. Jurchescu, A. Lascu 1966 Strict morphisms, Cantorian categories, com-
pletion functors, MR 36#3845

Central and South America:
M. Hocquemiller 1963 Probleme universel de catégorie, MR 34#7610
R. Vazquez Garcia 1965 The category of the triples in a category,
MR 36#2667

In such a list, the various papers are of quite different strengths; indeed
category theory, as a new subject, does offer the possibility of writing papers
that appear learned but are really unconsequential. The list does show the
variety of interests in different “schools” and the common fact that there was
a very active start in this research in the period 1962-67. It may be noted that
this was a period when the mathematical community (at least in the USA)
was rapidly expanding, and that previous larger “fields” of mathematics may
at this time have tended to break up into subfields — a possibility needing
more empirical study.
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This extensive list of all sorts of contributions to this field is offered as a
sample of the way in which a new field (or should we say, a new fashion)
nowadays develops rapidly and on a world-wide basis.

The first conference on Category theory, sponsored by the US Air Force
Office of Scientific Research (AFOSR), was held in La Jolla, California in
June 1965. There the idea of categories with added structure was prominent;
Eilenberg and Kelly lectured on closed categories (and enriched categories)
MR 37#1432 and Lawvere spoke of “The category of categories as a foun-
dation of mathematics,” [MR 34#7332]. As the review of that paper notes,
the axioms there proposed were not adequate but the ideas proposed led to
extensive later studied (Benabou, Gray, Street) of 2-categories, bicategories,
and related ideas.

At the end of the La Jolla conference the AFOSR representative privately
told Eilenberg and Mac Lane that AFOSR could no longer support such re-
search. This was at the beginning of the most fruitful 10 year period in the
development of category theory. It may indicate that agency judgments of
future prospects are not always on target.

18. ALGEBRAIC THEORIES AND MONADS

In universal algebra a group G would be described as a set G equipped with
three operations: a binary operation m: G xG — G of multiplication, a unary
operation v: G — G giving the inverse, and a nullary operation e: 1 — G
giveng the identity element (with 1 the one-point set); the operations are then
subject to the usual identities as axioms. Each identity, such as the associative
law, involves iterations such as m(m x 1) = m(1 x m)G x G x G — G of the
three given operations. Lawvere’s 1963 thesis took the decisive step of giving
an “invariant” description of any such theory, in which all the iterated and
composite operations would appear. Thus, in effect, he defined an algebraic
theory A to be a category with denumerably many objects 4%, 4!, ..., 4", ...
with each 4* given as a product of k factors 4', with explicit projections (and
A° as terminal object). In such a theory, the morphisms 4" — A are the
n-ary operations. An algebra for the theory is a product-preserving function
T:A — Sets, and one may similarly define the algebras for this theory in
other categories. This elegant description, closely related to P. Hall’s clones,
certainly does provide the intended invariant description for a theory such
as the theory of groups or of rings since it provides in this one category A all
the derived operations of the theory, and of course the identities (such as the
associative law) between them. It has been extended by Linton [MR 35#233]
to include algebras with infinitary operations. Despite the elegant form, it
has been neglected by most specialists in universal algebra, but expositions
appear in the books by B. Pareigis [MR 42#337a,b] and by H. Schubert [MR
43#311] and by E. G. Manes [MR 54#7578].
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Closely related inm the theory of a monad. A functor F: X — E with right
adjoint U: E — X defines in the “base” category X a composite functor UF =
T: X — X together with the natural transformations n: I — T, the “unit”
of the adjunction, and u: T2 — T, defined from the counit. This “triple”
(T, n, u) satisfies identities like those for a monoid with multiplication x and
unit element #; such a structure was called a “triple” by Eilenberg-Moore
and a monad by Mac Lane. The identities were actually first presented in
Godement’s rules for the functional calculus in his 1958 book on sheaf theory
[MR 21#1583]. In 1965 Eilenberg and Moore named triples [MR 32#2455]
and showed that every such triple in X arises from a pair of adjoint functors
F:X —E, U: E — X in which E is the category of algebras for the triple and
F is the functor assigning to each object of X the corresponding free algebra.
This elegant construction of algebras, including the case of algebraic theories,
led soon to a considerable study of the structure semantics relation between
the triple (the structure) and the semantics — its category of algebras. These
relations were developed by Linton [MR 39#5655; 40#2730 and 42#6071]
in part in a year-long seminar on triples and categorical homology theory,
held in 1966-67 in the Forschungsinstitut fiir Mathematik at the E.T.H. in
Zurich. There was also developed the use of triples and their dual, cotriples,
in the study of the cohomology of algebraic systems — where the cotriple
provided a way of constructing standard resolutions (M. Barr and J. Beck,
[MR 41#3562]). A. Kock [MR 41#5446] and J. Duskin [MR 52#14006]
developed other related ideas. The properties of monads (= triples) also play
an axiomatic role in topos theory, as explained in Johnstone [1977] or in the
[1986] book by Barr and Wells. But in general, this theory of monads is to
be regarded as a natural (and inevitable) development of the basic notion of
adjoint functor.

19. ELEMENTARY TOPOI

After the discovery and exploitation of the properties of adjoint functors,
the next decisive development in category theory was the axiomatization of
elementary topoi. This comes from three or four different sources and from
the examination of several different sorts of categories: The category S of sets,
as in the Elementary Theory of the Category of Sets (ETCS) of §15 above, the
category (Grothendieck topos) E of all sheaves of sets on a topological space
or on a “site” (a category equipped with a Grothendieck topology, as in §13
above), functor categories S (the category of all contravariant functors to
sets from some small category C) and the categories constructed by Scott and
Solovay of Boolean valued models of set theory. We now know that each of
these (types of) categories satisfies the axioms for an “elementary topos™: A
category E with all finite limits which is cartesian closed (that is, the functor
X — (—=) x X has a right adjoint, the exponential — ( )¥), and which has
a “subobject classifier” Q. But the development of this formulation took
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time and many interactions between mathematicians; the following account
is based in part on private communications from Lawvere and Tierney.

Thus Lawvere had struggled with the fascinating possibility of axiomatiz-
ing the category of all categories as a foundation for mathematics (§17 above);
it was closely tied in to his axiomatization of ETCS (§15 above), while this
axiomatics was developed by Lawvere under the stimulus of teaching able
students at Reed College, 1963-64 (Courses and lectures generally have a lot
to do with the articulation and development of mathematical ideas). P. Freyd
had suggested to M. Bunge, a graduate student, the problem of axiomatiz-
ing functor categories such as $¢” ; after advice from Lawvere this resulted
in her Ph.D. thesis [MR 38#4536]. In that magical year 1963, Paul Cohen
had invented the process of forcing to prove the independence of the con-
tinuum hypothesis from the axioms of ZFC, while in 1966 D. Scott and R.
Solovay developed a proof of this independence by the alternative method of
Boolean-valued models. (This was presented by Scott in lectures at the 1967
summer institute on axiomatic set theory (UCLA); the mimeograph version
of Scott’s lectures was not published in the subsequent Proceedings of the
symposium [MR 43#38], but there is a brief published note [MR 38#4300]
and a published proof of Boolean-valued models of the independence of the
continuum hypothesis [MR 36#1321]. (See also the book by J. L. Bell, [MR
87e#03118].) When Lawvere in 1966 learned of the Boolean-valued models
the connection with ETCS and topos theory became clear to him; Gabriel’s
1967 lectures at Oberwalfach on Grothendieck topoi also stimulated him.

The subobject classifier Q in a category E is an object Q and an arrow
t: 1 — Q such that any subobject S — X of any X can be obtained from
¢ by pullback along a unique map x: X — ; in the category of sets, this
 is just the characteristic function ys: X — {0, 1} of the subset S, while
Q is the set {0, 1} of the two classical truth-values. The symbol Q in this
sense apparently first cropped up in the initial IHES edition of SGA IV,
where it is noted that the set Q(X) of all subobjects of an object X in a
Grothendieck topos E defines a sheaf for the “canonical” topology on E and
so by Giraud’s theorem, is representable by some object Q. Apparently this
idea was dropped in later editions of SGA IV, but Lawvere used it to develop
the notion of subobject classifier as described above; in a lecture in March
1969, he noted its connection to Grothendieck topologies. In the summer of
1969 Lawvere also lectured on the probable connection between topoi and
Boolean-valued models.

Myles Tierney, originally interested in topology, started to study Grothen-
dieck topoi in 1968; with Alex Heller he conducted in 1968-69 a New York
seminar on Grothendieck topologies and sheaves. He saw Lawvere at Al-
brecht Dold’s house in Heidelbert in summer 1969, where he and Lawvere
decided on a joint research project on “Axiomatic Sheaf Theory”.
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Then in 1969, Lawvere became for two years the Killam Professor at
Dalhousie University in Halifax, and in this connection was able to invite
about a dozen people to come to Dalhousie as Killam fellows; they included
R. Diaconescu, A. Kock, F. E. J. Linton, E. Manes, B. Mitchell, R. Paré, M.
Thiebaud, M. Tierney, and H. Volger. The 1969-70 seminar on axiomatic
sheaf theory presented weekly lectures by Tierney with contributions by Law-
vere. The intent was to axiomatize the category E of sheaves (on a site); it
was soon clear that the axioms should be stable under passage to a comma
category E/X or to the category E¥ of objects X of E with a G-action, where
G is an internal group (or an internal monoid) in E. It was also important
that the axioms apply to the “classifying topos” of any “geometric theory”.
It was especially important that any “Grothendieck topology” J in E should
yield a category E; of J-sheaves which would itself be a topos. This involved
the classical “sheafification” construction by which a presheaf on a space X
is turned into its associated sheaf by a double application of a suitable func-
tor L. This classical use of L o L, used both for topological spaces and for
Grothendieck topologies, did not seem to work under the topos axioms (much
later, it was carried out for topoi by P. Johnstone, [MR 50#10002]). In this
complicated set of requirements, Lawvere found a new method of sheafi-
fication which did apply under the axioms, while Tierney showed that the
original relatively complicated definition of a Grothendieck topology could
be replaced by the simple definition of such a topology as a “modal opera-
tor” j: Q — Q satisfying just three conditions (idempotent, preserves ¢ and
preserves product). This discovery, together with the use of the subobject
classifier Q to define a “partial map” classifier, combined to produce the de-
sired effective axiomatization of an elementary topos: A category E with all
finite limits and colimits, cartesian closed, and with a subobject classifier Q.

These are the axioms presented by Lawvere in his lecture at the 1970
International Congress of Mathematicians at Nice [MR 55#3029]. (By co-
incidence, it was at this same conference that Grothendieck announced his
shift of interest to political questions; other such questions had preoccupied
Lawvere at Halifax.) The important connection with forcing and Boolean-
valued models was later presented by Tierney in an AMS invited lecture (after
a Springer lecture notes publication [MR 51#10088]. There, starting with a
functor category SC™ with a well chosen C and an appropriate topology j, the
category of j-sheaves essentially provides a model of set theory which shows
the independence of the continuum hypothesis from ZFC. The idea was close
to Cohen’s original forcing technique: Cohen’s poset of “conditions” appears
as the category C and the forcing relation is mirrored by sheafification. It is
a remarkable connection between geometry (sheaves) and logic.

These two papers, by Lawvere and Tierney, each refer to the other as a

collaborator, and thus present striking joint work in developing elementary
topos theory. With this opening, many categorists saw the promise of this
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new development; refinements followed fast. Benabou’s seminar in Paris
1970-71 produced under the title “Généralités sure les topos de Lawvere et
Tierney” the first available set of lecture notes on the subject.Then Kock and
Wraith in 1971 [MR 49#7324] provided a much used set of notes, moreover
there were notes of Tierney’s 1971 lectures at Varenna [MR 50#7277]. Julian
Cole explained the connection between ETCS and a weak form of Zermelo
set theory (at the Bertrand Russell Memorial Logic Conference in 1971 in
Denmark [MR 49#4747]); see also Osius [MR 51#643]. Lawvere contributed
a stimulating introduction to a 1972 lecture notes volume on topos theory
[MR 51#12973] while P. Freyd’s influential 1972 paper on Aspects of Topoi
elucidate many aspects, and in particular contained many embedding theo-
rems. C. J. Mikkelsen at this time simplified the axioms, by using sophisti-
cated methods to deduce the existence of colimits in a topos from the other
axioms; his results were published much later [MR 55#2572]. Subsequently,
R. Paré used properties of the monad given by the iterated power set functor
to give a much quicker proof of the existence of colimits [MR 48#11245].
There were other expositions, as in lectures by Mac Lane in Chicago, Heidel-
berg and (1972) in Cambridge, England. Peter Johnstone, who started on the
subject from the lectures of Tierney and Mac Lane, subsequently prepared
his definitive 1977 book Topos Theory [MR 57#9791]; there is a more recent
exposition Toposes, Triples and Theories by M. Barr and C. Wells [1985].

Some of the relations of topos theory to logic were explored by M. Makkai
and G. E. Reyes in their monograph First Order Categorical Logic [MR
58#21600]; there is a more recent book by J. Lambek and P. Scott [1986].
All told, the development of topos theory provides a remarkable and fruitful
connection between geometry and logic.

The principal architects of topos theory are Grothendieck and his asso-
ciates on the one hand and Lawvere and Tierney on the other. But it is
also notable that the rapid development of the subject involved many other
mathematicians, and depended on many conferences and meetings, in Ober-
wolfach, Halifax, Aarhus and elsewhere. With the present large and varied
mathematical community, it would seem that here and in other cases new
ideas develop rapidly with input from many hands and many lands. This en-
vironment seems strikingly different from that at the time of the origination
of category theory; the AMS invited lectures may no longer have the same
impact they once had.

20. LATER DEVELOPMENTS

With the rapid exploitation of topos theory there were also other active
aspects of categories, some of which we now mention briefly. Most devel-
opments since 1973 are omitted, since it may be too soon to judge their
historical importance.
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At the 1965 La Jolla conference, Eilenberg and Kelly lectured on closed
categories. These categories V' (such as the category of abelian groups) are
equipped with a tensor product ®, which is associative and commutative up
to coherent canonical isomorphisms and closed in the sense that the functor
— ®B: V — V has a right adjoint [B, —], called the internal hom. For these
categories the coherence theorem (all diagrams of canonical isomorphisms are
commutative) holds only with limitations, and the proofs involve connection
with Gentzen’s cut elimination theorems of proof theory (Kelly-Mac Lane,
[MR 44#278]). A category enriched over the closed category V is one with
its “hom set” in V; thus an abelian or an additive category is one enriched
over the closed category of abelian groups. There are many such enriched
categories; for them one can carry over most of the properties of “ordinary”
categories including the Yoneda lemma as set forth in the comprehensive
book by G. M. Kelly [MR 84e#18001].

Cat, the category of all categories, has a murky epistemological existence
(the set of all sets?); it also appears as a tentative foundation for mathemat-
ics, in Lawvere’s talk at the La Jolla conference. It has three kinds of things:
its objects are categories, its arrows are functors and its “2-cells” are nat-
ural transformations between functors. Other structures of objects, arrows
and 2-cells with suitable axioms are the 2-categories, widely studied (with
their 2-limits) in Australia (R. Street [MR 50#436 and 53#585]); see also
the systematic treatise by J. Gray [MR 51#8207]. In many related cases the
composition of arrows is associative only up to an isomorphism given by a
2-cell; one then speaks of a bicategory (J. Benabou, [MR 36#3841]). There
are good reasons to consider not just 2-categories but also n-categories and
even (n = 0o) oo-categories. On the other hand, Ehresmann early observed
that squares (regarded as arrows), have two compositions, horizontal and
vertical, and so constitute a double category. The corresponding n-fold cat-
egories (arrows, such as n-cubes, with n commuting composition structures)
have entered into the study of homotopy types of spaces, as in a theorem of
Loday using a group object in Cat”, the category of all n-fold categories (J.-L.
Loday [MR 83i#55009]).

This process (the contemplation of, say, a group object or a ring object
in an ambient category with products) has proved to be conceptually very
handy, especially in the study of internal categories and functors in, say, a
topos — an idea often hard for a beginner to appreciate.

Beginning in 1970 there was an active school of category theory in Ger-
many, starting with the publication of the systematic treatise “Kategorien”
by H. Schubert (MR 43#311 and 50#2286). In 1971 P. Gabriel and F. Ul-
mer published their influential paper “Locally presentable categories” (MR
48#6205), with an extensive treatment of categories of models, in particular
of algebraic theories.
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The topologically important notion of a fibration has its categorical analog,
the fibered categories p: F — E with a category as the inverse image under
p over each object of E, with suitable “pullback™ along arrows of E. The
notion is due to Grothendieck who observed its equivalence to the notion of a
“pseudofunctor” from E to Cat, assigning to each object X of E the fiber over
X. The idea has been extensively developed by Benabou ([MR 52#13991] and
unpublished) and, in the alternative presentation as an indexed category, by
R. Paré and D. Schumacher [MR 58#16816]; there has been some controversy
as to method, perhaps settled by a coherence theorem for indexed categories
(Mac Lane-Paré, [MRk#18003]).

Categories are now taken for granted in algebraic geometry; when Grothen-
dieck retired from the mathematical scene, the fashion in algebraic geometry
shifted dramatically to more concrete problems about specific manifolds. A
topos had provided a setting in which one could effectively formulate many
cohomology theories, with the objective of finding one for which the Lef-
schetz fixed point theorem would resolve the famous Weil conjectures. These
conjectures were settled by DeLigne [MR 49#5013], using only part of the
apparatus of SGA IV; this led to his publication of a shorter version, SGA
4% [MR 57#3132]. On the other hand, Falting’s famous solution of the
Mordell conjecture on diophantine equations made use of the full panoply
of techniques of arithmetic algebraic geometry, including many ideas due
to Grothendieck [MR 85e#11026a,b]. For that matter, an unpublished long
manuscript by Grothendieck [1985] (starting with a letter to Quillen) studies
categories (like the category of simplicial sets) which have suitable categories
of fractions equivalent to the category of homotopy types of spaces.

Algebraic K-theory currently makes extensive use of many categories, in
particular categories of simplicial sets in order to study manifolds M, both
topological and piece-wise linear (PL). A central issue is the use of groups
Top(M) or PL(M) of all topological or PL-homeomorphisms of M. Now the
category PL does not have exponentials (function spaces), and this may be the
basic reason that in this study one shifts from PL manifolds to polyhedra and
then to simplicial sets: The category of simplicial sets is a functor category
and hence an elementary topos — and so does have exponentials. All told,
K -theory displays a remarkably effective use of categories as a language, as
in the original intent of Eilenberg-MacLane.

At the same time, the original connections of categories with topology have
prospered. The idea of homology and cohomology as functors with axiomatic
properties does include many new types of extraordinary homology theories,
and categorical techniques such as operads are essential tools in the handling
of iterated loop spaces. For many purposes, with R. Brown and N. Steenrod,
one carries out topology in a “convenient category” of topological spaces —
one where exponentials are possible. For conceptual reasons, the idea of a
topological space may be effectively replaced by the notion of a locale (e.g.,
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a lattice such as the lattice of open sets). In homotopy theory, P. Freyd’s
generating hypothesis for stable homotopy is still an active subject of study;
it was originally proposed by Freyd in MR 41#2675.

In topos theory, it has gradually become clear that every topos is a set-
theoretic universe with its own “internal” logic, which is intuitionistic. Pre-
viously elaborate arguments about commutative diagrams in a topos can be
formulated expeditiously in the Mitchell-Benabou language, with variables
functioning as if they were set-theoretic elements (see Boileau-Joyal (MR
82a#03063) or Bruno [1984]). In this way, much of mathematics can be car-
ried out in a topos. This point of view has been vigorously advocated by
A. Joyal, who showed that in fact every topos can be viewed as a forcing
extension in which the site is interpreted as a category of forcing conditions,
using the so-called Kripke-Joyal semantics.

Lawvere’s original 1960 interest in dynamics reappeared in 1967, in reac-
tion to a Chicago course given by Mac Lane on classical Hamiltonian dynam-
ics, treated with the techniques of modern differential geometry. Then in a
seminar, Lawvere lectured on Categorical Dynamics — making the proposal
that there could be a category containing the C*° differentiable manifolds
and a real line object R with a suitable subobject D C R of infinitesimals of
square zero (or, as the case may be, of cube zero, etc.). With these infinitesi-
mals one could carry out rigorously the informal treatment of Lie groups and
differential forms in the style of S. Lie and Elie Cartan.

This proposal of Lawvere, made in several different presentations, lay fal-
low for many years, until it was revived in 1978 by his former student A. Kock
[MR 58#18529], who renamed the subject “synthetic differential geometry”
(SDG) and published, in [MR 80i#18002], a version of Lawvere’s original
1967 lecture (in my view, this version has been rewritten with hindsight and
so is not quite a historical document). This has led to a flurry of activity;
E. Dubuc [MR 83a#58004] has used the C* analog of the schemes of al-
gebraic geometry to introduce a model topos in which the desired Lawvere
axioms on the infinitesimal object D in the line can be realized, and by now
there are three texts presenting SDG — a first version by Kock [1981] [MR
83f#51023], an elementary text by Lavendhomme [1987], and a treatise by
Moerdijk and Reyes [1988]. It is still too early to judge the possible effect of
these lively developments on differential geometry and Lie groups. It is also
hard to know about the depth of the connection with continuum mechanics,
advertised by Lawvere in the lecture notes Categories in Continuum Physics
[MR 87h#73001].

Many other topics have been omitted here: The remarkable presence of
intuitionistic logic “internally” in a topos, the semantics of sketches (Ehres-
mann, Barr-Wells) the use of categorical ideas in describing homotopy limits
(Bousfield and Kan [MR 51#1825]), the application of props and operads
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to describe homotopy-everything spaces, and the remarkable work of G. B.
Segal on categories and cohomology theories [MR 50#5782].

If this account of current work omits many other thrusts and seems to leave
many obscurities and loose ends, that is, I think, inevitable. The progress of
mathematics is like the difficult exploration of possible trails up a massive
infinitely high mountain, shrouded in a heavy mist which will occasionally
lift a little to afford new and charming perspectives. This or that route is
explored a bit more, and we hope that some will lead on higher up, while
indeed many routes may join and reinforce each other. For the present it is
hard to know which of many ways is the most promising, or which of many
new concepts will illuminate the road up.

21. THE COMBINATION OF CONCEPTS

This essay has been a tentative exploration of the origins and development
of the notions of category theory. This theory exemplifies the conceptual
aspects of mathematics, in contrast to the problem-solving aspects. Now the
solution of a famous old problem is at once recognizable as a major advance.
It is not so with the introduction of a new concept — which may or may
not turn out to be useful, or which may later turn out to be really helpful in
wholly unanticipated ways, as for example, in the current use of simplicial
sets in the study of algebraic K-theory or in the use of categories to handle
many-sorted data types. Sometimes a conceptual advance may assist in the
solution of an explicit problem, as in the use of Grothendieck’s categorical
concepts in the solution of the Weil conjecture or (on a small scale) in the use
of group extensions to clarify Steenrod’s homology of solenoids (§9 above).

Concepts and computations interact. Thus the explicit formulas for the
Eilenberg-Zilber theorem are illuminated (and made inevitable) by the notion
of acyclic models (§10 above), while the notions of exact sequence facilitated
both homotopy and homology computations (and lead on to more complex
concepts, such as spectral sequences). The simple notion of a functor made
possible axiomatic homology theory and the organization of generalized ho-
mology theories. In the long run, the merit of a concept is tested by its use
in illuminating and simplifying other studies.

New concepts may be accepted promptly, slowly, or not at all. Thus my
own attempt to legislate strict duality between subobjects and quotient objects
in abelian categories (§12 above) was mistaken, and has disappeared. Cat-
egories were accepted slowly, or dismissed as “general abstract nonsense”.
Lattices as discovered by Dedekind in 1900 were at once lost from sight, but
became immediately popular upon rediscovery in the 30s by Birkhoff and Ore
— perhaps because the then new emphasis on modern algebra made them
acceptable. Bourbaki enjoyed instant popularity, but is now criticized for
lack of attention to applications. For fifteen years after Zermelo, axiomatic
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set theory was hardly noticed, but is now a firm item of belief. Fashion
may play some role in these varied events, but it would seem ultimately that
a new concept is really accepted only when it has demonstrated its power:
Categories became a subject of research only after the discovery of adjosint
functors. And set theory without elements is still unpalatable to those trained
from infancy to think of sets with elements: Habit is strong, and new ideas
hard to accept.

Major new conceptual development appears to take place slowly, and in
stages; it seems to require many hands to bring an array of novel ideas into ef-
fective form. Thus integral equations led to the Hilbert space /2 of sequences
and only later to an axiomatically defined Hilbert space. Set theory and its
axiomatics travelled a long road from Boole and Schroeder to Cantor and
Dedekind, then to Zermelo, Skolem, Fraenkel, von Neumann, Bernays and
Godel — with subsequent changes by Paul Cohen, Scott-Solovay and even by
sheaf theory. The basic notions of category theory were perhaps inevitable
ones, but they too came in successive stages: maps represented by arrows
(Hurewicz), then exact sequences, then categories and functors (Eilenberg-
Mac Lane), next universal constructions (many people), adjoint functors
(Kan), monads, ETCS (Lawvere), categories of sheaves (Grothendieck and
associates) and elementary topoi (Lawvere-Tierney). It may be that each suc-
cessive advance needs a fresh impetus from a new thinker, courageous and
foolhardy enough to evisage and advocate an unpopular idea. The advance of
mathematics may depend not just on power and insight, but also on audacity.

In the current circumstances, with a large and international mathematical
community, the interaction between many different workers at conferences,
seminars, and lectures seems to be vital. For categories, the group around
Eilenberg at Columbia University in the early 1960s (§17 above) was impor-
tant, as were the Grothendieck seminars at the Institute des Hautes Etudes.
The La Jolla conference in categories in 1965 was followed by a year long
seminar at Zurich, meetings of the “Midwest category seminars” in Chicago
[MR 36#3840, MR 37#6341, 41#8487 and 43#4873], seminars arranged by
Tierney in New York, by Kock in Aarhus, meetings at Oberwolfach, and
currently by the peripatetic seminars in Europe and meetings in Montreal.
The exchange of ideas at such meetings runs in parallel with journal publi-
cation in the development of new concepts. (Citation indices miss a good
bit!) Beginning at Oberwolfach in 1972, there has been a week-long category
meeting in Europe practically every summer. At these meetings, all those
in attendance have a chance to give a talk; the resulting stimulus assists the
development — and also emphasizes the separation of specialists in category
theory from other parts of mathematics. This sort of separate specialization
occurs today, to my regret, in many parts of mathematics.

All this bears on the progress of mathematics as a whole; this progress in-
volves not just the solution of old problems and the discovery of remarkable
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theorems, but also the introduction and testing of new and sometimes shock-
ing concepts — concepts which can illuminate past results and serve — often
in unexpected ways — to make possible new advances. As I have argued at
length (Mathematics: Form and Function, [1986]), mathematics presents an
elaborate network in which the form (the concepts) organize and illuminate
the function (solutions of problems and relations to the real world).

APPENDIX

Categories in Prague. Dr. J. Adamek has provided me with an interest-
ing sketch of the origins in the 1960s of the extensive study of categories in
Czechoslovakia. About 1960, A. G. Kurosh from Moscow lectured at Prague
about categories. This continued with a study of the paper of Kurosh, Lif-
shits, and Sulgeifer (MR 22#9526) in the major seminar on general topology
conducted by M. Katétov; this led in turn to the early papers of V. Trnkova
and M. Husek. In Amsterdam, J. de Groot was studying topological spaces
with prescribed group actions; Z. Hedrlin visited there, and this was the ori-
gin (groups to monoids to categories) of the work of Hedrlin and A. Pultr
on embeddings of general categories into specific concrete categories. The
seminar of E. Cech and the Eilenberg-Steenrod book on axiomatic homol-
ogy theory was a third source of the interest in categories. This interest has
continued and developed since that time.

Categories in Belgium started as reported to me by Francis Borceux, with
the work of J. Mersch, P. Dedecker and R. Lavendhomme. Mersch had
studied in Paris, where he presented a thesis in 1963, under the supervision
of Ehresmann, on the problem of quotients in categories. Lavendhomme
first learned about categories in a lecture by Peter Hilton at Leuven, and then
studied Kan’s paper on adjoint functors. Subsequently, Dedecker interested
him in questions of cohomology.

For information and helpful comments on earlier drafts of this article, I
would like to thank Jack Duskin, Peter Freyd, John Gray, John Isbell, Max
Kelly, Bill Lawvere, Peter May, Ieke Moerdijk and Myles Tierney. They
should not be held responsible for the judgments I have expressed.
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