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The Flowering of Applied Mathematics in America

PETER D. LAX

Mathematicians are notoriously bad historians; they describe the develop-
ment of an idea as it should logically have unfolded rather than as it actually
did, by fits and starts, often false starts, and buffeted by forces outside of
mathematics. In this sketchy account of applied mathematics in America, I
shall describe the twists and turns as well as the thrusts.

Applied mathematics is alive and well in America today; just look at the 18
lectures chosen to describe the frontiers of research: one is on physiological
modeling, another on fluid flow and combustion, yet another on computer
science; a fourth is devoted to the formation of atoms within the framework
of statistical mechanics. The subject of one lecture and the starting point of
several others are physical theories; the conclusions reached are of interest to
physicists and mathematicians alike.

It was not always so; for a few decades, in the late thirties, forties and
early fifties, the predominant view in American mathematical circles was the
same as Bourbaki’s: mathematics is an autonomous abstract subject, with no
need of any input from the real world, with its own criteria of depth and
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beauty, and with an internal compass for guiding further growth. Applica-
tions come later by accident; mathematical ideas filter down to the sciences
and engineering,.

Most of the creators of modern mathematics — certainly Gauss, Riemann,
Poincaré, Hilbert, Hadamard, Birkhoff, Weyl, Wiener, v. Neumann, — would
have regarded this view as utterly wrongheaded. Today we can safely say that
the tide of purity has turned; most mathematicians are keenly aware that
mathematics does not trickle down to the applications, but that mathematics
and the sciences, mainly but by no means only physics, are equal partners,
feeding ideas, concepts, problems and solutions to each other. Whereas in
the not so distant past a mathematician asserting “applied mathematics is
bad mathematics” or “the best applied mathematics is pure mathematics”
could count on a measure of assent and applause, today a person making
such statements would be regarded as ignorant.

How did this change come about? Several plausible reasons can be dis-
cerned. But first a bit of selective history.

The second world war, a watershed for our social institutions, concepts
and thinking, has permanently changed the status of applied mathematics in
America. That is not to say that there was no worthwhile applied mathe-
matics in America before 1945; after all, already in the 19th century, Gibbs’
contributions to statistical mechanics as well as to vector analysis and Fourier
series, and Hill’s studies of Hill’s equation, had put America on the applied
mathematical map. The leading American analysts in the twenties and thir-
ties were G. D. Birkhoff, renowed worldwide for his work in dynamics, and
Wiener, a pioneer in the study of physical processes driven by chance influ-
ences, such as Brownian motion and homogeneous chaos. The elusive goal of
the ergodic theorem was assiduously pursued in the thirties. The early forties
saw the birth of Shannon’s theory of information, and Pitts and McCollough’s
theory of neural networks. Nevertheless, it is fair to say that applied mathe-
matics before 1945 did not fare well in departments of mathematics; it was
a marginal activity.

A shift from the margin to the center began after the war; the trickle of
applied mathematics swelled to a river. A recent survey of the substance and
outlook of applied mathematics has been rendered by Garrett Birkhoff. In
the brief span of this talk it is possible only to indicate the broad areas of
advance, and to select, somewhat arbitrarily, a number of highlights. If I fail
to mention your favorite result in applied mathematics, that only underlines
the embarras de richesse in this domain.

Partly because of the influential book by Courant and Friedrichs, Super-

sonic Flow and Shock Waves, fluid dynamics was one of the first fields to
undergo a renaissance. The basic existence theorems of steady subsonic flow
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in two dimensions around fixed bodies were established by Bers and Shiff-
man in the early fifties; much excellent work has appeared since about flows
with free boundaries. The problem of steady supersonic flow, and of one-
dimensional time-dependent flow, turned out to be more difficult, because
of the possible formation of shock waves; the only definitive existence theo-
rem is Glimm’s in 1966. Morawetz has studied smooth transonic flows and
even those with shocks; there are some results, and many tantalizing open
problems.

Perhaps the most exciting new development is computational fluid dynam-
ics, the construction by elaborate numerical calculations of approximations
to flow fields. The purpose is two-fold: first to provide engineers with accu-
rate performance characteristics of devices that are in contact with moving
fluids, such as pipe systems, acrodynamic shapes, turbines, etc., for purposes
of design or control. This approach has been used in more and more compli-
cated situations: combustive flows, magneto-hydrodynamics, etc. The second
purpose for doing fluid dynamical calculations is to give theoreticians clues
about the possible behavior of fluids, to jog their imagination, in short: to
experiment. Such clues have been used to study the complete or partial break-
down of solutions of the Navier-Stokes and Euler equations, and for many
other investigations.

The recent spectacular advances in computational fluid dynamics were
made possible by increased machine speed, larger memories, and better soft-
ware, but even more by the invention of clever new numerical methods and
algorithms, such as Chorin’s use of discretized vorticity, and the fast Fourier
Transform of Cooley and Tukey.

Of course, pure mathematicians, too, perform numerical experimenta-
tions; that is how Gauss was led to surmise the prime number theorem. He
would have loved the computing facilities available today to number theo-
rists, students of dynamical systems, etc. Reliance on fancy computing today
creates a strong bond between the pure and the applied.

Equally great advances have been made in other branches of mathematical
physics. In the early fifties Kato succeeded in proving that the Schroedinger
operator for the helium atom (and other heavier atoms) is selfadjoint. In the
midfifties, he and Rosenblum proved the existence of the scattering operator
for a pair of operators that differ by an operator of trace class.

Keller’s work on diffraction of waves was also begun in the fifties. Using
geometrical optics Keller and his coworkers were able to derive mathemati-
cally a large number of diffraction patterns; some of these were proved rigor-
ously only much later by Melrose and Taylor, by means of specially designed
microlocal operators.

The classical field of dynamics received a jolt in the early sixties, when
Moser showed the existence of infinitely many closed curves invariant under
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area preserving maps of annuli; this shows that such mappings — which
include many of physical significance — are not ergodic.

Starting in the fifties there were impressive advances in solving some of
the basic problems of statistical mechanics — existence of thermodynamical
limits, phase transition, stability of matter. Much of this work was done by
physicists, many of whom deserve the title of honorary mathematician. It
was an honorary mathematician, Mitchell Feigenbaum, who discovered the
doubling of stable periods of selfmappings of intervals as the mapping is
deformed, and the universal character of the transfer of stability, a highly
unexpected result.

Even more unexpected was Kruskal’s discovery of solitons, their curious
interaction with each other, and their relation to the existence of infinitely
many conserved quantities, and the complete integrability of systems with
soliton-like structures. It is astonishing that there are so many completely
integrable systems — KdV, sine-Gordon, nonlinear Schroedinger, Toda, etc.
— unrecognized as such in the classical days of Hamiltonian mechanics. It
is doubly astonishing that they all have a measure of physical significance.
That one of them, the Kadomtsev—-Petviashvili equation, arising in the study
of water waves, has led Dubrovin, Arbarello, DeConcini, and Shiota to a
solution of Shottky’s classical problem of characterizing Riemann matrices
in the theory of Riemann surfaces is truly mindboggling.

Another example of mathematical physics lending a hand to pure math-
ematics is Faddeev and Pavlov’s use of the notions of scattering theory to
study automorphic functions.

A great achievement of the last fifteen years is computerized tomography, a
lovely combination of inversion of an integral transform, harmonic analysis,
and construction of fast and effective algorithms.

The postwar period saw the rise to prominence of the theories of proba-
bility and of partial differential equations. Each field stands on two legs, one
firmly planted on applications, the other in purely mathematical considera-
tions. Before the war, they were regarded as specialties; today they play a
central role in large parts of mathematics.

There also arose entirely new fields of applications, such as the theory
of games, control theory, operations research, linear programming, dynamic
programming, integer programming, etc. The general aim of these disciplines
is to optimize; therefore they have much in common with the calculus of vari-
ations. But there are substantial differences as well: these modern theories
of optimization often deal with discrete rather than continuous models, and
their targeted applications are novel, usually some aspect of economics, busi-
ness or finance. Equally novel are the algorithms used to achieve the desired
optimum in the shortest possible time. A strikingly effective algorithm —
simulated annealing — has been borrowed by Kirkpatrick from metallurgy
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and statistical physics. Annealing is a process applied to amorphous material,
glasses of various kind, where the energy of configurations has many minima.
The absolute minimum occurs in a highly ordered state, called crystalline; if
an amorphous material is cooled very rapidly, it solidifies into a highly disor-
dered state corresponding to a local minimum far from absolute minimum.
If the material is cooled slowly, it settles into the crystalline state.

There is a large class of combinatorial optimization problems — of which
the traveling salesman problem is typical — which resemble amorphous ma-
terials in the sense that the objective function has a superabundance of min-
ima. In such cases any descent method is likely to steer the configuration to
a local minimum that is far from the absolute minimum. Simulated anneal-
ing operates with a sequence of temperatures 7 getting smaller and smaller;
for each temperature there is a corresponding Gibbs distribution, where the
probability of the jth state is

e—EIT
=
where E; is the energy of the jth state and Z defined by

Z= Ze“EI/T.

The Metropolis algorithm is used to construct a sequence of states in equi-
librium with the Gibbs distribution, as follows: the configuration is changed,
according to a chosen recipe. If the new configuration has lower energy,
accept the change; if the change in energy AE is positive, accept the change
with probability e~2£/7’; this part of the algorithm is implemented by a Monte
Carlo method, employing a random sequence. After this algorithm has run
for a certain time, the temperature is lowered and the algorithm sequence
repeated. This procedure has been remarkably effective for finding excel-
lent approximations to minima in a number of combinatorial optimization
problems.

Computer science has been the source of much novel mathematics. It has
focused attention on algorithms and has come up with many astonishingly ef-
ficient ones, such as the fast Fourier transform, fast matrix multiplication, the
simplex method, and many more, described in Knuth’s magnum opus. More
recent are Karmarkar’s algorithm, and Greengard and Rokhlin’s method for
the fast evaluation of potentials. It is often difficult to estimate the efficiency
of an algorithm, especially if it works better in the typical case than in the
worst case; see Smale’s penetrating study of the simplex method.

An important problem is to design networks that perform efficiently sort-
ing, parallel processing, and other such tasks. Such graphs, called expanders
and concentrators, have the same number of edges issuing from each vertex
and have good connectivity properties; the task is to construct concentrator
graphs with as small a number of edges as possible. Sarnak and his cowork-
ers Lubotzky and Phillips have explicitly constructed a family of expanders
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with nearly minimal number of edges, which they call Ramanujan graphs,
since the proof that they have the desired property depends crucially on a
conjecture of Ramanujan concerning the representation of numbers as linear
combinations of four squares, as well as on delicate harmonic analysis on
groups.

Computational complexity deals with the limits of cleverness, i.e., what
are the fastest possible algorithms for evaluating a class of functions? There
are few answers as yet to such deep questions; see, for example, Winograd’s
study of multiplication.

Perhaps the most fascinating area of computer science is artificial intelli-
gence, with its implied threat to put out of business both pure and applied
mathematicians of the human kind. But I am bothered by the widespread
habit of some parts of the AI community to set their goals preposterously
high, and to exaggerate past achievements. For instance, in his Gibbs lecture
delivered in 1984, Herbert Simon described a computer program named BA-
CON, designed to extract scientific laws from experimental data, without the
benefit of theory, by a kind of curve fitting. He claimed three successes for
BACON, the first the derivation of Kepler’s third law of planetary motion,
which Simon states as:

P = KD%?

where P is the period of revolution of the planet, D its distance from the sun,
and K a constant that has the same value for all planets. This formulation
is meaningful only for planets whose distance from the sun is constant, i.e.,
whose orbit is circular. Kepler’s law on the other hand concerns elliptic orbits;
he sets D equal to the arithmetic average of the closest and farthest distance
of the planet from the sun:

Dy + Dy 3,2
—)
That is, Kepler has found an expression for the period of any planet as
function of the two parameters characterizing the planet’s elliptic orbit. This
is worlds away from finding the period of planets with circular orbits. If
a mathematician proved a theorem in the spherically symmetric case, he
wouldn’t dream of claiming the general case; computer scientists must hold
themselves to the same standard of precision. There are, to be sure, more
profound objections to Simon’s paradigm for Al — for example, those voiced
by Grabiner and by Edelman.

P=K(

The most curious — and controversial — of the new applied branches is
catastrophe theory, the brainchild of the great mathematician René Thom.
A sympathetic presentation of the epistemology of this theory is given in
Ekeland’s charming new popular book, Mathematics and the Unexpected, and
in the treatise of Poston and Stewart. More jaundiced views are expressed,
in deepening shades of yellow, by Arnold, Guckenheimer, and Sussmann.
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Catastrophe theory already has some solid achievements to its credit, and
I believe that more are to come. The hostility to the subject is a reaction
to attempts to oversell it, like snake-oil medicine, good for whatever ails
you. The applications touted by the popularizers were often flaky, and their
novelty exaggerated. For instance, Zeeman, in his Scientific American article
in 1976 wrote:

For 300 years the preeminent method in building such models
has been the differential calculus invented by Newton and Leibnitz.
Nevertheless, as a descriptive language, differential equations have
an inherent limitation, they can describe only those phenomena
where change is smooth and continuous. In mathematical terms,
the solutions to a differential equation must be functions that are
differentiable. A mathematical method for dealing with discontin-
uous and divergent phenomena has only recently been developed.

This is strange talk in the age of the theory of distributions! Besides, the
theory of discontinuous solutions is much older than the American Math-
ematical Society. The basic laws of shock waves, which are discontinuous
solutions of nonlinear partial differential equations, were set down by Rie-
mann 130 years ago.

Having described some of the achievements of applied mathematics, I
would like to discuss briefly its methods. Some of them are organic parts of
pure mathematics: rigorous proofs of precisely stated theorems. But for the
greatest part the applied mathematician must rely on other weapons: special
solutions, asymptotic description, simplified equations, experimentation both
in the laboratory and on the computer. Out of these emerges a physical intu-
ition which serves as a guide to research. Since different people have different
intuitions, there is a great deal of controversy among applied mathematicians;
it is a pity that these debates so often become acrimonious, shedding more
heat than light.

We come back now to the question: What were the causes of the flower-
ing of applied mathematics in America after World War I1? Perhaps the most
important factor was the war itself, which demonstrated for all the crucial im-
portance of science and technology for such projects as radar, the proximity
fuse, code breaking, submarine hunting, and the atomic bomb. Mathemati-
cians, working along with physicists, chemists and engineers, made substan-
tial — in some cases decisive contributions; without these developments, the
United States might have lost the war. Those responsible for science policy
after the war remembered this lesson well and applied it farsightedly and
with imagination. They realized that applied science is a basic ingredient of
technology, that applied mathematics is an essential component of applied
science, and that all parts of mathematics, the pure and the applied, form
an organic whole. Consequently, the U. S. Government started a vigorous
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program to support mathematics, for project-oriented work at government
laboratories, for research at universities. A wide variety of subjects were en-
couraged, for a wide variety of reasons. Some, like numerical linear algebra,
or the propagation of electromagnetic waves, were supported for use in im-
mediate applications; others, like the theory of partial differential equations
and statistics, because they were underdeveloped compared to their impor-
tance; others simply because they were part of the fabric of mathematics.
The first agency to systematically support science and mathematics was the
Office of Naval Research; it was followed somewhat later by similar offices of
the Air Force and the Army, and the Department of Energy in its previous in-
carnation as Atomic Energy Commission. In addition to supporting a string
of mathematicians whose names read like a Who’s Who, these agencies were
instrumental in the establishment of the School of Probability at Cornell, the
School of Applied Analysis and Statistics at Stanford, and the Courant In-
stitute at New York University. The National Science Foundation, coming
somewhat later, took over many of the outlooks of its predecessors, as well as
forming its own philosophy and point of view. Support of mathematics by
the DOD continues to this day, supplementing and complementing support
by the NSF and other agencies.

In view of the distinguished past and present success of this research pro-
gram, it came as an utter surprise that a group within the AMS proposed to
reduce support for mathematics by the DOD. Many who were supported by
the DOD were deeply offended by the suggestion that they were accepting
money from a tainted source, and that the support should have been given
to worthier recipients.

The program to build up mathematics in general, and applied mathematics
in particular could not have succeeded as well as it did without leadership
in the mathematical community. Leadership in applied mathematics was
largely provided by a remarkable group of immigrants, mostly refugees from
Europe, such as Courant, Feller, Friedrichs, John, Kac, Kato, v. Karman,
v. Mises, v. Neumann, Neyman, Prager, Schiffer, Synge, Ulam, Wald, Weyl
and others. This group brought to these shores outlooks and styles that were
radically different from the purity then prevailing, in particular a greater
affinity for applications of mathematics to physics and engineering. Many of
the newcomers were in their prime, and were able to put forward their ideas
with vigor and confidence.

v. Neumann was a key figure among this illustrious coterie. There is hardly
an area of applications that doesn’t bear his stamp. In a prophetic speech
in Montreal in 1945, when electronic computers were merely figments of
his imagination, he declared that “many branches of both pure and applied
mathematics are in great need of computing instruments to break the present
stalemate created by the failure of the purely analytical approach to nonlinear
problems.” v. Neumann was a key figure in the American Mathematical
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Society; his tragic, premature death has deprived applied mathematics and
computer science of a natural leader, a spokesman, and a bridge to other
sciences.

It is impossible to exaggerate the extent to which modern applied math-
ematics has been shaped and fueled by the general availability of fast com-
puters with large memories. Their impact on mathematics, both applied and
pure, is comparable to the role of telescopes in astronomy and microscopes
in biology; it is a subject fit for another lecture; here I have time only for a
few observations:

In the bad old days, when numerical work was limited to a few hundred, or
few thousand, arithmetic operations, the task of the applied mathematicians
called for drastic simplification, even mutilation, of their problems, to fit the
available arithmetic capabilities; they had to cut every corner, exploit every
accidental symmetry. Such expediency did not appeal to the mathematical
mind, and probably had a great deal to do with the unpopularity of applied
mathematics in the days before computers. Today we can render unto the
computer what is the computer’s, and unto analysis what is analysis’, we can
think in terms of general principles, and appraise methods in terms of how
they work asymptotically for large n, rather than for n = 8,9, 10!

There are many kinds of calculations carried out today, for many different
purposes; the confidence we can place in them varies from case to case. Some
of the most striking model truly chaotic phenomena such as multiphase flow,
turbulent combustion, instability of interfaces, etc. Such calculations use
discrete analogues of physical processes, and are very often fine tuned to
resemble experimental results. For me, there is something unsatisfactory
when a computational scheme usurps the place of a theory that ought to be
independent of the parameters entering the discretization.

The applied point of view is essential for the much needed reform of the
undergraduate curriculum, especially its sorest spot, calculus. The teaching
of calculus has been in the doldrums ever since research mathematicians have
given up responsibility for undergraduate courses. There were some notable
exceptions, such as Birkhoff and Mac Lane’s “Modern Algebra”, and Ke-
meny, Snell, and Thompson’s “Finite Mathematics”, but calculus, in spite of
some good efforts that did not catch on, has remained a wasteland. Conse-
quently the standard calculus course today bears no resemblance to the way
mathematicians use and think about calculus. Happily, dissatisfaction with
the traditional calculus is nearly universal today; there are very few doubting
Thomases. This welcome crisis was brought on by the widespread availability
of powerful pocket calculators that can integrate functions, find their max-
ima, minima, and zeros, and solve differential equations with the greatest of
ease, exposing the foolishness of devoting the bulk of the calculus course to
antiquated techniques that perform these tasks much more poorly or not at
all. We now have the opportunity to sweep clean all the cobwebs and dead
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material that clutters up calculus. We have to think carefully what we put in
its place; I strongly believe that calculus is the natural vehicle for introducing
applications, and that it is applications that give proper shape to calculus,
showing how and to what end calculus is used. UMAP is an excellent source
of such applications.

No doubt computing will play a large role in undergraduate education;
just what will take a great deal of experimentation to decide. The brightest
promise of computing is that it enables students to take a more active part
in their education than ever before.

I would like to direct a comment at enthusiasts for discrete mathematics, a
subject of great beauty and depth, which has gained enormous importance for
applications because of the availability of computers. But it is mistaken to
think that discrete mathematics should compete with or even replace calculus-
based applied mathematics in the elementary undergraduate curriculum; this
would disregard the explosive growth, thanks to computing, in our ability to
bring calculus-based mathematics to bear on applications.

How can one resist the temptation to make guesses about the directions
of future research? I am on the safest ground in surmising that computing
will play an even bigger role in the next century than today. Mathematical
modelers will explore their subjects in the manner of experimentalists. We
shall enjoy routinely graphic display capabilities that would dazzle us today.
We shall learn to use computations as an ingredient of a rigorous proof, a
road already taken by Fefferman and Lanford. I am confident that fluid
dynamics will be regarded as a central discipline, and that the elusive goal
of understanding turbulence will be vigorously pursued. We will no doubt
try to digest the large amount of chaos generated lately, by trying to extract
information concerning average behavior. This can sometimes be done in
completely integrable cases; the KAM theory gives reason to believe that
such results have relevance for systems not too far from integrable ones.

I heartily recommend to all young mathematicians to try their skill in some
branch of applied mathematics. It is a gold mine of deep problems, whose
solutions await conceptual as well as technical breakthroughs. It displays an
enormous variety, to suit every style; it gives mathematicians a chance to be
part of the larger scientific and technological enterprise. Good hunting!
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