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“Random” Gaps. The statistics of nearest-neighbor spacings range from random to uniform (<’s indicate spacings
too close for the figure to resolve).  The second column shows the primes from 7,791,097 to 7,791,877.  The third col-
umn shows energy levels for an excited heavy (Erbium) nucleus.  The fourth column is a “length spectrum” of period-
ic trajectories for Sinai billiards.  The fifth column is a spectrum of zeroes of the Riemann zeta function.  (Figure cour-
tesy of Springer-Verlag New York, Inc., “Chaotic motion and random matrix theories” by O. Bohigas and M. J.
Giannoni in Mathematical and Computational Methods in Nuclear Physics, J. M. Gomez et al., eds., Lecture Notes in
Physics, volume 209 (1984), pp. 1–99.)



WHAT’S HAPPENING IN THE
MATHEMATICAL SCIENCES

3

A Prime Case of Chaos

Is one of the deepest problems in number theory tied to one of the
most difficult subjects in modern physics?  More and more

researchers from both disciplines think—indeed,hope—so.  The
possibility has led to a surprising collaboration of physicists pursu-
ing the implications of quantum chaos and mathematicians hunting
for a proof of a famous conjecture in number theory known as the
Riemann Hypothesis.    

Quantum chaos is a relative newcomer in theoretical physics.

“It’s a problem of extreme mathematical subtlety and complexity,”

says Michael Berry, a “quantum chaologist” at the University of

Bristol.  “There’s a lot that's understood, and a lot that’s not under-

stood.  One particular thing that’s lacking is a good model which

has the essence of the general behavior.”

As its name implies, quantum chaos combines two revolution-

ary developments in modern physics: quantum mechanics and

chaos theory.  Quantum mechanics is an esoteric theory of particles

and waves, developed by physicists in the 1920’s to account for a

body of mysterious phenomena that had turned up when experi-

mentalists started exploring the tiny world of atoms.  It is current-

ly viewed as the “true” description of nature, usurping the position

held for 250 years by Isaac Newton’s “classical” mechanics.  Its

rules are very precise and its results have so far proved highly accu-

rate, but much of quantum mechanics still seems  counterintuitive,

even to physicists steeped in the subject.    

Chaos, on the other hand, is a familiar phenomenon.  Its rise to

prominence in the 1980’s stemmed from the realization that disor-

derly systems tend to be disorderly in an orderly fashion—and that

the underlying order within chaotic phenomena can be revealed by

a combination of mathematical analysis and computer simulations.

Mathematically, chaos is caused by “nonlinearities” in the equa-

tions that describe a dynamical system.  “Nonlinearity” means that

changes in output are not necessarily proportional to changes in

input (see Figure 1).  Not every nonlinear system is chaotic, of

course; if that were the case, science would have essentially no pre-

dictive power.  But where chaos does occur (or seems to occur)—

in long-range weather patterns, for example—it puts a limit on

what can be predicted, and consequently calls into question the

usefulness of the equations.   

Figure 1. In a nonlinear system,
change in output is not in proportion to
change in input.
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Classical mechanics abounds in nonlinear systems that exhibit

chaos.  The “double pendulum” is one such system.  The classical

picture of electrons orbiting an atomic nucleus is another.  In com-

puter simulations, the equations of these systems produce solutions

that seem to wander aimlessly about, even though everything about

the problem is completely deterministic. 

You might expect that the weirdness of quantum mechanics

would only compound the chaotic aspects of classically chaotic

systems.  But that’s not what happens—what happens is even more

bizarre.   

In a nutshell, quantum mechanics forbids chaos.  Quantum

chaos is seemingly a contradiction in terms.  

That’s because quantum mechanics is inherently linear.  At the

heart of quantum mechanics is the notion that everything in nature

is a sum, or superposition, of certain “base states.” The base states

(also called eigenstates) behave in very simple ways, and the

behavior of the system is just the sum of these simple components.

The only things that are subject to change are the relative propor-

tions of the various eigenstates in the superposition.  These changes

are made by a mathematical object called an operator—so called

because it acts, or operates, on the states of the system.  (When

there are only finitely many base states, operators are also called

matrices.)  The whole theory is set up so that changes in output are

proportional to changes in input.  There’s no nonlinear crack

through which chaos can slip in.  

Or so it would seem. 

But in fact quantum chaos doesexist.  It’s just a little different

from what it first sounds like.   

An essential feature of any quantum system is a set of numbers

called eigenvalues, which characterize the simple behavior of the

eigenstates.  For example, in the fundamental equation of quantum

mechanics known as the Schrödinger equation, the eigenvalues are

positive real numbers that correspond to energy levels.  The eigen-

state with smallest eigenvalue is called the ground state, the one

with next smallest eigenvalue is called the first excited state, and so

forth.  Mathematically, there are infinitely many such states, each

with its own eigenvalue.  The collection of eigenvalues is called the

spectrumof the system.    

For some systems—say an electron trapped inside a rectangular

box—the spectrum is easy to calculate.  But these are systems

whose classical analogues are non-chaotic.  The electron in a box

Quantum chaos is
seemingly a 
contradiction in terms.  
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Atle Selberg. (Photo courtesy of the
Institute for Advanced Study.)

Trace Elements

Physicist Martin Gutzwiller at IBM’s T. J. Watson
Research Center didn’t know he was doing number theory in
the 1960’s.  But neither did Atle Selberg know he was setting
the stage for quantum chaos in the 1950’s.  

Selberg, a native of Norway now at the Institute for
Advanced Study in Princeton, New Jersey, was studying
number-theoretic implications of the analytic structure of
certain curved spaces.  (Curiously, Selberg’s most famous
result is an “elementary” proof of the Prime Number
Theorem—a proof that does not use any analytic properties
of the Riemann zeta function.  He and the Hungarian math-
ematician Paul Erd˝os found the first elementary proofs in
1948.)  Selberg derived an equation that had the eigenvalues
of a differential operator on one side and the lengths of
closed curves in the space on the other side.  This equation,
he showed, “encodes” the number-theoretic properties that
underlie the structure of the curved space.  

Selberg’s equation has come to be known as the Selberg
Trace Formula.  Number theorists have written hundreds of
papers and devoted dozens of conferences to understanding
and generalizing it.  For Gutzwiller, it represents a Rosetta
stone connecting quantum chaos with rigorous results in
mathematics.  

Dennis Hejhal, an expert on the trace formula at the
University of Minnesota and the University of Uppsala in
Sweden, has conducted extensive numerical experiments,
computing eigenvalues and closed curves for various curved
spaces.  In one of his early calculations, Hejhal thought he
might be on to a proof of the Riemann Hypothesis: Among
the eigenvalues for one of Selberg’s trace formulae, he saw
numbers that he recognized as zeroes of the Riemann zeta
function.  Closer inspection revealed that they really were
zeta zeroes.  Moreover, the calculation was producing all of
the zeroes of the zeta function.  Alas, it was all a mirage.  The
zeta zeroes had crept into the computation by accident: The
curved space had a certain “singular” point which required a
minor adjustment in the differential operator; once the
adjustment was made, the zeta zeroes disappeared from the
spectrum.  

Selberg, who recently turned 80, says he has never seri-
ously tried to prove the Riemann Hypothesis.  He’s worked
on the problem of the zeroes, he says, “but always with a
somewhat more limited goal in mind.” In fact, he adds,
“there have probably been very few attempts at proving the
Riemann Hypothesis, because, simply, no one has ever had
any really good idea for how to go about it!”
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Figure 2. Trajectories on a standard, rectangular billiard table (a) are
easy to analyze.  The case of “stadium billiards” (b) – (d) is provably
chaotic. (Figures (c) and (d) courtesy of Steve Tomsovic.)

For some systems the
spectrum is easy to 
calculate.

(a)

(b)

(c)

(d)
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behaves much like an ideal billiard ball on a perfect pool table: The

eigenstates of the electron correspond to periodic trajectories of the

billiard ball, and for a rectangular table, these are easy to compute

(see Figure 2a).  Put the same electron inside a “stadium”—a rec-

tangular box capped at each end by semicircles (see Figure 2b)—

and all hell breaks loose.  That’s because the classical dynamics of

a billiard ball rattling around inside such a shape is inherently

chaotic. 

Roughly speaking, quantum chaos is concerned with the spec-

trum of a quantum system when the classical version of the system

is chaotic.  Physicists such as Berry and John Keating, also at the

University of Bristol, Achim Richter at the Technical University of

Darmstadt, and Oriol Bohigas at the University of Paris believe—

All That Jazz  
Prime numbers are music to Michael Berry’s ears.    
Berry, a theoretical physicist at the University of Bristol, is

one of the leading theorists in the study of quantum chaos.  And
that’s brought him to a keen appreciation of the Riemann zeta
function.  

Prime numbers are a lot like musical chords, Berry explains.
A chord is a combination of notes played simultaneously.  Each
note is a particular frequency of sound created by a process of
resonance in a physical system, say a saxophone.  Put together,
notes can make a wide variety of  music—everything from
Chopin to Spice Girls.  In number theory, zeroes of the zeta
function are the notes, prime numbers are the chords, and theo-
rems are the symphonies.    

Of course chords need not be concordant; a lot of vibrations
are nothing more than noise.  The Riemann Hypothesis, howev-
er, imposes a pleasing harmony on the number-theoretic, zeta-
zero notes.  “Loosely speaking, the Riemann Hypothesis states
that the primes have music in them,” Berry says. 

But Berry is looking for more than a musical analogy; he
hopes to find the actual instrument behind the zeta function—a
mathematical drum whose natural frequencies line up with the
zeroes of the zeta function.  The answer, he thinks, lies in quan-
tum mechanics.  “There are vibrations in classical physics, too,”
he notes, “but quantum mechanics is a richer, more varied
source of vibrating systems than any classical oscillators that we
know of.”

What if someone finds a counterexample to the Riemann
Hypothesis?  “It would destroy this idea of mine,” Berry readily
admits—one reason he’s a firm believer in Riemann’s remark.
A counterexample would effectively end physicists’ interest in
the zeta function.  But one question would linger, he says:
“How could it be that the Riemann zeta function so convincing-
ly mimics a quantum system without being one?”
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and have begun to marshal evidence—that there is a subtle interplay

between the mathematical description of chaotic classical systems

and the spacing of energy levels in their quantum-mechanical coun-

terparts.  

In the 1960’s, Martin Gutzwiller, a physicist at the IBM 

T.J. Watson Research Center in Yorktown Heights, New York, pro-

posed that classical chaos and quantum-mechanical eigenvalues are

related by an equation called a trace formula.  On one side of the

equation is a combination of numbers representing the lengths of

closed orbits in the classical system.  On the other side is a combi-

nation of the eigenvalues of the quantum-mechanical version of the

system.  Gutzwiller’s theory is that the two sides of the equation,

which use such different data, really are equal.   

This equality has profound consequences.  By studying closed

orbits in a purely classical (albeit chaotic) setting, physicists can

deduce properties of a quantum-mechanical system without having

to solve the system’s Schrödinger equation—which is, in general,

beyond any computer’s ability anyway.  In particular, the trace for-

mula has implications for the spacing between energy levels: For

many systems, it “discourages” eigenvalues from being too close

together.  When physicists draw histograms of the distribution of

energy spacings, they find a curve quite different from the familiar,

exponentially decreasing “Poisson” distribution (see Figure 3).  

Gutzwiller’s theory of the trace formula didn’t come entirely out

of the blue.  Physicists have used various types of trace formulas

over the years; Gutzwiller’s formula itself was derived from an

Euclid’s Finest: A Prime-Time Proof  
Euclid is best known for geometry, but he also devoted a

book to the rudiments of number theory.  His most memorable
result there is a proof that there are infinitely many prime num-
bers.  

To say there are infinitely many prime numbers is to say that
every finite list of primes omits at least one prime number.
That’s the tack that Euclid took.  

Suppose you have a finite list of primes, say p1, p2,..., pn.
Multiply them together and add 1, Euclid tells us.  The result,
p1p2 · · · pn + 1 , is a number not divisible by any of the primes
in the list, since it leaves the remainder 1 under each such divi-
sion.  But everynumber is divisible by someprime number.
Thus your list omits at least one prime—and so the supply of
prime numbers is infinite.  
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approach to solving the Schrödinger equation known as Feynman’s

path integral (introduced by the physicist Richard Feynman).  What

Gutzwiller didn’t know—at the time—was that mathematicians

had also developed an extensive theory of trace formulas for a com-

pletely different purpose: number theory.  

Mathematicians have long been fascinated by the existence of

prime numbers—numbers such as 2, 3, 5, etc., which have no fac-

tors except themselves and 1.  One of the oldest facts about primes

dates back to Euclid, around 300 BC: There are infinitely many of

them.  Euclid’s theorem is easily proved (see “Euclid’s Finest: A

Prime Time Proof”), but it leaves another question unanswered: If

you look only at the numbers up to, say N , how many primes do

you find?  

Number theory reached the first of many peaks in 1896, with a

proof of the celebrated Prime Number Theorem, which states that

the number of primes up to any number N is approximately

N/ lnN, where lnN is the natural logarithm of N .  The Prime

Figure 3. The nearest-neighbor spacings for a nuclear data ensemble
(NDE) are similar to the statistics of a set of random matrices called the
Gaussian orthogonal ensemble (GOE).  The Poisson distribution is shown
for comparison.  (Figure courtesy of Oriol Bohigas, Institut de Physique
Nucleaire, Orsay, France, and Kluwer Academic Publishers, O. Bohigas,
R. U. Haq, and A. Pandey in “Nuclear Data  from Science and Technology,
K. H. Bockhoff, ed., Reidel, Dordrecht 1983, Figure 1, p. 809. With kind per-
mission from Kluwer Academic Publishers.)
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Number Theorem was proved independently by the French mathe-

matician Jacques Hadamard and the Belgian mathematician

Charles-Jean de la Vallée Poussin.  The formula N/ lnN is good to

within about 5%, for example, in estimating the number of primes

up to a billion.  (The formula predicts about 48 million; the exact

count is 50,847,534.)  

The proof of the Prime Number Theorem actually implies other,

more complicated formulas which are even more accurate.  The

main one says that the number of primes up to N is approximately

equal to what’s known as the logarithmic integral of N , which is

defined as the area beneath the curve y = 1/ lnx between x = 2
and x = N (see Figure 4).  A succinct way to state the Prime

Number Theorem is π(N) ≈ Li(N), where π means “the number

of primes” (up to N) and “Li” is short for “logarithmic integral.”

(The wavy equal sign denotes an approximation.  In this case, it

means that the ratio π(N)/ Li(N) gets closer and closer to 1 as N

gets larger and larger.)    If N is a billion, this approximation is off

by only three and a third thousandthsof a percent.   

Computational evidence suggests that Li(N) is an extremely

good approximation to π(N).  Mathematicians have theoretical

reasons to believe that the relative error incurred by the logarithmic

integral is bounded by some constant multiple of (lnN)2/
√
N .

But despite a century of intense study, they don't have a proof that

the error actually stays that

small.  

What stands in the way is

a “minor technicality”

known as the Riemann

Hypothesis.  In mathemat-

ics, such seemingly

insignificant details are

often the acorns from which

mighty theories grow.

That’s certainly been the

case for the Riemann

Hypothesis.  

The Riemann Hypothesis

concerns a mathematical

object called the Riemann

zeta function. The zeta func-

tion is defined by summing

1

2 50

y = 
1

ln x

Figure 4. The number of primes up to N can be estimated by measuring the
area beneath the curve y = 1/ lnx.
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inverse powers of the positive integers:

ζ(s) = 1−s + 2−s + 3−s + 4−s + · · ·

For example,ζ(2) = 1 + 1
4 + 1

9 + 1
16 + · · ·.  This sum, a bit sur-

prisingly, turns out to equal π2/6 .  The zeta function itself was

introduced in the eighteenth century by the Swiss mathematician

Leonhard Euler (who found the value π2/6 for ζ(2)), but the name

Riemann has stuck because the nineteenth-century German mathe-

matician Bernhard Riemann first showed that the properties of the

zeta function are intimately intertwined with the distribution of

prime numbers.  

Riemann, who was primarily a mathematical physicist and

geometer (he created much of the mathematics that later went into

Einstein’s theory of general relativity) wrote only one paper on

number theory, an eight-page memoir published in 1859, titled

Über die Anzahl der Primzahlen unter einer gegebener Grösse

(“On the Number of Prime Numbers Less Than a Given

Magnitude”).  In his paper, Riemann took Euler’s infinite series and

applied to it the then-new tools of complex analysis.  He showed

that the Prime Number Theorem could be proved by deriving cer-

tain complex properties of the zeta function.  In short, Riemann set

the stage for Hadamard and de la Vallée Poussin—but also for a

century of mathematics to follow.  

Riemann’s key contribution was an equation linking two ways

of looking at the zeta function.  Euler had discovered one side of

Riemann’s equation.  He had shown that the zeta function—initial-

ly defined as a sumover the positive integers—can be rewritten as

a productover the prime numbers:

ζ(s) =
1

(1− 2−s)(1− 3−s)(1− 5−s)(1− 7−s) · · · .

What Riemann observed (and Hadamard later proved) was that

the zeta function can also be written as a product over its zeroesin

the complex plane:

ζ(s) = f(s)(1− s/ρ1)(1− s/ρ2)(1− s/ρ3) · · · ,

where ρ1, ρ2, etc. are the complex numbers for which ζ(ρ) = 0,

and f(s) is a fairly simple “fudge factor.” Riemann showed that by

Riemann’s key 
contribution was an
equation linking two
ways of looking at the
zeta function. 



WHAT’S HAPPENING IN THE
MATHEMATICAL SCIENCES

12

equating the logarithms of these two expressions for the zeta func-

tion, it’s possible to derive not just the approximation Li(N) for the

number of primes up to N , but a whole sequence of increasingly

accurate approximations—in effect, an exactformula for π(N).    
Riemann’s equation implies that the distribution of prime num-

bers can be “heard” in the zeroes of the zeta function, much as a

musician can “hear” the sound of a symphony by looking at the

notes on a printed score.  The zeta function, it turns out, has one

batch of zeroes at the negative even integers,−2, −4, −6, etc.

Number theorists refer to these as the “trivial” zeroes of the zeta

function.  

What’s interesting are the “nontrivial” zeroes.  

Riemann showed that all the nontrivial zeroes lie in a particular

part of the complex plane: the infinite strip lying above and below

the unit interval from s = 0 to s = 1 (see Figure 5).  Furthermore,

the zeroes are symmetricallyarranged, so that each zero above the

unit interval has a mirror image below, and each zero (if any!) in the

right half of the strip has a mirror image in the left half.  Riemann’s

paper includes a formula that estimates the number of zeroes that

lie above the real axis and below any given height.  

It turns out that the Prime Number Theorem is equivalent to the

assertion that no (nontrivial) zero of the zeta function lies on the

boundary of the “critical strip.” Furthermore, the relative error of
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Figure 5. Zeroes of the Riemann zeta function (dark dots, top) lie in a strip.  The Riemann Hypothesis says they all lie
on the vertical line through s=1/2.  The graph |ζ( 1

2 + it)| is plotted (bottom) for t between 1 and 60. 
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the approximation π(N) ≈ Li(N), depends only on how close to

the boundary the nontrivial zeroes ever get.  And here is where

things get dicey.  

As far as anyone knows, there may be zeroes of the zeta func-

tion extremely close to the boundary.  If that’s the case, then the rel-

ative error term in the Prime Number Theorem is rather large.  (It

doesn’t mean the theorem is wrong, of course; it just means that the

logarithmic integral only guarantees a good approximation to

π(N) when N is extremely large.)  If, on the other hand, all the

zeroes are as far from the boundary as they can be—that is, if they

all lie on the “critical line” above and below s = 1/2—then the rel-

ative error term is as small as it can possibly be, which turns out to

be the constant multiple of (lnN)2/
√
N which we spoke of earli-

er.  

In his paper, Riemann called it “very likely” that all the zeroes

of the zeta function lie on the critical line.  This is the celebrated

Riemann Hypothesis.  

If true, the Riemann Hypothesis has profound implications not

just for the error term in the Prime Number Theorem, but in many

other parts of mathematics.  The mathematical literature is rife with

theorems that say “If the Riemann Hypothesis is true, then....”

Many other published papers go to great lengths to prove theorems

that would be simple corollaries of the Riemann Hypothesis.    

Harold Stark, a number theorist at the University of California at

San Diego, jokes that a proof of the Riemann Hypothesis “would

make lots of my life’s work irrelevant.” Nevertheless, he says, “the

idea that you can presumably correctly conjecture that infinitely

many numbers are on a particular line, and you can’t prove it, is

frustrating beyond any description.  It’s just unacceptable!”

But what’s any of this got to do with quantum chaos?  The

answer lies in the two ways of looking at the zeta function:

Riemann’s equation is a trace formula.  Physicists think it’s the

mother of all trace formulas for quantum chaos.  They believe the

zeroes of the zeta function can be interpreted as energy levels in the

quantum version of some classically chaotic system.  If they’re

right, the Riemann Hypothesis mustbe true.  

There’s a lot more than wishful thinking and soft analogies

behind this line of reasoning.  Mathematicians have collected a vast

amount of data on the zeroes of the zeta function.  So far, the data

show every indication of perfect agreement with the statistics of

energy levels in quantum chaos.  That’s part of the appeal for 

In his paper, Riemann
called it “very likely”
that all the zeroes of
the zeta function lie on
the critical line.   



14 WHAT’S HAPPENING IN THE
MATHEMATICAL SCIENCES

physicists: The eigenvalues of the Schrödinger equa-

tion for actual quantum systems are hard to compute,

and extremely hard to measure experimentally, so many

of the predictions of quantum chaos are difficult to test.

But zeroes of the zeta function are relatively easy to

come by; number theorists can churn out tens of mil-

lions of them on demand.  

The chief supplier of zeta zeroes is Andrew Odlyzko

at AT&T Labs in Florham Park, New Jersey.  Odlyzko

has developed extremely efficient algorithms that make

it possible to compute hundreds of millions of zeroes at

various “heights” in the critical strip.  Needless to say,

they’ve all, so far, been found to satisfy the Riemann

Hypothesis.  (A single counterexample would be

enough to ruin the Riemann Hypothesis.  It would also

end much of the interest physicists have in the zeta func-

tion.)  

Andrew M. Odlyzko. (Photo courtesy of Andrew
Odlyzko.)
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Actually, Odlyzko’s computer has reported a number of coun-

terexamples, but every one (so far) has been traced to a hard- or

software glitch.  “The Riemann Hypothesis is very sensitive to any

kind of error,” Odlyzko explains.  “The slightest mistake, especial-

ly with the methods I use, produces counterexamples.”

In purely mathematical terms, Odlyzko’s computations indicate

that the spacings between consecutive zeroes of the zeta function

behave, statistically, like the spacings between consecutive eigen-

values of large, random matrices belonging to a class known as the

Gaussian Unitary Ensemble (see Figure 6).  It was in precisely this

context that the zeta function first caught the eye of physicists, in

the early 1970’s. 

Random matrices had been proposed as a way of studying the

energy levels of large nuclei.  The idea originated with Eugene

Wigner, a theoretical physicist at Princeton University.  (Wigner is

best known to mathematicians for his 1960 essay, “The

Unreasonable Effectiveness of Mathematics in the Natural

Figure 6. A comparison of the
statistics of spacings between
conecutive eigenvalues of ran-
dom matrices (solid curve)
and nearest-neighbor spac-
ings of zeroes of the Riemann
zeta function (data points).
The fit is not bad for the first
million zeroes (left), but near-
ly perfect for the spacings
among 1,041,600 zeroes near
the 2× 1020th zero.  (Figure
courtesy of AT&T.)

A single counter-
example would be
enough to ruin the
Riemann Hypothesis. 
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Sciences.” The zeta–chaos connection would seem to be a case in

point.)  More recently Oriol Bohigas and colleagues at the Institut

de Physique Nucléairein Orsay, France, have brought the random-

matrix interpretation under the umbrella of quantum chaos.  But

during the 1960’s, the mathematics of random matrices was inten-

sively studied in its own right by theoretical physicists, including

Freeman Dyson at the Institute for Advanced Study in Princeton,

New Jersey.  

In 1972, Hugh Montgomery, a number theorist at the University

of Michigan, was visiting the Institute for Advanced Study.

Montgomery had been studying the distribution of zeroes of the

zeta function, in hopes of gaining insight into the Riemann

Hypothesis.  He was able to prove that the Riemann Hypothesis had

implications for the spacing of zeroes along the critical line, but his

key discovery was an additional property that the zeroes seemed to

have, one which implied a particularly nice formula

for the average spacing between zeroes.  

During tea one day at the Institute, Montgomery

was introduced to Dyson and described his conjec-

ture.  Dyson immediately recognized it as the same

result as had been obtained for random matrices.   

“It just so happened that he was one of the two or

three physicists in the world who had worked all of

these things out, so I was actually talking to the great-

est expert in exactly this!” Montgomery recalls.    

Odlyzko’s computations agree amazingly well with

Montgomery’s conjecture, notes Peter Sarnak, a number theorist at

Princeton University.  But they do much more than that, Sarnak

insists: They are “the first phenomenological insight that the zeroes

are absolutely, undoubtedly ‘spectral’ in nature.” Riemann himself

would be impressed, Sarnak says.  

Sarnak and Nicholas Katz, also at Princeton, have found addi-

tional evidence for a spectral interpretation of the zeta zeroes.  The

Riemann zeta function is just one of many number-theoretic zeta

functions, each of which has an analogue of the Riemann

Hypothesis.  Sarnak and Katz have analyzed in detail the relation

between random matrices and a class of zeta functions for which

the Riemann Hypothesis has actually been proved.  (Unfortunately,

the proofs for these zeta functions seem to offer no clue as to a

Odlyzko’s computations agree
amazingly well with
Montgomery’s conjecture.



17WHAT’S HAPPENING IN THE
MATHEMATICAL SCIENCES

proof of  “the” Riemann Hypothesis.)  They have shown that the

key statistics for the spacing of eigenvalues and zeroes of their zeta

functions are exactlythe same.    

Of possibly greater importance, the key statistics for eigenvalues

are relatively robust: Sarnak and Katz have shown that the statis-

tics are the same for several different classes of random matrices.

That’s good news for physicists.  It suggests that the assumptions

they make in choosing one class of random matrix over another

don’t affect the properties they’re interested in.  

Despite the stunning advances linking Riemann’s zeta function

to twentieth-century physics, no one is predicting an imminent

proof of the Riemann Hypothesis.  Odlyzko’s numerical experi-

ments and the evidence amassed by physicists have convinced

everyone that a spectral interpretation of the zeta zeroes is the way

to go, but number theorists say they are at least one “big idea” away

from even the beginnings of a proof.  Mathematicians

aren’t yet sure what to aim at, says Sarnak: “What we

really have to do with the Riemann Hypothesis is put

it in the ballpark.”

Of course that was how things stood not long ago

for Fermat’s Last Theorem (see What’s Happening in

the Mathematical Sciences, volumes 2 and 3).  In the

early 1980’s no one had any idea how to prove

Fermat’s famous marginal remark.  Then, in the mid

80’s, number theorists discovered a deep connection

between Fermat’s Last Theorem and a branch of mod-

ern mathematics known as the theory of elliptic curves.  Within ten

years, this discovery had culminated in Andrew Wiles’s solution of

the 350-year-old problem.  

Interestingly, the denouement of Fermat’s Last Theorem was

preceded by a conference, held in 1980, on recent developments in

the mathematics of Fermat’s Last Theorem.  Number theorists are

hoping that history repeats itself: In 1996, the recently founded

American Institute of Mathematics (AIM) sponsored a conference

devoted to the zeta function and its connections with quantum

chaos.  If everything goes according to “plan,” the first break-

through idea will come in 2001, and a proof of the Riemann

Hypothesis will be published in 2011.  Stay tuned. 

Despite the stunning advances
linking Riemann’s zeta function
to twentieth-century physics, no
one is predicting an imminent
proof of the Riemann
Hypothesis.


