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THE DISTORTION OF THE BOUSSINESQ FIELD DUE
TO A CIRCULAR HOLE*

A. BARJANSKY1
The Brush Development Company

1. Introduction. One of the most important problems in the theory of elasticity
is the solution of the biharmonic equation V2<^ = 0, where cf> is Airy's stress function,
for a given group of boundary conditions. As is well known, the most common ap-
proach to the solution of this problem consists in selecting a system of coordinates
particularly suited to the region studied.

Thus, using bipolar coordinates, G. B. Jeffery has given the general solution of
the plane problem, that is, of the biharmonic equation in two dimensions, for regions
bounded by non-concentric circles (Ref. 1). A clear, but not quite complete, treatment
of Jeffery's method can be found in Coker and Filon (Ref. 2). This method has re-
cently been used by R. D. Mindlin for the determination of dead loads on tunnels
(Ref. 3).

The present paper is an attempt to apply Jeffery's approach to the problem
of the distortion introduced in the so-called plane Boussinesq field by the presence
of a circular hole. Starting with the stress function <f> of the undistorted Boussinesq
field, an auxiliary stress function x will be found such that <!?=</>+x satisfies the differ-
ential equation and all the boundary conditions. The stresses and strains in the dis-
continuous field can then be directly determined from the derivatives of "J.

2. The Boussinesq field. Boussinesq and Flamant have given the solution of the
biharmonic equation for the case of an isolated force P acting at a point on the bound-
ary of a semi-infinite plane. Their solution, which can be found in all standard texts
(see, for instance, Ref. 4, p. 82) is:

P
4>i = rd sin 6 (la)

TT

for the case of a normal force, and
P

fa = rd cos 0 (lb)
TT

for a force parallel to the boundary. The significance of the symbols is shown in
Figs, la and lb.

In the simple Boussinesq problem, the only boundary conditions are that the
stresses, both normal and shearing, must vanish along the straight boundary (except,
of course, at the point of application of the force) and also must tend to zero as one
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moves away from the point of application within the half-plane. With the appearance
of the circular discontinuity (Fig. 2), the above conditions remain, and a new one is

Fig. la. Fig. lb.

added, determined by the nature of the discontinuity. Thus, if it is a hole, both normal
and shearing stresses must vanish along its periphery.

The region is thus bounded by a
circle and a straight line; the latter can
be considered as a circle of infinite
radius, so that here is a case of a region
bounded by two non-concentric circles,
to which Jeffery's method is applicable.

3. Bipolar coordinates. Jeffery's
method consists essentially in intro-
ducing a system of curvilinear coordi-
nates, called bipolar coordinates in
works on elasticity. Two poles, A and
B (Fig. 3) are taken at abscissas +a PIG 2
along the X-axis, and the location of
any point is determined with respect to these poles by the .quantities

fi
£ = log — t] = 0i - 02.

r2

The lines 77 = constant are circles passing through A and B, while £ = constant are
a system of circles with centers on the X-axis. Some of these lines are drawn on Fig. 3.

If a circle of diameter d has its center h units from the horizontal axis (Fig. 2),
it is easy to show (see Ref. 1) that the proper polar distance a is determined from
ai = hi — and that the value £0 of £ corresponding to the circle is £0 = cosh~1 2h/d.
The cartesian coordinates can be expressed as follows in terms of the bipolar:

a sinh £ a sin ij
x — , y   (2)

cosh £ — cos j7 cosh £ — cos 17

When the biharmonic equation is expressed in bipolar coordinates, it is found
convenient to write it, not in terms of the usual stress function x> but in terms of
x//, where J has the value

a
J =  ;

cosh £ — cos 11

the stresses are also expressed as derivatives of x/J-
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The bipolar solution for x/J used by Jeffery has the general form:

x/J — cosh £ + (— B£ + G cosh 2£ -f- H sinh 2£ + F) cos t)

+ (G' cosh 2$ + H' sinh 2£ + F') sin tj
oo

+ X { [Ek c°sh + 1)€ + Fk sinh (k + 1)£ + G* cosh (k — l)f
*=2

+ Hk sinh (k — 1)?] cos kv + \E£ cosh (k + 1)£ + Fi sinh (k + 1)$

+ G/! cosh (k — 1)£ + Hi! sinh (k — 1)£] sin kt]}, (3)

where all the B's, E's, F's, G's and H's are constants. This series will be assumed
convergent and differentiable for the time being.

Here the terms independent of y and those containing cos ?j or sin r) are used ex-
actly as they appear in Ref. 2 (Eq. 4.066 and paragraph 4.07), but those containing
functions of multiples of r) come directly from Ref. 1 (Eq. 21), with some slight
changes in nomenclature.

4. General procedure. As was said before, the presence of the circular discon-
tinuity causes a modification of the Boussinesq functions <£i and <j>2 into $1, and $2
the latter having to satisfy the biharmonic equation and all boundary conditions
Also #i=$i+xi> <£2=</>2+X2 where xi and X2 are auxiliary stress functions of the gen-
eral form (3). Now since both </>'s and both x's satisfy the biharmonic equation, which
is linear, so do $1 and $2. As to the boundary conditions, </>i and <j>2 satisfy them along
the straight boundary and for remote points. Therefore, xi a°d X2 must be so selected
that:
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(1) they give vanishing stresses for remote points (£—>0, r\—>0);
(2) they give zero normal and shearing stresses along the straight boundary;
(3) in combination with the known functions </>i and tp2 they satisfy the boundary

conditions at the circular discontinuity.
In the next paragraphs, conditions (1) and (2) will be considered first and their

application will determine some of the hitherto arbitrary constants of Eq. (3).
Then the function x satisfying conditions (1) and (2) will be added to $1 or <£2 (ac-
cording to whether a normal or a tangential load is studied), yielding

$1 = 0i + x> $2 = <£2 + x-

Finally the remaining constants of x will be determined in each case by the conditions
at the inner boundary.

5. First and second boundary conditions. The stresses are expressed as follows in
terms of bipolar coordinates:

T 32 . d d 1/X\
a<T{ = (cosh £ — cos 1,) sinh £ sin r, \- ccsh £ I —),

L d*7? d£ dr; J\//
T di d d 1/X\

acr. = (cosh £ — cos j?) sinh £ sin »/ — + cos t; I ( — ), (4)
L d£2 3£ dr, J\J /

d2
ffT£, = — (cosh £ — cos r,) 

dt-dtj(7>
The first condition necessitates

cT( = 0, <r, = 0, r£, = 0 for (£, r?) —► 0;

and the second
crj - 0, rj, = 0 for £ = 0.

The first condition is seen from Eqs. (4) to be equivalent to

y = 0 for (£, i,) 0

from which, immediately

G -f- F — 0, G — — F and £* -(- Gk — 0, Gk — jE*.

For the second condition, r{, = 0 for £ = 0, which yields

B k+1 k+\
H = —, H' = 0, Hk = Fk, Hi = Fi ;2 k — 1 k — 1

and from cr^ — 0 for £ = 0,
G£ = - El.

Thus the stress function satisfying boundary conditions (1) and (2) assumes the form:

— = cosh £ — [£(£ — sinh £ cosh £) + 2F sinh2 £] cos r, + (G' cosh 2£ + F') sin ij
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00 2

+ ^2 -—— { [Ek(k — 1) sinh £ sinh &£
ko-i k — 1

+ Fk(k sinh £ cosh ki, — cosh £ sinh ££)J cos ki)

+ [E{ (k — 1) sinh £ sinh ££ + Fi {k sinh £ cosh ££ — cosh £ sinh ££)] sin kr\}. (5)

6. Third boundary condition. The value of x/J from (5) is now added to <f>\ (for
normal load) or </>2 (tangential load), and the remaining arbitrary constants of (5)
determined by the conditions at the boundary of the hole, which are that both normal
and shear stresses vanish on the periphery, i.e. (<T()(C = 0, and (rf,)£0 = 0.

In order to coordinate the functions <j> 1, <f>2, on one hand, and xi. X2> °n the other,
the system of axes shall be selected so that the y = 0 (or 77 = 0) axis passes through the
center of the hole, as shown in Figs. 2 and 3. Then the concentrated force, whether
normal or tangential, will act at a point y = yo, and the stress functions </> 1 and <j>2
become

P y — yo P y — yo
0i = (y — y0) tan-1 > 4>i — tan-1  

x x ir x

Transforming this into bipolar coordinates (Eq. 2) one has

P yo(cosh £ — cos 77) — a sin 77 yo(cosh £ — cos 77) — a sin 77
cf>\ = tan-1    ; >

x cosh £ — cos 77 a sinh £

P a sinh £ yo(cosh £ — cos ri) — a sin ??
<!> 2 = tan-1  

x cosh £ — cos 17 a sinh £

But, as was said before, in treating problems involving bipolar coordinates, it is easier
to express stresses not in terms of the stress function itself, but in terms of the stress
function divided by the quantity J, so that:

P jo(cosh £ — cos ri) — a sin 17
tj>i/J = — [y0(cosh £ — cos ri) — a sin 77 J tan-1   ,

ira a sinh £

P Wcosh £ — cos 17) — a sin n
02/J = — sinh £ tan-1   

x a sinh £

These two expressions must now be written in Fourier series in 77 to be comparable
with the auxiliary functions xi and X2 of (5). The coefficients of these series are found
by means of the usual integrations which are presented in detail in the Appendix.
The results are as follows:

To 00
<t>i/J = — + X (jf* cos by + Uk sin £77),

2 k=1
with

To P ( T , 1 + cos/8)
-— = —< tan /3 cosh £ tan-1 (tan /3 coth £) + ( /3 ) sinh £ — el > ,
2x1 L \ 2 / J 2 cos /9 j
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Ti = — tan 0 sin 0 cosh C — tan-1 (tan jS coth £) — — /3^ sinh ,

U\ = —|—2~~L* + + g2£) cos ~ tan-1 (tan /S coth £) — — /3^ sinh f|-,

and for k>2

Pek( ( tan /} sin kfi k sinh £— cosh £ f cos kp 1)
n= U~l)k- ^   cosh £+ -f-   l + (-l)» -\\

x [ k k2— 1 L cos /3 Jj
Pek( ( tan /3 cos k/3 k sinh £ — cosh £ f tan 0 sin &/9= {(-1)*   — cosh £    —Jl+(-l)* r

x (. k k2—\\_k cos/3I-
where

Ro *=?
02// = b /L, (Rk cos ^ + Sk sin krj),

2 *_i

i?o -P sinh £
2 x

l^tan-1 (tan /} coth £) +  fij sinh £^,

P sinh £ ek(
Rk — (-1)* sin kfi,

X k

P sinh { elf r n
Sk = [l — (— l)4 cos ^/3].

x k

In these expressions /3 = tan-1 y0/a (Fig. 2). The above formulas refer to the case
/3^0 (see Appendix). For the important case /3 = 0, i.e., yo = 0

T P
_° = et, Tx = 0, t/, = 0,
2 x

for 2

2P ek((k sinh £ — cosh £)
Tk   for k even, T* = 0 for k odd, U* = 0,

x £2 — 1
and

Ro 2P
— = 0, Rk = 0, 5* = sinh £ for £ odd, 5* = 0 for k even.
2 ir k

The following special cases will be considered in the next section on applica-
tions: (A) half-space containing a hole bounded by £=£o and subjected to normal
load; (B) same region subjected to tangential load.

APPLICATIONS

A. Hole subject to normal load. Here

&i/J = <t>i/J + Xi/J.
or
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Pi r /*- \ . "I l+cos/3)
= B£ cosh H < tan /3 cosh £ I tan-1 (tan /9 coth£) + — £(Jsinh J J — es~ — |

~' "|^(£ — sinh £ cosh £) + 2F sinh2 £

   tan /3 j^ef sin /3 cosh £ — tan-1 (tan /3 coth £) — —^ s'n^ cos ^

( , P rtan 0 i i
+ |G' cosh 2£ +F' -| 1—-— {l + (l+eS{) cos 0}

— tan-1 (tan /3 coth £) ——/S^sinh {Jj- sin /3

00 2 /
4-  \Ek[k— l] sinh J sinh k£~\-Fk[k sinh £ cosh ££ —cosh £ sinh ££]

t_2 £ — 1 \

k—\ I tan/Ssin&/3 &sinh£ — cosher cos &/3 "1) \
 iVt^(-l)*   -cosh£+     l + (-l)4 \> ) cos kr,

2ir I k k2—l L COS /3 J) /
00 2 /+  f -Et [k— l] sinh £ sinh i£+F* [£ sinh £ cosh &£ — cosh £ sinh £]

k-2 k—1\

&—1 ( tan /3 cos kf3 £sinh£ — cosh £f tan /3 sin k/3~\) \
 P«*t^(-1)»   -cosh£      -+(-i)*  >)sin *"•

2x I k *2-l L k cosj8 J J /
The condition (t{ ,){„=—(cosh £ — cos i;)d2/d£dj7 ($/./) =0 amounts to equating

to zero at £ = £o the derivative with respect to £ of each term except the one inde-
pendent of 77. As to (ff{){0 = 0, this can be shown to require that for k^.2 each term
be zero at £ = £o- Thus, for each term, two equations are available; and this is suffi-
cient to find all of the remaining constants, with the exception of F' in the term in
sin /3. The constant F' remains indeterminate, and can therefore be taken as equal
to zero. By solving the two equations for each term, the following values are found
for the constants:

P ( /2cosh2£0 \ 2 sin2 /3(cosh2 £0+5)
B — <e*» tan /3 sin /3 ( ef« J ——

2x sinh2 £0 ' V sinh £0 / cosh2 £0 —cos2/3
1 + cos/3)

— (ir —2/3) tan /S cosh £0(cosh2 £0—5)— coth £0 f,
cos 0 )

P (
F = ■< ee> tan /3 sin /3 cosh £0—tan /3 sinh £0 cosh £0

2r sinh2 £0 (.
r sin /3 cos P / ir \ 1 1-f cos/3)

' (-—/Slcosh £0   — >,
\ 2 / J 2 cos /3 ).cosh2 £0 —cos2 /8

— P T sin /3 cos /S / ir \
G =  e2{° sin /3H I /3 ) cosh £0 ,

2xsinh2£0L cosh2 £0 —cos2/3 \2 / J
F' = 0,

P .
Ek = {( — 1)* tan /3 sin k/3(k sinh £0 cosh £o+sinh2 £0—ek(> sinh ££0J

2t
+ [l — (— 1)* cos £/3/cos /3]& sinh2 £0} [sinh2 ££0— k2 sinh2 £o]_1,
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Fh = {(—1)*(£— 1)£-1 tan j3 sin &|3[£sinh Jo cosh J0 — ek(° sinh &J0]
2ir

+ (k + l)"1 [l + ( — 1)* cos kfi/cos (3][k2 sinh2 Jo — & sinh J0 cosh Jo — e~*fo sinh £Jo]}

• [sinh2 &£o — £2 sinh2 Jo]-1 >

Ei = —{(—l)l'tan /3 cos kj$\k sinh £J0 cosh Jo+sinh2 J0 —e*£° sinh £Jo]
2ir

— [yfc-1 tan /J + (— 1) k sin kf3/cos fi]k sinh2 Jo]} [sinh2 £Jo — k2 sinh2 Jo]-1.

P ,
F£ = —{(—1)*(& — tan /?cos k/3 [£ sinh J0 cosh Jo+e*f» sinh £Jo]

2tr

— (£+l)-1 [&~l tan j8 + (— 1)* sin k/3/cos /3] [£2 sinh2 Jo — k sinh J0 cosh Jo — el(° sinh £Jo]}

• [sinh2 kfo — k2 sinh2 Jo]-1 •

To test the suitability of this expansion, it is sufficient to examine the terms of
the auxiliary functions (Eq. 5) for the values of the constants given above. The co-
efficient of cos krj in the general term of the latter equation is seen to consist of two
parts, one multiplied by ( —1)* and the other not. The first part forms an alternating
series the general term of which tends to zero, so that the alternating series is con-
vergent by a well-known theorem. The second part is found to converge outside the
circle J=£o by the ratio test. The same is true for the coefficient of sin kr). Thus
the above expression for $i/J is a uniformly convergent series in 77 in the region con-
sidered.

Because of the great complexity of the expression involved, only the case /3 = 0
will be considered in more detail. For that case

P cosh Jo P
£(0) = _ , fW = , £/<0) = p>W = 0,

ir sinh3 Jo 2ir sinh2 Jo

P k sinh2 J0
E[ = for k even, Ek ) = 0 for k odd,

tt sinh2 ki;o — k2 sinh2 Jo

P k2 sinh2 Jo — k sinh Jo cosh Jo — ek(> sinh &J0
Fi0) =   for k even, Fk(0) = Ofor k odd,

t (k + l)(sinh2 k£0 — k2 sinh2 J0)

E>m = p,i o) = 0_

The stress function becomes

..., P cosh J0 P
//     J cosh J e£

7r sinh3 Jo TT

[ cosh Jo . ^ sinh2 Jr r cosh Jo sinh2 J "]
— — (J — sinh J cosh J) -| cos 17
irLsinh3Jo sinh2J0J

_ £ 2P r
k-2 w(k — 1) Lsi

k(k — 1) sinh2 Jo
sinh J sinh £J

i-2 w(k — 1) Lsinh2 £J0 — £2 sinh2 J0
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P sinh2 J0 — k sinh J0 cosh J0 — ek(> sinh £J0 . , „ , . , .....
H   (jfe sinh J cosh &J — cosh J sinh £J)

(£ + l)(sinh2 £J0 — £2 sinh2 Jo)

H (& sinh J — cosh J) | cos kt]
k + 1 ]

with the summation extending over even values of k only.
The most significant stress is the hoop stress a, at the periphery of the hole, £ = Jo-

Substituting the above value of $\/J into the second of Eqs. (4), the following series
is obtained :

P 2P cosh Jo P
a<r, = (1 + coth2 Jo) cos + — (5 coth2 J0 — 1) cos 2rj

ir ir sinh2 Jo t

2 P r
x L si

2 sinh Jo sinh 2J0 4 sinh J0 sinh 4J8
sinh2 2J0 — 4 sinh2 Jo sinh2 4J0 — 16 sinh2 J0

4P 4 sinh Jo sinh 4J0
H cos 4rj

tt sinh2 4Jo — 16 sinh2 Jo

cos 3jj

IP r
ir Lsi

4 sinh Jo sinh 4J0 6 sinh J0 sinh 6J0 ~|
H cos 5j/ +

sinh2 4J0 — 16 sinh2 Jo sinh2 6Jo — 36 sinh2 Jo.

Fig. 4.

Fig. 4 is a graphical illustration of the above formula. In that figure, the "stress
factor" is plotted for different values of 2h/d — cosh £0- By "stress factor" is meant
the ratio of the stress «r, to the stress which would have existed under the same load-
ing at a point corresponding to the center of the hole, if the latter had not been
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drilled. If there had been no hole, the point corresponding to its center would have
been under a stress — 2P/ivh (compression) so that the stress factor is the ratio
— cr„/(2P/irh). Therefore, a positive value of the stress factor represents compression,
a negative value, tension.

It is seen from the figure that for each curve there exists a tension directly under
the load (a = 0), which becomes a compression as a is increased, reaches a maximum,
then decreases, and becomes tension again when a approaches 180°. For low values
of cosh £o, i e., of the depth-to-diameter ratio, there exists a secondary maximum
of tension in the neighborhood of a = 20°.

As cosh £o increases (as the hole gets deeper and deeper), the stress factor
curves tend towards the "limit curve," which is simply the graph of 1 — 2 cos 2a.
The latter expression (Ref. 4, p. 77, second of Eqs. (58)) is obtained by assuming the
hole to be in a field of uniform compression, equal to the compression — 2P/irh at the
center of the hole.

B. Hole subjected to tangential load. Now the total stress function has the form

$2// = <P2/J + Xi/J i

where $2 is the total stress function, <f>2 is given by (lb) and X2 is of the general
form (5). The heretofore arbitrary constants are determined by the conditions at the
inner boundary, which are the same as in the preceding case. The remaining constants
are found to be:

P T sin 0 sin 2/3 coth Jo cosh2J0
B = ~ —TT- + —7T^ — — (ir — 20)

2ir L sinh2 £0 cosh2 J0 — cos2 /3 sinh J0 ]•
P Te£» sin /3 sin /? cos / ir \ "I

= — — ~+     ( P ) c°sh Jo ,
2x L sinh Jo cosh2 J0 — cos2 /3 \ 2 / Jsinh Jo cosh2 J0 — cos2 /3

P e2«»
G" = (1 + cos /S),

2ir sinh 2£0

F' = 0,
P sin kfi k2 sinh2 $0 + k sinh Jo cosh £0 — eh(° sinh k£0

Ek = (— l)k   >
2ir k sinh2 k£0 — k2 sinh2 Jo

P sinh2 Jo
Fk =   (— 1)4(£ — 1) sin kfi j

2ir sinh2 £J0 — k2 sinh2 J0

/ P [l — (— l)4cos kfi\ k2 sinh2 Jo + k sinh Jo cosh Jo — e*f»sinh k£0
2ir k sinh2 k£0 — k2 sinh2 Jo

P r , sinh2 Jo
Fi = — (k - 1)[1 - (- l)4 cos kp]

2ir sinh2 AJ0 — k2 sinh2 J0

The resulting Fourier series can be shown to converge as in the previous case.
C. Conclusion. In the above paragraphs, a method was presented for computing

the distortion of the original Boussinesq field when a hole is introduced. Other inter-
esting results can be derived by simple means; thus, by superposing on the above
stress functions <E>i or $2 one of the solutions presented in Refs. 1 and 2, it is possible



26 A. BARJANSKY [Vol. II, No. 1

to obtain the stress system for a Boussinesq field containing a hole, the periphery of
which is subjected to a uniform pressure. Another extension of the above method,
on which the writer is working at present, can be used to solve the case of a Boussinesq
field containing a rigid disc.

APPENDIX

The decomposition of the Boussinesq stress function into a Fourier series in rj.
We shall begin by decomposing the shear stress function

<f>2 P yo(cosh £ — cos 17) — a sin ij
— = — sinh £ tan-1 •
J r a sinh £

The different Fourier coefficients are given by

1 r2' *1
Rk + iSk -— I — e,kl,di).

t J 0 /

This can be simplified by introducing the angle |3 = tan-1 yo/a.

<t>2 P yo(cosh £ — cos ji) — a sin ij
— = — sinh £ tan-1 
J ir a sinh £

P sin /3 cosh £ — sin (j; + /9)
= — sinh £ tan-1  

7r cos P sinh £

Let also sin /3 cosh £ = p, cos /3 sinh £ = q, 77 +0 = Then

' 1 r2* P
iSk = — I —sir

■jr J 0 v

_ , p — sin \j/
Rk + iSk = — I — sinh £ tan-1 e'^dr)

0 * q

P sinh r 2t p — sin ^ P sinh £e_a"
=  I tan-1     eik*d+ = Ik.

ir2 J 0 q ir2

Here the limits of integration need not be changed, since the integrand is a periodic
function of period 2w. To evaluate Ik, use is made of integration by parts, with

p — sin ^
u = tan-1 > dv = eik+d\f/.

?
Then

q cos ^ dif/ i
du = > v = etk* (k 5* 0)

(p — sin ^)2 + q2 k

and
, 2t

Ik = uv
0 J 0

vdu.
0

But, since both u and v are periodic, their product evaluated over the period 2ir is
zero; then

/' 2t iq f2w cos \f/ dyf/vdu = I  
0 k J 0 (p — sin ^)2 + q2

Ik = ~ I vdu = |  eik*.
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Replacing the sine and cosine by their exponential equivalents and transforming, one
has

2q r 2* (eu* + 1 )d{ei*)
1 ikyft   .

2q r 2T= — I eik
k Jo (e2i* — 2ipei* — l)2 - 4q2eii*

This is easily seen to be a rational function of ethe denominator of which, the
difference of two squares, can be decomposed into two quadratic factors with rela-
tively simple roots, so that the transformation by partial fractions can be used to
obtain the following result:

i r2' / 1 1 1 1 \
/* = - e'k* ( —  - ; ; ; — +   r)

2k J a Xe1* — eie^ e%* — e V e'* + e(e e'* + e~ce~1^/

Thus the integral breaks down into four integrals of the form

.2* tk

die'*).

f+J n t — C

where t = ei+, and c is a complex constant of the form +e±{±i". Now if the indicated
division of tk by t — c is performed, a quotient which is a polynomial in t and a re-
mainder ck result. The polynomial is integrated into another polynomial in / = e'*,
and the value of this second polynomial between the limits 0 and 2ir is zero because
of the periodicity of eThus the remaining terms are of the type

r2T ckdt r 'iT c"

J o ^ o —
d^*)-

c
namely,

1 f 2t (eiei^)k (e~ceiP)k (— ele~^)k (— e~*e~iP)k~\
Ik — — |  :   : : r + — \d(e'*). (A)

2k J o Le"* — e*e* el* — e (e'f el* + e(e~x^ e1* + e~(e~^J

The value of the resulting terms can be obtained more easily by considering the
corresponding complex function of f = i

e. r JW-.v r
J c e't — c J c e,{ — c

along the contour shown on Fig. 5. It is well known from the theory of the complex
variable that the value of the above contour integral is zero if the pole of the integrand
falls outside that contour, and is equal to 2iriXickX. Res., where Res. is the residue
of the integrand, if the pole lies inside the contour.

Performing the integration around the contour, we obtain the following:
(1) along the real axis — the complex integral reduces to the real

integral to be evaluated (limits — ir and ir are equivalent to 0 and 2ir);
(2) the two integrals along the vertical paths cancel each other;
(3) the integral along w = A has a zero limit for A—»co.

Therefore,

1 This treatment was indicated to the writer by his friend and colleague, Dr. H. G. Baerwald.
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d(e<*) =
/v 0 ?}* -

0 if the pole lies outside the strip
hi ^ 0 — ir ^ \p ^ TT

2ti X icl X Res, if it lies inside that strip.

The pole occurs at e^—c = 0, or f = —« log c; c is of the form

c = or c = - e±le-«> = ««««*^>,

so that log c = ±|+*/3 or log c — ±^+t(ir—/3) and J" = /3+»£ or f = ir—/3Ttf.
But the region *>0 corresponds to £<0, as can be seen from (2), and also

0 </3 <7t/2, so that the integrals whose pole has an imaginary part of the form +i£,
namely the second and fourth of (A), have the value zero. The poles of the first and
third, on the contrary, fall inside the region of integration, so that their values are

2xt X ick X Res.

It remains to evaluate the residue. This is found to be — i by methods explained
in texts on the complex variable (Ref. 5). Thus the required integrals become

2ri X ick X (— 0 = 2tic*.
Thus,

Ik = ^2«[(*«»)» - (-
2k

and   ~
Pi e" .

Rk + iSt — sinh J [l —
t k

Therefore
P

/?*=—(— 1)*— sinh £ sin kf) >
r k

p . «k( r
St = —sinh£ [l — (— l)*cos kf}].

x k

When (3 = 0, the poles shown on Fig. 5 have real parts 0 and ir, respectively. In
other words, one of the poles is on the contour itself. Besides, due to the periodicity
of the integrand, a third pole appears with a real part equal to —it. This latter pole
has, in general, a real part — it — (}, and is identical with the pole at ir—/3. Thus, there
are three poles in all, one wholly within the contour and two others, with equal
residues, on the contour itself. Now it is easy to see that each of the latter contributes
half its residue to the value of the integral, and since these residues are equal, the
situation remains the same as if there were only two poles, both entirely within the
contour, so that the case /3 = 0 is not essentially different from /3^0, and it is sufficient
to set /3 = 0 in the above formulas for Rk and 5*. Thus

(o) (o) 2P ek* (o)
Rk =0, Sk = sinh J for k odd, Sk =0 for k even.

7T k

Case k = 0. For this case, the procedure is exactly the same up to the integration
by parts. There, while u remains as before, dv = d\f/, v = \p, so that /* becomes
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p — sin \p
To = ^ tan^1 —

o

C 2t mp cos
I 71 • *I 2 = ^tan"1 p/q + qJo-

J o \p — sin ^)2 + ?

To evaluate 70, the same method as before is used, exponentials being introduced
in place of the trigonometric functions:

+ 1 )d(e»)
J 0

/» 2t
= 2i |

J o (e2i* — lipe1* — l)2 - 4g2e2i*

This can again be transformed into partial fractions:

i r2r r i i i in
Jo —   I —~ —    1 

2 cos [3 J o e'* — e** + e'* +

Here we are dealing with integrals of the type

r 2t <f/ex*d\l//•211pd(e%*) _ f 2t ipe^di

o e'* — c J0 e'* — c '

ito

^ ^ UtmA. ^

♦Poles

/ ^

I
 L_

these can be treated, as before, by in-
troducing the complex variable and
integrating around the contour of
Fig. 5. Since the denominator of the
integrand is the same as before, all
that was said about the poles of the
partial integrals making up Ik re- Y
mains true. Therefore, the second and
fourth terms in the expression for J0
contribute nothing, and the first and -ir
third are each equal to 2tri times the
residue times constants. The residues, Fig-
however, have here the value —log c,
so that

Jo =    i 2wi[ — £ — if} + £ + i(ir — /3) ] = (ir — 2/3),
2 cos & cos j8

and the imaginary term vanishes, as could be expected. Then

To = 2ir tan-1 (tan 0 coth £) + ir (ir — 2/3) sinh £

and
P sinh £ r ,

Ro =  [2 tan-1 (tan (3 coth £) + (ir — 2/3) sinh £].
ir

Half of this expression is the first term of the Fourier series:

Ro P sinh £ f / 7r \ ~|
— = I tan-1 (tan £ coth £) + f —— /Sj sinh £J.
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For j3 = 0, there are again three poles, one on the imaginary axis and the two
others with real parts ±7r. This location is, as in the general case k^Q, due to the
periodicity of the denominator of the integrand. However, here the integrand as a
whole is not periodic, so that the residues at the two poles on the contour are not
equal, and the situation is not the same as for The detailed computations show
that i?0 = 0.

Series for <j>\/J. Since the ratio
p — sin (t) + /3)

ti/J'.fc/J = 4>i/4>2 — —  ——-

is a simple trigonometric expression, the series for <j>\/J can be obtained from that
for (j>i/J by term-by-term multiplication.
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