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EFFECT OF A SMALL HOLE ON THE STRESSES IN A
UNIFORMLY LOADED PLATE*

BY

MARTIN GREENSPAN
National Bureau of Standards

1. Introduction. The National Bureau of Standards has recently made tests on
steel columns having perforated cover plates.! Most of the perforations were of so-
called ovaloid shape, i.e., that of a square with a semi-circle erected on each of two
opposite sides. The tests on the columns included experimental determinations of the
distribution of stress in the neighborhood of a perforation, and the results obtained
aroused interest in the development of a theory for the distribution of stress in a large,
uniformly loaded plate having a single ovaloid hole.

In this paper an exact solution to this problem is obtained for a hole havmg any
boundary of which the equation can be expressed in the parametric form

x = p cos B+ r cos 3B, y = ¢ sin B — r sin 38. (1)

The plate is supposed in a state of generalized plane stress, the stress? at points re-
mote from the hole having the constant nor-
y mal components o;=S:, 6,=S,, and the con-

stant shearing component 7, = T,.
Eq. (1) represents a closed curve having
! symmetry about the x-axis and about the
{ x  y-axis. For certain values of p, ¢, and 7 the
l

curve is simple, i.e., it does not cross itself.
By adjustment of the values of p, ¢, and r a
1 i variety of simple closed curves is obtained,
including a good approximation to an ovaloid

The dashed line represents the actual and a good app_roximation to a square w ith
ovaloid and the full line the approximate oval- rounded corners, as well as exact ellipses
oid of Egs. (1) and (2). (r=0) of any eccentricity. The approximate
ovaloid obtained by taking

F1G. 1. Actual and approximate ovaloids.

p=2.063, ¢=1.108, r= —0.079, ()

is shown compared to the actual ovaloid in Fig. 1. The approximate square obtained
by taking
p=g=1, r=—0.14 ©)

* Received Nov. 13, 1943.
1 Ambrose H. Stang and Martin Greenspan, J. Research NBS 28, 669, 687; 29, 279; 30, 15, 177, 411

(1942-43).
2 The term stress is used throughout to denote the mean value of the stress over the thickness of the

plate.
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is shown in Fig. 2. The sides of the square are 4
parallel to the axes of coordinates. By taking

p=g¢g=1 r=0.14, 4) g W

the same square, but with the diagonals parallel
to the axes of coordinates, is obtained. The
radius of curvature at the mid-point of the fillet
is about 0.086 times the length of the side of the

square.
2. Curvilinear coordinates. If two sets of
curves are defined by
filz, ) =a,  fax,y) =8B, () \

then a pair of values (, 8) defines the points at .

. . . F16. 2. The approximate square of
which the corresponding curves (5) intersect, Egs. (1) and (3).
and (a, B) are curvilinear coordinates in the
x, y-plane. As a special case, the functions of Eq. (5) may be obtained by equating
real and imaginary parts of both sides of

w = [(2), : (6)
where w=a+18 and z=x+1y. In this case the transformation from the w-plane to

the z-plane is conformal and the two families of Eq. (5) are orthogonal. The expres-
sion,
dz 1 " o
—_— = —
dw BT )
defines the stretch ratio, 1/h, of the transformation, and gives ¢, the inclination of the
curve, 3 =constant, to the x-axis.
In the absence of body forces, the condition that the stresses satisfy the conditions
of equilibrium is that the normal components, o, and o, and the shearing component,
Tag, can be derived from a stress function, ¢, by means of the relations?

e % " 1 <6¢ okt 3¢ 6h2> )

Oq =

p? 2\88 8 Oda da
32 1 /0¢ 3h* O Oh?

pe wTS (o sy 0
da? 2 \8 8 Oda da

% 1 /0¢ Oh* O¢p Oh?
o= — e (222, 220,
dad 2 \9B da da 9B

and the condition that the expressions (8) satisfy the compatibility conditions is

92 92 \?2 92 9?2 92 92
V4¢=(5§+a—yz>¢= h2(a_§+a_ﬁz> h2(3;+5§>¢=0. )
If a function, F, satisfies Laplace’s equation,
VF =0, (10)

3 A. E. H. Love, 4 (reatise on the mathematical theory of elusticity, 4th ed., Cambridge, 1927, p. 91.
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then F, xF, yF, and p?F= (x2+y?) F satisfy Eq. (9). Functions which satisfy Eq. (10)
are called harmonic functions, those which satisfy Eq. (9), biharmonic functions.

3. The coordinate system. The solution of the problem is simplified by the use
of a coordinate system (a, 8) such that Eq. (1) of the boundary of the hole reduces
to the form a=ay. Such a system is obtained by writing for Eq. (6)

2 = e* + abe™ + acde?v, (11)
or, separating the real and imaginary parts,
x = (e* + abe==) cos B + acde=3= cos 3, } (12)
y = (e — abe~?) sin B — acde=3* sin 36.
For constant a, say as, Eq. (12) reduces to Eq. (1) for the boundary of the hole, where

p = e* + abe~, g = e* — abe~%, r = ac’e 3%, - (13)

From Egs. (2) and (13) it is easily calculated that for the approximate ovaloid of
Egs. (1) and (2),

e* = 1,585, ab = 0.758, ac® = — 0.314.

By keeping ab and ac® fixed and varying o and 8 the appropriate coordinate system

y /
1 e
27 /
, 2.5
3 T 1
4” 377
1.585
' \
1.25 ﬂ\
1.027
4 o}
) 2 3 X
k) 7
- 1 37
3
37

F16. 3. Coordinate system for problem of ovaloid hole.

for the ovaloid is obtained. This system is shown in Fig. 3. The appropriate systems
for the approximate square with rounded corners are similarly obtained. Figure 4
shows the system corresponding to the case of Eq. (3) and Fig. 2, and Fig. 5 shows
the system corresponding to the case of Eq. (4).
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im

F1G. 4. Coordinate system for problem of square hole with rounded corners, sides of

square parallel to Cartesian axes.

The coordinates (a, B) approach polar coordinates (p, 0) for large « as follows:

lim a = log p, lim g8 = 6. (14)

The values of k? and its derivatives may be computed as follows. From Eq. (11)
dz
—_— = ¥ — abe—lﬂ —_ 3“38—310.
dw
Hence from Eq. (7),
h=% = e?2 4 g% 2 + 9q2c%—%= — 2ab cos 28 )

+ 6a%bcde** cos 28 — 6acde—2= cos 48,

and
1 9oh? ,
—_— s = h4(eza — azbze—-2a —_ 2702666—641 \ (15)
2 da
— 12a%c3¢ 4= cos 28 + 6acde2* cos 48),
1 oA

7 5 = — }*(2ab sin 28 — 6a%bc3e—* sin 28 + 12ac32= sin 48).
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4. The boundary conditions. The statement of the problem may be recapitulated
as follows. There is given a large plate containing a small hole of the shape given by
Eq. (1). The edge of the hole is free from stress. The plate is in a state of (generalized)
plane stress and the components of (mean) stress at points remote from the hole are
0.=S;, 0,=3S,, T2y=Ty; or in polar coordinates,

S:+S, S-S ]
= + *+ ¥ cos 26 + T,y sin 26,

a, 5
S:+S S.— S
gy = 5 L. ¥ cos 20 — T .y sin 26, : (16)
S, — Su .
Tos = — sin 260 4+ T ., cos 20.

The boundary conditions may finally be stated as

0o = Tap = 0, (@ = ),

=S,+S,+S,—S

Ou ’ * cos 28 + T,y sin 28,
S:+S, S:.—S 17
g'p=-~ —zi- Il_ yCOS2ﬁ—szSin2ﬁ: ( )
S:— Sv .
Tag = — sin 28 + T,y cos 28, (a = ).

The last three of Eq. 17 are obtained by substitution of Eq. (14) into Eq. (16).
5. The stress function. From the harmonic functions e* sin 8 and e~= sin 8 may be
constructed the biharmonic functions ye* sin 8 and ye~= sin 8. From Eq. (12)

y = e*sin B — abe * sin B — ac®e3* sin 3B.
Hence
ye® sin B = }e?* — 3e2*cos 28 — %ab + 3ab cos 28 + Lace2* cos 48 — }ace2= cos 28,
ye~*sin B = 3 — 1 cos 28 — Labe2= + Labe2* cos 28 + jac®e42 cos 48 — Lacde—*2 cos 28.

By dropping the harmonic terms from each of these functions and multiplying by 2
the two biharmonic functions,

¢a = e** + ab cos 28 + ac®e—2~ cos 48,

¢s = — cos 28 — abe %= — acle*= cos 2,
are obtained. The biharmonic function

¢. = ye~*cos B + xe* sin B = sin 28 — ac’e*“ sin 28

is obtained in similar fashion.
The biharmonic function p? may be obtained from Eq. (12):

p? = x? 4 y? = e?* 4 a%% 2% 4 a’c% % 4 2ab cos 28
-+ 2a%bcie*> cos 2B + 2acde~%* cos 48.
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L

Fi16. 5. Coordinate system for problem of square hole with rounded corners,
diagonals parallel to Cartesian axes.

The non-harmonic stress functions required by this problem are

¢1 = 2¢a — 2abgs — 0,

¢2 = - ¢b$
and
b6 = o,
or ‘
¢1 = €22 + a?b2e2* — a2Pe %= 4 2ab cos 28,
¢2 = abe=%* + cos 28 + ac®e** cos 2B,
and

b6 = sin 28 — ac%e74= sin 2.
In addition, the harmonic stress functions,
¢s = e cos 2B, ¢y =ce22cos2B, ¢s=a, ¢7=e?sin2B, and ¢s = ¢ 2*sin 28

will be required.
The complete stress function may be written

¢ = Ci¢1 + Cap2 + Csps + Cuagps + Csdps + Codbs + Ci1¢7 + Casops, (18)

where the C’s are to be adjusted so that the stresses derived from ¢ meet boundary
conditions (17). Also
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a
5? = 2C,(e?* — a?b?%e?* + 3Ja’c®e%2) — 2C;(abe2* + 2acde=** cos 2B)
o

+ 2C3e%* cos 28 — 2Cse7 2= cos 28 + Cs + 4Ceac®e 4= sin 28

+ 2C1e?* sin 28 — 2Cse~2® sin 2, (19a)
d
52 = — 4C,ab sin 28 — 2Cy(sin 28 + ac’e—4= sin 28)
— 2C3e?= sin 28 — 2C4e~22 sin 28 + 2Cg(cos 28 — acde—*« cos 2B)
+ 2Ce22 cos 28 + 2Cse2= cos 28, (19b)
3%
T 4C (e?* + a®b% 2 — 9a%8e%) + 4C,(abe 2= + 4acde 4« cos 2B)
a
+ 4C3e?= cos 28 + 4Cse72* cos 28 — 16Csac®e %= sin 28
+ 4Cre?e sin 28 + 4Cge—22 sin 28, (19¢)
9%
3/3—2 = — 8C.ab cos 28 — 4C;(cos 28 + ac’e~** cos 2B)
— 4C3e2® cos 28 — 4C.e72= cos 28 — 4Cs(sin 28 — ac®e4~ sin 28)
— 4Ce?* sin 28 — 4Cge~%= sin 28, (19d)
9% .
= 8Cqac®** sin 28 — 4C;e%* sin 28 + 4C4e~ 2> sin 28
dadp

+ 8Csac®e* cos 28 + 4Cre2® cos 28 — 4Cse—22 cos 2. (19¢)

6. The stresses. Substitution of Egs. (15) and (19) into Eq. (8) gives the stresses
in the form

Oa

7 = 2C1(A 10 + A12 Ccos 2ﬁ + Au Ccos 4ﬂ)

~+ 2C2(A20 + A2e cos 28 + Asq cos 48 + A e cos 68)

+ 2C3(A 30 + A3z cos 28 + Asq cos 48 + Ase cos 68)

+ 2Cy(A40 + Az cos 28 + Ay cos 48 + Ay cos 68)

+ Cs(Aso + Ass cos 2B + Asq cos 4B)

— 2C¢(Aez sin 28 + Aeq sin 48 + A6 sin 68)

— 2C1(A1s sin 28 + Az sin 48 + Aze sin 68)

— 2Cs(As2 sin 28 + Ay sin 48 + Asgs sin 68), (20)

— = 2C1(B1o + Bis cos 28 + By, ces 48 + By cos 68)

+ 2Cy(Bgo + Bas cos 28 + By, cos 48 + Bas cos 68)
— 2C3(Bso + Bsj cos 28 + Bsy cos 48 + Bas cos 68)
— 2C4(B4o + Bys cos 28 + Byy cos 48 + Bys cos 68)
~ Cs(Bso + Bsz cos 28 + Bsy cos 46) |

— 2C¢(Bez sin 28 + By sin 48 + Bgs sin 68)
+ 2C7(B72 sin Zﬁ + Bu sin 46 + .Bu sin 6ﬂ)
~+ 2C3(Bss sin 28 + Bgy sin 48 + Bgg sin 68), (21)
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Tzf = 12Cy(D1s sin 28 + Dus sin 48 + Die sin 68)
— 2C3(Dyq sin 28 + Doy sin 48 + Dy sin 68)
+ 2C3(D3; sin 28 + D34 sin 48 + Dsg sin 68)
— 2C4(Dyz2 sin 28 + Dy4 sin 48 + Dye sin 6B)
+ 2Cs(Dse sin 28 + Dy sin 4B)
— 2Ce¢(Dgo + Ds2 cos 28 + Dey cos 48 + Dgg cos 63)
+ 2C:(D10 + D15 cos 28 + Di4 cos 48 + Dig cos 66)
— 2Cs(Dsgo + Dy, cos 28 + Dgy cos 48 + Dgs cos 68), (22)
in which
Ao = e + 4a?2? — (24a%° + 18a%b2c® — a'd¥)e** + 24a%b2c®e3 — 8laicl2e 19,
Ay = — 4[abe® — (3a%bc® — a3b3)e2e + (9a%bc® — 3ahc®)e ¢ + 9athcde— 1],
A1y = 2(3ac® + a?? — 6a®b*Pe 42 4 9a3c%3),
Az = 2ab — (6a%c?® — a?b¥)e** + 30a3bce8,
Ay = — 2[e** — (4ac® — a??)e 2= + 6(a2%® — a®b2c?)e b — 18a3c% 1],
Ay = ab — 8a?bcPe—** + 9a3bcle8<, Agg = — 6a%cle 02,
Az = 3abe** — 15a%bcie—2, Az = — (et* — 15ac® + 3a%b? + 45a%c8e17),
Asy = abe*® — 9a%bcie 2, Asze = 3acd,
Ao = 3abe2* — 3Jabcie b, Ap = — [3 — (9ac® — a??)eta — 9a2c%3<],
Ay = abe2® + 3a2bcieCe, A = — 3acle e,
Ao = e — a?b%e 2« — 27a%c% %<, Aso = — 2a%bcPe 4, Asy = 6acle?e,
Aer = 2[e?* + (a%? + 4ac®)e2* + 6a’c’e%* + 18a3c%¢~102],
A¢s = — (ab — 2a%c®e—** — 9abcle32), Ags = — 6a2cbe%=,
Az = e** + 3(a%? + Sac®) + 45a%%¢4*, A7y = — (abe?* — 9a%bcPe22), Az = — 3ac?,
Ags = 3 + (a2 + 9ac¥)e~** — 9a2cbe82, Agy = — (abe 2= 4 3a%bcle%2), Ass = 3acle4e,
By = et + 4a?? + (24a%° + 6a%b2c® + a*b?)e4* — 24a%b%Se~3* — 81aic'?e %7,
By, = — 4[abe?® — (3a%hc® — a%b%)e~2 — 9a3bcle—%= + 18atbce10],
Byy = — 2(9ac® — a?? + 6a%b%Pe4* — 45a%c% %), B¢ = 12a%bc3e2¢,
By = 2ab — (6a%bc® — a*b¥)e—4* + 6a’bcbe8e,
Bss = 2[2(ac® — a®?e2* — 3(4a® — a%h%3)e~= + 9adc%e10=],
Byy = ab — 16a%ce 4= + 9adbcle8e, Bgs = 6(acle™?* — 2aicbe%2),
B3y = 3abe?* — 15a%bc3e2e, B3y, = — (et — 15ac® + 3a2b? + 45a%c%e47),
B3, = abe?® — 9a?hcie—2, B3s = 3ac?,
By = 3abe~2* — 3albcle%e, B = — [3 — (9ac® — a%?%)e e — 9aZcbe8e],
By = abe 2 4+ 3a%bcieCe, By = — 3acle e,
Bgo = €2 — a?b%e—2 — 27a%c% %=, Bgss = — 12a%cie 42, Bgy = 6acle 2,
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Bez = 2[2acde2> + 3(a%h%c + 4a%®)e 5= + 9adcde10=],

Bgs = — (ab 4 4acle=** — 9a3bcbe82), Bgs = — 6(ac’e 2@ 4 2a%c8e6),

By = e*a 4 3(Sac® + a?) + 45a%%¢4*, B;y = — (abe** — 9a®hce™*®), B:g = — 3ac?,
Bsz = 3 + (9ac® + a%h?)e** — 9a%be¢ 8+, By, = — (abe 2 + 3a2bcle8%), Bgs = 3acde™4,
Dy, = (10a3bc® + a*b3c3)e—%* — 3a‘bce=102, Diy = 2(ac® + 3adc%¢82), Dyg = — a*bce??,
Dyy = €% 4 (2ac® + a?b?e 2= — 3(2a%5 + a®h%*c?)e~% + 9a3c% 1%,

D,y = 4a2bcde e, Dys = 3(ac’e?2 + a’cbe0),

Dj; = e* 4 15ac® + 3a2? + 45acbe**, D3y = — (abe?* — 9a2bc’e=>*), Dz = — 3ac?,
Dy = 3 + (9ac® + a??e %= — 9a%Se¢=8, Dy = — (abe2* + 3a?bcde=%), Dys = 3acie™*=,
Dy; = ab — 3a%cie 4=, Dsy = 6ac’e 2, D¢y = 12a%bc8e 3,

Dg; = — [e% — (2ac® 4 a??e 2 — 3(2a%° + ab?%3)e5* — 9adc%e1%],

D¢y = 4abcde*e, Des = — 3(acde 2 — a¥cbe5e),

Dy = 3(abe** — 5a?bcie2), D1y = — [efe — 3(5ac® — a%?) + 45a2c%¢ =],
Dyy = abe* — 9a%bcle 2=, Dq¢ = 3ac?,

Dgo = 3(abe 2 — a2bcde %), Dsz = — [3 — (9ac® — a?b?)ea — 9a%cte),
Dgy = abe 2> 4 3a2bciebe, Dgg = — 3acde e,

Boundary conditions (17) are satisfied by substitution for the C's in Egs. (20),
(21), and (22) of
Ci=1S8:4S5), Ci=—1S.-5), Ci=—1iT,,
— 2(1 — ac’e*®)Cy = ab(S: + S,) — €*(S. — Sy),
4(1 — acde0)Cy = 4a%bcle (S, + S,) — (et + 3ac®)(S. — S,),
— 2(1 — ac®e=0)Cy = [e2® — (ac® — a?)e20 + (3a%® + a®b2c¥)e 50
— 3a3c% 1% ](S, + S,) — 2ab(S. — Sy),
(1 4 ac’e4*0)Cq = 2Ty, — 2(1 + acte*20)Cs = (et — 3ac®) T .y

(23)

The case ac’¢e*2°= + 1, for which some of the C’s in Eq. (23) are infinite, does not
correspond to a simple curve for a =a, and hence is excluded. _
7. Stresses along the inner boundary. The tangential stress in the boundary
a=aqpis
7t = (0p)ama,

However, it is simpler to compute it as follows. From Eq. (8),

ga+os 0% 3%
B 3 9p?

Hence from Eq. (19),

ge + 08
2

= 4C:[e? + a%% 2 — 9a%cS¢—% — 2ab cos 28]
+ 4C3[abe~= — (1 — 3ac’e~*@) cos 28] — 4Cs[1 + 3ac’e—*] sin 28.  (24)
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F16. 6. Ovaloid hole, tension parallel to long axis. Distribution of stress along ovaloid boundary.
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the
same ratio of major to minor axis and the same rectified length as the ovaloid boundary.
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F16. 7. Ovaloid hole, tension parallel to short axis. Distribution of stress along the oval:d boundary.
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the
same ratio of major to minor axis and the same rectified length as the ovaloid boundary.
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F16. 8. “Square” hole, tension parallel to side.
The dashed curve shows the distribution of stress for the case of a circular boundary having the same
rectified length as the “square” boundary.

For a=ay, 0,=0; hence

g = (Uﬂ)a-ao = (o'a + aﬁ)ana,,
or from Eq. (24),

a—; = 4C,[e20 + a%b% 0 — 9a%cS¢=8*0 — 2ab cos 28]

% 4 4C;[abe 0 — (1 — 3acde1a) cos 28] — 4Cs[1 + 3ac’e—**] sin 28, (25)
in which %, denotes the value of & for a=a,.
Substitution into Eq. (25) of & from Eq. (15), of Ci, C,, and Cs from Eq. (23),
and replacement of the constantsa, b, ¢, and a, by their values obtained from Eq. (13)
gives, finally

[(p% + 67g) sin2 B + (g2 + 67p) cos2 B — 67(p + q) cos? 28 + 9r%]o,

p+q+6r

= (S: + S5)(p?sin® B+ g* cos® B — %) — To(p + q)ZP teton 28

— #* — ¢S+ 5) = (0 + 9*S: = S) [(p — 3r) sin? B — (g — 3r) cos? B]. (26)
pt+gqg—2r
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8. Some special cases. The components of stress at any point in the plate may be
computed from Egs. (20), (21), (22), and (23). Of especial interest, however, are the
values of g, the tangential stress along the inner boundary, a =y, at points of which
the numerically greatest normal and shearing stresses may be expected to occur.

In this section the values of o, are computed and shown for several simple cases.

Case 1 (Fig. 6). Ovaloid hole, tension parallel to long axis. In this case ¢, is ob-
tained from Eq. (26) with S,=T,,=0 and p, ¢, and r as given by Eq. (2). Then

oy 4.915 — 7.133 cos 28
S: 3.723 — 2.316 cos 28 + cos 48

Case 2 (Fig. 7). Ovaloid hole, tension parallel to short axis. Here S, = T,,=0. Then
7. 11079 + 7.517 cos 28

S, 3.723 — 2.316 cos 28 + cos 48

N Case 3 (Fig. 8). “Square” hole, ten-
K sion parallel to side. Here S,=T:,=0
5 and p, ¢, and r are given by Eq. (3).
\ Then
4q
\ o .981 — 2.967 cos 28
g ’ \\\ S. 1.401 + cos 48
2 ~
AN Case 4 (Fig. 9). “Square” hole, ten-
! sion parallel to diagonal. Here S,=T,
™~ =0 and p, ¢, and r are as given by
Eq. (4). Then
T .981 — 1.606 cos 28

S: 1.401 — cos 48

In each of Figs. 6, 7, 8, and 9 the
values of ¢,/S. or ¢./S, are plotted
along the development of one quadrant
of the inner boundary of the plate. For
comparison, there is shown by means of
the dashed curve in each figure the
distribution of ¢./S: or ¢:/S, for the

case of an elliptical boundary having
F1G. 9. “Square” hole, tension parallel to diagonal.

ratio of major axis to minor
The dashed curve shows the distribution of stress th? Sam; ;t ° . ified 1 th
for the case of a circular boundary having the same 3X1S 2N the same rectihed length as
rectified length as the “square” boundary. the actual boundary.




