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EFFECT OF A SMALL HOLE ON THE STRESSES IN A
UNIFORMLY LOADED PLATE*

BY

MARTIN GREENSPAN
National Bureau of Standards

1. Introduction. The National Bureau of Standards has recently made tests on
steel columns having perforated cover plates.1 Most of the perforations were of so-
called ovaloid shape, i.e., that of a square with a semi-circle erected on each of two
opposite sides. The tests on the columns included experimental determinations of the
distribution of stress in the neighborhood of a perforation, and the results obtained
aroused interest in the development of a theory for the distribution of stress in a large,
uniformly loaded plate having a single ovaloid hole.

In this paper an exact solution to this problem is obtained for a hole having any
boundary of which the equation can be expressed in the parametric form

x = p cos £ + r cos 3/3, y = q sin /S — r sin 3/3. (1)

The plate is supposed in a state of generalized plane stress, the stress2 at points re-
mote from the hole having the constant nor-
mal components <jz   Sxt &V   Sy, and the con-
stant shearing component rIV= Txy.

Eq. (1) represents a closed curve having
symmetry about the x-axis and about the

■ x y-axis. For certain values of p, q, and r the
curve is simple, i.e., it does not cross itself.
By adjustment of the values of p, q, and r a
variety of simple closed curves is obtained,
including a good approximation to an ovaloid

Fig. 1. Actual and approximate ovaloids. , ,   . „     -.i. , and a good approximation to a square with
I he dashed line represents the actual ,

ovaloid and the full line the approximate oval- rounded corners, as well as exact ellipses
oidof Eqs. (1) and (2). (r = 0) of any eccentricity. The approximate

ovaloid obtained by taking

p = 2.063, 5=1.108, r=- 0.079, (2)

is shown compared to the actual ovaloid in Fig. 1. The approximate square obtained
by taking

p = q = i, r = - 0.14, (3)

* Received Nov. 13, 1943.
1 Ambrose H. Stang and Martin Greenspan, J. Research NBS 28, 669, 687; 29, 279; 30, 15, 177, 411

(1942-43).
! The term stress is used throughout to denote the mean value of the stress over the thickness of the

plate.
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is shown in Fig. 2. The sides of the square are
parallel to the axes of coordinates. By taking 

p = q = 1, r = 0.14, (4)

the same square, but with the diagonals parallel
to the axes of coordinates, is obtained. The
radius of curvature at the mid-point of the fillet
is about 0.086 times the length of the side of the
square.

2. Curvilinear coordinates. If two sets of
curves are defined by

fi(x, y) = a, f2(x, y) = /3, (5)

then a pair of values (a, /3) defines the points at „ „
. ... . Fig. 2.1 he approximate square of

which the corresponding curves (5) intersect, Eqs (j) and (3)
and (a, /?) are curvilinear coordinates in the
x, y-plane. As a special case, the functions of Eq. (5) may be obtained by equating
real and imaginary parts of both sides of

w = /(z), (6)

where w=a-t-i/3 and z = x-\-iy. In this case the transformation from the w-plane to
the z-plane is conformal and the two families of Eq. (5) are orthogonal. The expres-
sion,

dz 1
— = - e», (7)
aw h

defines the stretch ratio, 1 /h, of the transformation, and gives the inclination of the
curve, |8 = constant, to the x-axis.

In the absence of body forces, the condition that the stresses satisfy the conditions
of equilibrium is that the normal components, <xa and <Tp, and the shearing component,
ta(3i can be derived from a stress function, <j>, by means of the relations3

d24>
h*-— + —

d/32 2 \d& 3/3

1 /d<l> 3/?2 d<j> dh2\

2 W SB da da)'

<70 =

= — h2

d2<t> 1 /dcj> dh2 dip dh2\

da2 2 \d(3 d/3 da da)

d2<t> 1 /d<t> dh2 d<t> dh2s\1 /d<t> dh2 d<t> dh2\

' 2 \3|8 da da df})

(8)

dad/3

and the condition that the expressions (8) satisfy the compatibility conditions is

/ a2 a2 V / d2 d2\ / d2 d2 \
vv = ( + U = h2( + ) h2[ + U = 0. (9)

\dx2 dyy \da2 a/32/ \da2 dp2/

If a function, F, satisfies Laplace's equation,

V2F = 0, (10)

1 A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge, 1927, p. 91.
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then F, xF, yF, and p2F= {xi-\-y2)F satisfy Eq. (9). Functions which satisfy Eq. (10)
are called harmonic functions, those which satisfy Eq. (9), biharmonic functions.

3. The coordinate system. The solution of the problem is simplified by the use
of a coordinate system (a, /3) such that Eq. (1) of the boundary of the hole reduces
to the form a=a0. Such a system is obtained by writing for Eq. (6)

2 = ew + abe~w + ac3e~3w, (11)

or, separating the real and imaginary parts,

x = (ea + abe~~") cos /3 + ac3e~3a cos 3/3,

y = (ea — abe~") sin /? — ac3e~3" sin 3/3.

For constant a, say a0, Eq. (12) reduces to Eq. (1) for the boundary of the hole, where

p = ea« + abe~a°, q = ea« — abe~~"°, r = ac3e~~3a°. (13)

From Eqs. (2) and (13) it is easily calculated that for the approximate ovaloid of
Eqs. (1) and (2),

e"' = 1.585, ab = 0.758, ac3 = - 0.314.

By keeping ab and ac3 fixed and varying a and ^ the appropriate coordinate system

(12)

Fig. 3. Coordinate system for problem of ovaloid hole.

for the ovaloid is obtained. This system is shown in Fig. 3. The appropriate systems
for the approximate square with rounded corners are similarly obtained. Figure 4
shows the system corresponding to the case of Eq. (3) and Fig. 2, and Fig. 5 shows
the system corresponding to the case of Eq. (4).
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\n

Fig. 4. Coordinate system for problem of square hole with rounded corners, sides of
square parallel to Cartesian axes.

The coordinates (a, /3) approach polar coordinates (p, 6) for large a as follows:

lim a = log p, lim /3 = 6. (14)
a = oo ax 00

The values of k2 and its derivatives may be computed as follows. From Eq. (11)

dz
 = ew — abe~w — 3ac3e~3w.
dvt

Hence from Eq. (7),

hr2 = eia + a2b2e~2a + 9a2cee~~6a — 2ab cos 2/3

+ 6a2bc3e~ia cos 2/3 — 6ac3e~2a cos 4/3,

and

1 dh2
 = - h\e2a - a2b2e~2a - 27aVe~*a
2 da

— 12a2bc3e~ia cos 2/9 + 6ac3e~2" cos 4/3),

1 dh2
 = — A4(2aJ sin 2/3 — 6a2bc3e~ia sin 2/3 + 12ac3e-2" sin 4/3).
2 3/3

(15)
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4. The boundary conditions. The statement of the problem may be recapitulated
as follows. There is given a large plate containing a small hole of the shape given by
Eq. (1). The edge of the hole is free from stress. The plate is in a state of (generalized)
plane stress and the components of (mean) stress at points remote from the hole are
<fx — Sx, <ry = Sv, txv=Txv-, or in polar coordinates,

SX + Sy SX ~ Sy
(xp =   1   cos 26 -j- Txv sin 26,

SX+SV SX-Sy
ce = cos 26 — Txy sin 29, (16)

2 2
5 — S

Trf =  —- sin 26 + TXy cos 26.

The boundary conditions may finally be stated as

<ra = Tap = 0, (a = do),

SX + Sy SX~ Sy
ca = 1 cos 2/3 + TXy sin 2/3,

2 2
Sx +Sy Sx-Sy (17)

<T0 =     cos 2/3 — TXy sin 2/3,

Sx — S
TaB = ——- sin 2/3 + TXy cos 2/3, (a = oo).

The last three of Eq. 17 are obtained by substitution of Eq. (14) into Eq. (16).
5. The stress function. From the harmonic functions e" sin /3 and e~" sin /3 may be

constructed the biharmonic functions ye" sin /3 and ye~a sin /3. From Eq. (12)

y = e" sin /3 — abe~" sin /3 — ac3e~3a sin 3/3.

Hence

ye" sin /3 = Je2" — %e2a cos 2/3 — \ab + %ab cos 2/3 + %ac3e~2* cos 4^ — §aeV~2a cos 2/3,

ye~" sin /3 = \ — J cos 20 — %abtria + Iabe~2a cos 2/3 + \acze~*" cos 4/3 — %ac3e~4a cos 2/3.

By dropping the harmonic terms from each of these functions and multiplying by 2
the two biharmonic functions,

4>a = e2a + ab cos 2/3 + ac3e~2a cos 4/3,

<t>b = — cos 2/3 — abe~2a — ac3e~ia cos 2/3,

are obtained. The biharmonic function

4>c — ye~a cos /3 + xe~a sin /3 = sin 20 — ac3e~ia sin 2/3

is obtained in similar fashion.
The biharmonic function p2 may be obtained from Eq. (12):

p2 = x2 + y2 = e2a + a2b2e~2a + a2c'e~6a + 2ab cos 20

+ 2a2bc3e~*a cos 2/3 + 2ac3e~2a cos 4/3.
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V

Fig. 5. Coordinate system for problem of square hole with rounded corners,
diagonals parallel to Cartesian axes.

The non-harmonic stress functions required by this problem are

0! = 2 4>a — 2ab<f>b — p2>

<t> 2 = — <t>b,
and

<t> 6 = <t>c,

or
<t>i — e2a + a2b2e~ia — a2c6e~6a + 2ab cos 2/3,

02 = abe~~2a + cos 2/3 + ac3e~ia cos 2/3,
and

</>a = sin 2/3 — ac3e~la sin 2/3.

In addition, the harmonic stress functions,

03 = e2" cos 2/3, 04 = e-2" cos 2/3, 06 = ct, 07 = e2" sin 2/3, and 0g = e_2a sin 2/3

will be required.
The complete stress function may be written

0 = C,0, + C202 + C303 + C*404 + C505 + C606 + ^707 + Cs08, (18)

where the C's are to be adjusted so that the stresses derived from 0 meet boundary
conditions (17). Also
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dtp
da

d<f>

d24>

da2

d2tf>

d/32

<32</>

dadfi

2Ci(e2a — a2b2e~2a + 3a2c6e_6a) — 2C2(abe~ia + 2ac3e~ia cos 2/3)

+ 2C3e2" cos 2/3 — 2C4e-2" cos 2/3 + C6 + ^eac'e-4" sin 2/3

+ 2C7e2" sin 2/3 — 2C8e_2t" sin 2/3, (19a)

— 4Ci«6 sin 2/3 — 2C2(sin 2/3 + ac3e~4" sin 2/3)

— 2C3«2" sin 2/3 — 2C4e_2a sin 2/3 + 2Ce(cos 2/3 — ac3e~ia cos 2/3)

+ 2C7«2" cos 2/3 + 2Cze~~2a cos 2/3, (19b)

4Ci(e2" + a2b2e~~2a — 9a2c6e~6a) + 4C2(afte-2" + 4ac3e-4" cos 2/3)

+ 4C3e2a cos 2/3 + 4C4e~2" cos 2/3 — 16C60c3e~4" sin 2/3

+ 4C7e2a sin 2/3 + 4C8e-2" sin 2/3, (19c)

— 8Ciab cos 2j3 — 4C2(cos 2/3 + oc3e~4a cos 2/3)

— 4C3e2a cos 2/3 — 4C4e~2" cos 2/3 — 4Ce(sin 2/3 — ac3e~*a sin 2/3)

— 4C7e2a sin 2/3 — 4C8e_2a sin 2/3, (19d)

8C2ac3e~ia sin 2/3 — 4C3e2" sin 2/3 + 4C4C-2" sin 2/3

+ SCeac'e-4" cos 2/3 + 4C7e2" cos 2/3 — 4Cse-2" cos 2/3. (19e)

6. The stresses. Substitution of Eqs. (15) and (19) into Eq. (8) gives the stresses
in the form

<Ta

h*

<T0

h*

= 2Ci(Aio + ^412 cos 2/3 + ^414 cos 4/3)

+ 2C2(Am + A 22 cos 2/5 + ^24 cos 4/3 + ^26 cos 6/3)

+ 2C3(^3o + >432 cos 2/3 + >434 cos 4/3 + >436 cos 6/3)

+ 2C4(v44o + >442 cos 2/3 + ^44 cos 4/3 + Ait cos 6/3)

-|- Cs(A 6o ~l~ >4 52 cos 2/3 -|- ^4 54 cos 4$)

— 2C6(/l62 sin 2/3 + ^64 sin 4/3 + A6e sin 6/3)

— 2C7G472 sin 2/3 + ^74 sin 4/3 + A7e sin 6/3)

— 2C8(>482 sin 2/3 + >484 sin 4/3 + ^486 sin 6/3), (20)

= 2Ci(5io + 5i2 cos 2/3 + .Bi4 ccs 4/3 + Ble cos 6/3)

+ 2C2(B2o + B22 cos 2/3 + -B24 cos 4/3 + B26 cos 6/3)

— 2C3(53o + B32 cos 2/3 + .B34 cos 4/3 + B3t cos 6/3)

— 2C4(B40 + £42 cos 2/3 + B44 cos 4/3 + BiS cos 6/3)

— C6(Bso + B52 cos 2/3 + B64 cos 4/3)

— 2C6(562 sin 2/3 + _B64 sin 4/3 + i?66 sin 6/3)

+ 2C7(Z?72 sin 2/3 + .B74 sin 4/3 + Z?76 sin 6/3)

+ 2Cs(Bg2 sin 2/3 + -B84 sin 4/3 + Bit sin 6/3), (21)
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7" a 8
  = 12Ci(Z>i2 sin 2/3 + Du sin 4/3 + Die sin 6/3)

h4
— 2C2(i>22 sin 2/3 + Z>24 sin 4/3 + D2e sin 6/3)

+ 2C3(D32 sin 2/3 + D3i sin 4/3 + Z>36 sin 6/3)

— 2Ct(Dt2 sin 2/3 + Z?44 sin 4/3 + D4e sin 6/3)

+ 2C6(£>62 sin 2/3 + Z)64 sin 4/3)

— 2C((Z)6o ~l~ D62 cos 2/3 Z?64 cos 4/3 -(- Da cos 6/3)

-I- 1Ci(Dtq D72 cos 2/3 -}~ Dta cos 4/3 -f- Z?7g cos 6/3)
— 2Cs(Dm + Z>s2 cos 2/3 + Z>84 cos 4/3 + Z)8e cos 6/3), (22)

in which

>1,0= e4a + 4a2b2 — (24 a2c" + 18 a3b2c3 — a4b4)e~~4" + 24 a4b2c*e~Sa — SlaV2^12",

^4,2=— 4[a6e2° - (3a26c3 - a3b3)e~2a + (9a'ic6 - 3a4b3c3)e~6a + 9a46c»€-1#a],

14 = 2(3ac3 + a2b2 — 6 a3b2c3e~4a + 9 a3c9e~Sa),

A 20 = 2 ab — (6a2bc3 — a363)e_4a + 30a3ie6e~8a,

■^22 = — 2[e2a — (4ac3 — a2b2)e~2" + 6(a2c6 — a3b2c3)e~6a — 18a3c9e"100'],

Ait — ab — 8 a2bc3e~*a + 9 a3bc'e~Sa, ^26 = — 6aic6e~t",

A 30 = 3oJe2a - 15a2bc3e~2a, A32 = - (e4« - 15ac3 + 3a262 + 45n'c'r4"),

^34 = aie2a — 9 a2bc3e~2a, A 3e = 3ac3,

^40 = 3 abe~2a — 3a2bc3e~ta, A 42 = — [3 — (9ac3 — a2b2)e~*a — 9<z2cV"8a],

yl44 = abe~2a + 3 a2bc3e~ia, A^ = — 3ac3e_4a,

^50 = e2a — a2b2e~2a — 27 a2cV~6", 52 = — 2a2ic3e-4", ^54 = 6ac3e-2a,

-<4 82 = 2[e2a + (a2ft2 + 4ac3)e~2a + 6a2c8e~6a + 18a3c9e~10"],

-(464 = — (ab — 2a2bc3e~4" — 9 a3bc"e~Sa), Att = — 6 a2cte~t",

A 72 = e4a + 3(a2b2 + 5ac3) + 45a2c'e~4a, yl74 = — (a£>e2a — 9a2bc3e~2a), A7e = — 3ac3,

A82 = 3 + (<z2i2 + 9ac3)e_4a — 9a2c6e~8a, -484 = — (abe~2a + 3a2bc3e~ta), An = 3ac'e-4",

£10 = e4a + 4a262 + (24a2c6 + 6a3b2c3 + a4b4)e~4a - 24aWe-8a - 81a4c,2<r12<\

Bu = - 4[a6e2» - (3a2ic3 - a3b3)e~2a - 9a^c'e-'" + 18a4&cV-10a],

Bu = — 2(9 ac3 — a2b2 + 6 a3b2c3e~4a — 45 a3c9e~8"), B16 — 12 a2bc3e~2a,

B20 = 2ai — (6a2bc3 — a3b3)e~ia + 6 a3bcee~Sa,

B22 — 2[2(<zc3 — a2b2)e~2a — 3(4a2c* — a3b2c3)e~e" + 9 a3c9e~10a],

B2i = ab — 16a2ic3e-4" + 9a36c8e~8a, /?2« = 6(ac3e_2a — 2a2c"e~~ta),

B30 = 3aie2« - 15a26c3e~2a, ^32 = - (e4a - 15ac3 + 3a2b2 + 45a2c«e-4«),

B3i = abe2a — 9 a2bc3e~2a, B3e = 3ac3,

54o = 3abe~2a — 3a2bc3e~ta, Bi2 = — [3 — (9ac3 — a2b2)e~4" — 9 a2cte~%a},

Btt = abe~2a + 3a2bc3e~ta, Bti = — 3 ac3e~4a,

B6 0 = e2a — a2b2e~2a — 27a2cee~ta, ^52 = — 12a2Jc3e_4a, Bu = 6 ac3e~2a,
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Be2 = 2[2ac3e~2a + 3(a3b2c3 -f- 4<i2c6)e~6a + 9a3c*e~i0a],

Bei = - (ab + 4a*bc3e-ia - 9a3bc*e-s"), B65 = - 6(ac3e~2a + 2aW"*"),

Bn = eia + 3(5ae3 + a-b2) + 45a2c6e~4V B-n = — (abe2a — 9a2bc"e~2a), -B76 = — 3ac3,

Bs2 = 3 + (9ac3 + a2b2)e~~ia — 9a2cee~s", BS4 = — (iibe~2a + 3a2bc3e~s"), Bit = 3ac3e~la,

Da = (10a36c6 + fl463c3)e-6a - 3a4&f9e-10", Du = 2(ac3 + 3<j3f9e-8°), £>16 = - a2bc3e~2°,

£>22 = e2" + (2 ac3 + a2b2)e~2a — 3(2a2c6 + a3b2c3)e~6a + 9a3c9e_I(to,

£>24 = 4 a2bc3eria, D2& = 3(ac3e_2a + a2c6e_6a),

£>32 = e4a + 15ac3 + 3a262 + 45a2c6e~4a, £>34 = — (abe2a — 9a2bc3e~~2"), D3t = — 3uc',

£>42 = 3 + (9ac3 + a2b2)e~ia - 9aic*er*a, Dti = - (abe~2a + 3a2bc3e~6a),Dt(, = 3ac3e-*°,

Dm = ab — 3a2bc3e~4a, Dit = 6 ac3e~2a, Dm = 12a3£>c6e_8a,

£>62 = — [e2a — (2ac3 + a2b2)e~2a — 3(2a2c6 + a3b2c3)er*a — 9a3c9e~10a],

£>64 = 4a2Z>c3e~4a, £>6s = — 3(ac3e~2a — a2c6e~6a),

£>70 = 3(abe2a — 5ff26c3e_2a), £>72 = — [e4a — 3(5 ac3 — a2b2) + 45 a2e6e_4a],

£>74 = afte2" — 9 a2bc3e~2a, £>7« = 3ac3,

£>so = 3(abe~~2" — a2bc3e~Sa), £>82 = — [3 — (9ac3 — o262)e_4a — 9a2c6e~8a],

£>84 = abe~2a + 3a2bc3e~Sa, Dm = — 3ac3e~4a.

Boundary conditions (17) are satisfied by substitution for the C's in Eqs. (20),
(21), and (22) of

C, = i(S, + Sv), C3 = - J(J, - 5„), C7 = - irxv,
- 2(1 - ac3e~ia«)C2 = <i4(S. + S„) - e2a"(5x - 5,),

4(1 - ac3e-4a«)C4 = 4fl2ic3e-2°»(5I + Sv) - (e4°» + 3ac3)(SI - £„),

— 2(1 — ac3e~4a«)Ci = [e2a° — (ac3 — a262)e-2a» + (3a2cs + a3b2c3)e~6a°

- 3o3c9e_10a»](5I + 5,,) - 2ab(Sx - Sy),

(1 + ac3e~iao)Ci = e2"'Txy, - 2(1 + ac'e^C* = (e- 3ac3)Txy.

The case ac3e~4o,° = +1, for which some of the C's in Eq. (23) are infinite, does not
correspond to a simple curve for a=a0 and hence is excluded.

7. Stresses along the inner boundary. The tangential stress in the boundary
a = ao is

O't = (^p)a=a0'

However, it is simpler to compute it as follows. From Eq. (8),

(23)

"a + C/S d2<f> d2<f>

h2 da2 df)2

Hence from Eq. (19),

C« + C/3
= 4Ci[e2a + a2b2e 2a — 9a2c6e *° — 2ab cos 28}

h2
+ AC2[abe~~2a — (1 — 3ac3e~4a) cos 2/3] — 4C6[l + 3ac3e~4a] sin 2/3. (24)
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Fig. 6. Ovaloid hole, tension parallel to long axis. Distribution of stress along ovaloid boundary.
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the

same ratio of major to minor axis and the same rectified length as the ovaloid boundary.

Fig. 7. Ovaloid hole, tension parallel to short axis. Distribution of stress along the ova!o!d boundary.
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the

same ratio of major to minor axis and the same rectified length as the ovaloid boundary.
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Fig. 8. "Square" hole, tension parallel to side.
The dashed curve shows the distribution of stress for the case of a circular boundary having the same

rectified length as the "square" boundary.

For a =ao, <ra = 0; hence

(o*^)o=ao (°a "1" °0)a=aoi

or from Eq. (24),

— = 4Ci[e2ao + a2b2e~2°» — 9a2c6e~Sa" — 2ab cos 2/3 ]
h?

0 + 4C2[a&e~2ao — (1 — 3acie~ia») cos 2/3] — 4Ce[l + 3ac3e~ia»] sin 2/3, (25)

in which ho denotes the value of h for a=a0.
Substitution into Eq. (25) of h0 from Eq. (15), of Ci, C2, and C6 from Eq. (23),

and replacement of the constants a, b, c, and a0 by their values obtained from Eq. (13)
gives, finally

[(p2 + 6rq) sin2 /3 + (q2 + 6rp) cos2 /S — 6r(p + q) cos2 2/3 + 9r2]<r(

= (Sx + Sy)(p2 sin2 /3 + <72 cos2 /3 — 9r2) — r*„(/> + j)2 ^ ^ — sin 2/3
p + 9 + 2r

(/>2 - q*)(Sx + S„) - (p + ?)2(5, - 5„) r
—   [(p — 3r) sin2 /3 — (q — 3r) cos2 /3], (26)

p + ? — 2r
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8. Some special cases. The components of stress at any point in the plate may be
computed from Eqs. (20), (21), (22), and (23). Of especial interest, however, are the
values of <rt, the tangential stress along the inner boundary, a = a0, at points of which
the numerically greatest normal and shearing stresses may be expected to occur.

In this section the values of <r< are computed and shown for several simple cases.
Case 1 (Fig. 6). Ovaloid hole, tension parallel to long axis. In this case at is ob-

tained from Eq. (26) with Sy=Txy = 0 and p, q, and r as given by Eq. (2). Then

at 4.915 — 7.133 cos 2/3
Sx 3.723 — 2.316 cos 2/3 + cos 4/3

Case 2 (Fig. 7). Ovaloid hole, tension parallel to short axis. Here Sx = Txv = 0. Then

<rt 1.079 + 7.517 cos 2/3
Sv 3.723 — 2.316 cos 2/3 + cos 4/8

Case 3 (Fig. 8). "Square" hole, ten-
sion parallel to side. Here Sv=Txy = 0
and p, q, and r are given by Eq. (3).
Then

at .981 - 2.967 cos 2/3
Sx 1.401 + cos 4/3

Case 4 (Fig. 9). "Square" hole, ten-
sion parallel to diagonal. Here Sy=Txy
= 0 and p, q, and r are as given by
Eq. (4). Then

at .981 — 1.606 cos 2/3
Sx~ 1.401 -cos 4/8

In each of Figs. 6, 7, 8, and 9 the
values of <rt/Sx or trt/Sy are plotted
along the development of one quadrant
of the inner boundary of the plate. For
comparison, there is shown by means of
the dashed curve in each figure the
distribution of <rt/Sx or crt/Sy for the
case of an elliptical boundary having

Fig. 9. "Square" hole, tension parallel to diagonal. the same ratio of major axis to minor
The dashed curve shows the distribution of stress . , , , , ,,

for the case of a circular boundary having the same axls an<^ ^ e same rec 1 e en§> as
rectified length as the "square" boundary. the actual boundary.


